B Y &8 T EMB | HL

This document is published by the NEON Systems, Inc. Technical Publications Department and appliesto
Shadow® Server™, Version 4, Release 5, Shadow® 0S/390 Web Server™, Version 4, Release 5, and Shadow®
Enterprise Server™ , Version 2, Release 6.

Copyright 1999 NEON Systems, Inc. All rights reserved. Printed in the U.S.A.

Licensee is granted permission to make a limited number of copies of the documentation for its internal business
purposes only. All such copies shall bear all copyright, trade secret, trademark and any other intellectual property
notices on the original copies. This limited right to reproduce for internal purposes only is not transferable.
Furthermore, this limited right DOES NOT include any license to distribute, modify, display or make derivative
works from the Copyrighted materials.

® indicates a trademark registered in the United States.
™ indicates a trademark that is not registered in the United States.

NEON and Shadow are registered trademarks and Activity Monitor, Affinities Server, Connection Facility,
Database Event Facility, Dynamic Index Facility, Halo, Halo SSO, NEON 24X7, PDF, RandomMax, REXX/
Tools, ShadowDirect, Shadow Enterprise Direct, Shadow Web Server, Speed Key, Speed Load, Speed Unload,
Support Module, SSL Support Module, and Transaction Server are trademarks of NEON Systems, Inc.

All other trademarks, service marks, and product or service names are the property of their respective owners.

This software/document contains proprietary information of NEON Systems, Inc.; it is provided under a license
agreement containing restrictions on use and disclosure and is also protected by copyright law. Reverse
engineering of the software is prohibited.

If this software/documentation is delivered to a U.S. Government Agency of the Department of Defense, then it
is delivered with Restricted Rights and the following legend is applicable:

Restricted Rights L egend

Use, duplication, or disclosure by the Government is subject to restrictions as set forth in
subparagraph (c)(1)(ii) of DFARS 252.227-7013, Rights in Technical Data and Computer
Software (October 1988).

If this software/documentation is delivered to a U.S. Government Agency not within the
Department of Defense, then it is delivered with “Restricted Rights,” as defined in
FAR 52.227-14, Rights in Data—General, including alternate (June 1987).

NEON Systems, Inc. does not warrant that this document is error-free. The information in this document is
subject to change without notice and does not represent a commitment on the part of NEON Systems, Inc. No
part of this document may be reproduced or transmitted in any form or by any means, electronic or mechanical,
including photocopying and recording, for any purpose without the express written permission of NEON
Systems, Inc.

Address inquiries to:

NEON Systems, Inc.
14100 SW Freeway, Suite 500
Sugar Land, Texas 77478

World Wide Web: http://www.neonsys.com

Phone: 1-800-505-6366
(281) 491-4200 (Corporate Sales, Technical Support)
Fax: (281) 242-3880

December 1999

Contents

About this Publication ... Xi

How thisPublicationisOrganized. i i e e e e Xi

CONVENTIONSottt et e e e e e e Xiii

Readers CommeNnts. i Xiii.

NEON Systems, InC. Products. i i i Xiv ...

Year 2000 Compliancy Statement. Xiv

Working with Technical Support. e e X\ .

Chapter 1: Shadow RPC Direct e 1-1

INErOdUCHION e 1-1

Product ArChiteCtUre e 1-2
Client Applications i e e, 1-2.

Host Applications 1:3.
Client-RPC INteraction e 14 ..

Host Execution ENVIFONMENT.ot 1-6. ..
Virtual Storage Utilization i 1-6...
RPC Libraries e 1-7.

Other DD Statements. e 1-7. ..
Data Transmission between the Client Application and the HostRPC 1-8

Using Host Data. i e e e e e . 1-8
DB . o e 1-8
IMS . e e e e 1-9
Writing a HoSt RPC. 1-9
RPC Debug SUPPOrt.o e 1-10

Client API Function Definitions 1-15..

SCASCITOEDCIC. 1-16.
SCEDLCAICTOASCI . ..o v o e 1-18.
SCReadBuUffer 1-20.
SCWriteBUfer. e 1-22
SCWriteReadBuffer 24...1
Chapter 2: ODBC CALL RPCs e e 2-1

INErOdUCHION e e 2-1

ODBC CALL RPC EXamples e e e e 1...2-

Sample ODBC CALL RPC for VSAM e e e e 2-2

Other Sample RPCs e s e i e et 2:7
Writing RPCs that ACCess DB 2. e 2-7
Special Considerations for Cobol Il e 2-8
Special Considerations for Cobol for MVS and Other LE/370 Languages 2-10

1l

December, 1999 Shadow Programming Guide

Contents

Chapter 3: Running DB2 Stored Procedures 3-1
INErOUCHION 31
T S X . . oot 31
DB2 Stored ProCedUIESottt et e e 32

PreparingaDB2 Stored Pracedure oot e 33
Coding Cursorsin Return Result Sets.o e e 3-3
Troubleshooting DB2 Stored ProceduresSot e e 34

Chapter 4: Shadow IMS Direct 4-1

INErOUCHION 4-1

Product ArChiteCture. o 4-1
Single-Threaded Accessto IMS Databases and the MessageQueue 4-1
Multi-Threaded Accessto IMSDatabaseso oo 4-3
Installing Shadow IMS DIrecCtot e e e e 4-5
Configuring Shadow SerVero e e 4-5
Setting Parametersfor Single-Threaded ACCESS. oo i i i 4-5
Setting Parameters for Multi-Threaded ACCESS. oot e 4-6
Programming IMS Applicationsttt e e e e 4-8
Client APPlICaHIONS . .. oot 4-8
Client API Function Definitions o 4-9
SCCTOD L. vttt 4-10
SCCTODLIPESCa i e e e e e e e 4-17
SCPACKEAT OASCH . o v v vttt e e e 4-24
SCASCITOPaCKEdo 4-26
Sample IMS Batch Message ProgramCade e 4-27

Chapter 5: Transaction Server for IMS 5-1
INErOTUCTION o e e e e 51
Examplesof Using Shadow IMS 5-4

COB L . .ot e 5-4
VisUal BaSIC 3.0, .. oottt et 5-4
PowerBUilder 4.0.o 55
PEXECSQL .ttt 5-7

Chapter 6: Transaction Server for CICS 6-1
INErOTUCTION e e e e 6-1
Examplesof Using Shadow for CICS i e 6-2

COBO ..ottt e 6-2
VisUal BaSiC 3.0, ..ottt 6-2
PowerBUilder 4.0. oo 6-4
PEXECSQL .ttt 6-5

iv Shadow Programming Guide December, 1999

Contents

Chapter 7: Host Application API Function Calls 7-1
TheHigh-Level Language (HLL) Interface. i 7-4
NEON-Supplied Source Copy Members.ot e e 7-4
Layout of theHLL ReferencePages. e e 7-4
ODBC CALL HOSt APIS . . ettt e e e e e e e e 7-8
SQLBINDCOL (SDCPBC) FUNCHON« e e e e e e e e e e e e e 7-9
SQLDESCRIBEPARAM (SDCPDP) FUNCLIONottt 7-13
SQLNUMPARAMS (SDCPNP) FUNCHON o e ee e e e e e e e 7-17
SQLRESETPARAM (SDCPRP) FUNCLIONo 7-19
SQLRETURNSTATUS (SDCPRS) FUNCHON. . . . e eeeee e e e 7-21
SQLTHROW (SDCPTH) FUNCLION. . . .ottt et e e e e e 7-24

IM S A PP AP, .o e 7-27

High-Level Language Interface

SQLAPPCCONNECT (SDCPAC) or

SWSAPPCCONNECT (SWCPAC) FUNCION. . ..ot 7-28
SDBAPCON/SWSAPCON FUNCLIONot e e e 7-37
High-Level Language Interface

SQLAPPCDISCONNECT (SDCPAD) or

SWSAPPCDISCONNECT (SWCPAD) Functiont 7-41
SDBAPDIS/SWSAPDISFUNCHON . . . oottt e e 7-45
High-Level Language Interface

SQLAPPCRECEIVE (SDCPAR) or

SWSAPPCRECEIVE (SWCPAR) Function. 7-46
SDBAPRCV/ SWSAPRCY FUNCLiON.o e e 7-52
High-Level Language Interface

SQLAPPCSEND (SDCPAYS) or

SWSAPPCSEND (SWCPAS) FUNCLIONo e 7-54
SDBAPSND/SWSAPSND FUNCEION.o e 7-59
ClCS APIS L 7-61

High-Level Language Interface
SQLEXCICONNECT (SDCPEC) or

SWSEXCICONNECT (SWCPEC) FUNCLIONot 7-62
SDBEXCON/SWSEXCON FUNCLIONottt 7-67
High-Level Language Interface SQLEXCIDPLREQ (SDCPED) or

SWSEXCIDPLREQ (SWCPED) FUNCLION.ot 7-69
SDBEXDPL/SWSEXDPL FUNCHION.\t 7-75

High-Level Language Interface

sglexciinitusr (SDCPEI) or

SWSEXCIINITUSR (SWCPEI) Functiont 7-78
SDBEXINI/SWSEXINI FUNCLiON.o e e 7-82
High-Level Language Interface

SQLEXCIDISCONN (SDCPEL) or

SWSEXCIDISCONN (SWCPEL) FUNCLIONo e 7-84
SDBEXDIS/SWSEXDISFUNCHONo e 7-88
Web Server Specific APISo 7-90

December, 1999 Shadow Programming Guide \

Contents

High-Level Language Interface

SWSSEND (SWCPSN) FUNCLION . . . oo 7-91

SWSSEND FUNCLION e e e e 7-94

High-Level Language Interface

SWSRESP (SWCPRE) FUNCLION.t e e e 7-96

SWSRESP FUNCLION . ..o e 7-100

High-Level Language Interface

SWSFILE (SWCPFI) FUNCHION. o e e ettt 7-102

SWSFILE FUNCHON . . . ot e e e 7-113

The SWSFILE Function with Other REXX-language Interpreters. 7-124

High-Level Language Interface

SWSSET (SWCPSO) FUNCHION.ot 7-130

SWSSET FUNCLION. . . . oottt 7-140

High-Level Language Interface

SWSWTO (SWCPWT) FUNCLION e e e et e e 7-142

SWSWTO FUNCLION. . . ettt e e e e e e 7-145
RPC DireCt HOSt APIS . . .o e 7-146

SUCPIf FUNCLION ... e 7-147

SACPMQ FUNCHION et e e e e 7-150

SUCPId FUNCHIONo e e e 7-152

SOCPWIE FUNCHION . .o e e e e e e e 7-154
General APIS .. 7-156

High-Level Language Interface

SQLERROR (SDCPSE)

SWSERROR (SWCPSE) FUNCLION.ot e i 7-157

SDBERROR/SWSERROR FUNCLION 7-161

High-Level Language Interface

SQLGETINFO (SDCPGI)

SWSINFO (SWCPGI) FUNCLION oo e e it 7-162

SDBINFO/SWSINFO FUNCEION oo et i 7-167

High-Level Language Interface

SQLTRACEMSG (SDCPTM)

SWSTRACEMSG (SWCPTM) FuNCtion. e e 7-169

SDBTRACE/SWSTRACE FUNCLION.t 7-172

High-Level Language Interface

SDBALLOC (SDCPAL)

SWSALLOC (SWCPAL) FUNCLION.ottt e e 7-173

SDBALLOC/SWSALLOC FUNCLION oot e 7-188

High-Level Language Interface

SDBFREE (SDCPFR)

SWSFREE (SWCPFR) FUNCLION.ot e 7-199

SDBFREE/SWSFREE FUNCLIONo e e e 7-204

High-Level Language Interface

SDBVALUE (SDCPVL)

SWSVALUE (SWCPVL) FUNCHIONo e e e e e 7-207

vi

Shadow Programming Guide December, 1999

Contents

SDBVALUE/SWSVALUEFUNCION 7-213

High-Level Language Interface
SQLTOKEN (SDCPTK)

SWSTOKEN (SWCPTK) FUNCHIONottt et 7-219
SDBTOKEN/SWSTOKEN FUuNnCtion e e 7-225
High-Level Language Interface

SDBCONCT (SDCPCC)

SWSCONCT (SWCPCC) FUNCHION . . oottt et et et e 7-229
SDBCONCT/SWSCONCT FUNCHON . . .o e e ettt e 7-232

High-Level Language Interface
SDBDECON (SDCPDC)

SWSDECON (SWCPDC) FUNCLIONttt 7-234
SDBDECON/SWSDECON FUNCLIONot et e e 7-237
Web Server REXX and SEF APIS. i e e 7-238
High Level Language SWSClearQueue (SWCPQL) Function 7-239
SWSCLEDQ FUNCHION e et et et et et et et 7-242
High-Level Language Interface
SDBECURE (SDCPSC)
SWSECURE (SWCPSC) FUNCtion. e e e e e 7-243
The SDBECURE/SWSECURE FUNCLIONo et 7-251
SWSENQ FUNCHION e e e e e e e 7-258
High-Level Language SWSGetQueue (SWCPQG) Function. 7-260
SDBPARM/SWSPARM FUNCLION ettt 7-263
High-Level Language SWSPutQueue (SWCPQP) Function 7-267
High-Level Language SWSQueryQueue (SWCPQQ) Function. 7-270
SDBSMF/SWSSMF FuNCtion.o e 7-273
SWSXMIT FUNCHIONo e e et 7-274
Chapter 8: Shadow Enterprise Direct APl Function Calls 8-1
NEONBINACOL. . . .o e e e e 8-2
NEONDescribeParam e 8-5
NEON T Or . . . e e 8-8
NEONGELINTOo e e 8-10
NEONNUMPEIramSo e e e e e e 8-12
NEONResetParam. e e e e e 8-14
NEONREIUMNSIBIUS o ottt e e e e e e e e e e e e 8-16
NEONTIOW . . .o e e e e e e e e 8-18
NEONTrACEM ST . . o ottt e e e e e e e e e 8-20
Chapter 9: Transaction Level Security (TLS) 9-1
What IS T S ? . o e et e et e e 9-1
Wy USE TL S . o e e e e e e 9-1
IMplementing TLS. i e e e e 9-2
Client SIde SUPPOIT . . . oo 9-3

December, 1999 Shadow Programming Guide vii

Contents

HOSt Side SUPPOI . . oo 9-4
Passing GeneriCc 1D 10 SAF o e 9-5
Chapter 10: SQLProcedure and SQLProcedure Columns 10-1
INErOAUCTION . . o e e e e e e e e e 10-1
Y1 10-1
StOred PrOCEAUIES. oottt e e e e et e e 10-2
Preparing a Stored Procedure to Executea CICS or IMS Transaction 10-2
Appendix A: Shadow REXX ... A-1
What 1S ShadowW/REX X2 . . . oot e e e e e e e e A-1
Why Shadow/REX X 2 . . e e e e A-1
Similarities Between Shadow/REXX and Standard REXX., A-2
Differences Between Shadow/REXX and Standard REXX A-2
Shadow/REXX EXeCUtiON LimitSottt A-3
Resource USe MONItONiNgo oottt et et et A-3
Parametersthat Set LImitS. ot e A-3
Overriding Execution Limits.o e e e e A-3
Elements of Shadow/REXX. o A-4
REXX Elements that Shadow/REXX SUPPOItS A-4
Implementation Limitso i e e A-4
Constantsin Shadow/REX X oo e e e A-5
Symbolsin Shadow/REX Xo e A-5
Variable Values. A-5
Compound SymbOIS e A-5
Arithmetic Valuesand Operatorsttt et et et et et A-5
Shadow/REXX ConSIAErationso vttt e ettt et e e e A-5
Shadow/REXX INSIFUCLIONS. oo e e e A-6
INTERPRET INStrUCtioNo e e et e et A-6
OPTIONS INStIUCHION . . . oot e e e e e e et et e e A-6
Shadow/REXX BUilt-inFUNCtions A-8
Shadow Event Facility (SEF) Globa Variables A-8
ShadowW/REX X INterfaces A-8
Shadow/REXX Interface with TSO- ADDRESSTSOoiiiiiiiann, A-8
Shadow/REXX Interface To Out-board TSO Servers- ADDRESSTSOSRV.......... A-9
Shadow/REXX Interface with SEF - ADDRESSSEF A-10
Shadow/REXX Interface For Web Data Output - ADDRESSSWSSEND A-10
Compiler ErrOr MESSagES. . . . ottt A-10
Non-Standard REXX Error Numbers used by Shadow/REXX. A-10
Standard REXX Error Numbers Used by Shadow/REXX A-12
Appendix B: MVS Client SUPPOrt ... B-1
Using the ODBC Interface InaCOBOL ClientProgram, B-1

viii Shadow Programming Guide December, 1999

Contents

GlOSSarY oo Glossary-1

INA X Index-1

December, 1999 Shadow Programming Guide iX

Contents

X Shadow Programming Guide December, 1999

About this Publication

This book contains programming information for Shadow Direct, Shadow OS/390 Web Server, and
Shadow Enterprise.

How this Publication is Organized
This book contains the following chapters:

m Chapter 1, “Shadow RPC Direct,” provides information about Shadow RPC
Direct, its product architecture, host data, and client API function definitions.

s Chapter 2, “ODBC CALL RPCs,” provides ODBC CALL RPC examples,
sample ODBC CALL RPCs for VSAM, and other sample RPCs.

m Chapter 3, “Running DB2 Stored Procedures,” includes information about
executing, preparing and troubleshooting a DB2 Stored Procedure.

m Chapter 4, “Shadow IMS Direct,” details Shadow IMS Direct, its product
architecture, installation, programming, client API function definitions, and
sample IMS batch message program code.

m Chapter 5, “Transaction Server for IMS,” provides information about
SHADOW_IMS, including examples of using Shadow for IMS.

m Chapter 6, “Transaction Server for CICS,” includes information about
SHADOW_CICS RPC, and examples of using Shadow for CICS.

m Chapter 7, “Host Application API Function Calls,” includes a listing and
detailed description of the following:
s ODBC CALL RPC APIs

IMS/APPC APIs

CICS APIs

Web Server Specific APIs

General APIs

Web Server REXX and SEF only APIs

RPC Direct APIs

m Chapter 8, “Shadow Enterprise Direct API Function Calls,” provides a listing
and description of Shadow Enterprise Direct API calls.

m Chapter 9, “Transaction Level Security (TLS),” covers TLS, which was
created to support the new and unigue security requirements of Internet
applications, while operating in the traditional enterprise computing
environment.

m Chapter 10, “SQLProcedure and SQLProcedure Columns,” discusses how to
create a pseudo DB2 stored procedure that contains necessary Meta data for

December 1999 Shadow Programming Guide Xi

About this Publication

input and output fields, as well as other required parameters for accessing
CICS and IMS transactions.

Appendix A, “Shadow/REXX,” provides information about Shadow REXX,
including its comparison to Standard REXX, its execution limits, elements,
considerations, instructions, interfaces, and compiler error messages.

Appendix B, “MVS Client Support,” covers the ODBC interface in a COBOL
client program.

“Glossary,” lists and defines terms and acronyms that appear in NEON
Systems, Inc. publications.

Xii

Shadow Programming Guide December 1999

Conventions

Conventions

This book contains the following highlighting conventions:

BOLD CAPS
Identifies commands. For example:

Usethe KEY S command to ...

Text enclosed in single quotes denotes library, data set, and DD names.
For example:

‘SLDSYSIN’ ‘PLUSIN’ ‘RESLIB’

Monospace
Identifies code examples, screen prompts, and messages, aswell as
directory paths. For example:

/ISTEPO10 EXEC PGM=NDBA2400

Monospace Italics
Identifies information you must provide at a screen prompt or in a
text field. For example:

PARM=PARMLIBzour. parnti b
<KEY> Identifiesthe key to press. For example:
<ENTER>

NEON Systems, Inc. uses Release.\Version to identify software packages. For
example, Product 4.1, denotes the fourth release, first revision of the software.

Reader’'s Comments

At NEON Systems, Inc. we are always looking for good ideas. If you have any
comments or suggestions regarding any of our publications, please complete the
Reader’'s Comment form (located at the back of this book) and return it to NEON,
Attention: Technical Publications Department.

Mailing Address:. NEON Systems, Inc.
14100 SW Freeway, Suite 500
Sugar Land, Texas 77478

Fax Number: (281) 242-3880

You can also send comments to directly to our Technical Publications department
via the following e-mail addresdpocumentation@neonsys.com.

Thank you!

December 1999

Shadow Programming Guide Xiii

About this Publication

NEON Systems, Inc. Products

For acomprehensive list of the products currently marketed by NEON Systems,
Inc., visit our World Wide Web site at: http://www.neonsys.com.

Note:
You can also access and download all of the current NEON publications
from this Web site.

Year 2000 Compliancy Statement

The following products from NEON Systems, Inc., are Year 2000 readly.

m Enterprise Security Management Products
m Enterprise Subsystem Management Product Family
= Shadow® Product Family and Add-On Components

The mainframe code for the Shadow Product Family, Version 3.1 and all
subsequent versions, are Y 2K ready.

All versions of the client code associated with Shadow® Direct™ and Shadow
Enterprise Direct® are Y 2K ready.

These products use four-digit year values both internally and externally
(although, in afew cases, two-digit year values are displayed while four-digit
year values are maintained internally).

D Note:

While Shadow Direct, Shadow® OS/390 Web Server ", and Shadow
Enterprise Direct are Y 2K ready, customers should be aware that these
products can provide access to data sources that may not be Y 2K ready.

Xiv Shadow Programming Guide December 1999

Working with Technical Support

Working with Technical Support

NEON Systems, Inc. provides a number of ways for you to obtain assistance for
our products. All product support inquiries are handled by the same support
group, regardlessif you are atrial or alicensed customer. The following are
available support options:

Support How to Access How it Works This Option is Best for:

Option

E-mail To contact Technical Support via Email goesto the support queue, | This type of support is excellent
e-mail: which is continuously monitored | for low to medium priority

by a staff of cross-functional requests. It is a proven method
suppor t @eonsys. com technical experts. It isanswered | for providing further information
Email isavailable for receipt 24 hours in the order it isreceived. It is on critical problems that may
aday, 7 days aweek and is answered logged in the support database | have been phoned in. Email isa
between 9AM-7PM CST Monday and assigned a trouble ticket convenient way of sending us a
through Friday. number for tracking purposes. list of lower priority itemsyou
have collected at atimethat is
convenient for you.

Phone To contact Technical Support, During normal working hours This type of support is best for
please call: you will be transferred to high priority requests and initial
1-800-505-6366 (U. S. and Canada) someonewho can usually answer | installation questions. Use this
1-281-491-4200 (outside North your question on the first call. option for any obvious system
America) You may berequired to pagea | errors or anytime you need the

support person viaour phone most rapid reply to your
mail system after hours. question.

Internet To access Internet support, please Simply visit our Web site. This option providesimmediate
visit our Web site at: NEON Systemsworksto keep | accessto documentation,

current, relevant materialson our | updated client-side drivers, and

VI NEonsys. com Web site to support our trial and | our product Knowledge Base.

licensed customers. The Knowledge Baseisa
collection of questions answered
by support. Use this option to
answer your own questions or to
get a better understanding of
what customers ask on an
ongoing basis.

Account To contact your NEON Systems Sales | Your Sales Representative is Contact your Sales

M anager Representative, please call: your account manager. This Representative for pricing

1-800-505-6366 (U. S. and Canada)
1-281-491-4200 (outside North
America)

person is ultimately responsible
for your complete satisfaction
with NEON Systems, Inc.

information, contract details,
password renewal or if you feel
your needs are not being met.

December 1999

Shadow Programming Guide

XV

About this Publication

Xvi Shadow Programming Guide December 1999

CHAPTER 1:

Shadow RPC Direct

This chapter covers programming information for Shadow RPC Direct, acomponent of Shadow Direct
which allows a client application to invoke and communicate with an RPC running on the host.
linformation includes product architecture, using host data, and client API function definitions.

This chapter specifically appliesto Shadow Direct.

Introduction

Shadow RPC Direct works with any client application supported by Shadow
Direct. The currently supported platforms for client applications include:

Windows
Windows 95
Windows NT
0S/2

UNIX.

Client applications can be written in C, or any other language that can call DLL
entry points. Shadow RPC Direct provides both a client and host API. The client
API includes entry points for the following:

Establishing connections to the host.

Initiating host RPCs.

Synchronously and asynchronously sending datato and from the host.
Terminating host connections.

Data conversion and other support functions (for example, the ability to
access and update fieldsin an IMS PCB).

Sending data to and receiving data from aclient program.

Obtaining information about the current environment.

Setting environmental information (DB2 plan name).

Writing messages to the Trace Browse log.

The host RPCs invoked by the client are standard MV S programs that can access
and update DB2 tables, IMS databases, VSAM files, partitioned data sets, etc.
Host RPCs can be written in any high level language or in assembly language. In
al cases, host RPCs use the same host APl to communicate with the Shadow
Direct environment.

Host RPCs execute as tasks or threads in the main product address space. A
separate thread is created for every client session. This approach provides the
highest degree of flexibility for the host RPCs and guarantees the maximum
degree of independence between the threads. Each thread can perform whatever
work it needs without any conflicts between itself and other threads.

December 1999

Shadow Programming Guide 11

Shadow RPC Direct

Product Architecture

Using Shadow RPC Direct always involves two separate programs:

m A client application.
= AnMVSRPC.

The client application initiates the host RPC. After the host RPC has been started,
the client application and the host RPC can send messages back and forth, either
synchronously or asynchronously. These messages or data buffers are defined
entirely by the client application and the host RPC. The format, content, and
sequence of these buffersis determined by the application programmers who
create the client and host components. The client and host component must agree
exactly on al aspects of the data flow between them.

Note:

There is no requirement that any data actually flow back and forth
between the client application and host RPC, and zero length
messages are supported.

No conversions are performed on the data buffers sent between the client
application and the host RPC. Either the client, the host RPC, or both, must take
responsibility for any conversions that are required. The Shadow RPC Direct
client API includes entry points for performing some of these conversions.
However some conversions (of non-message data) are performed on behalf of the
client. For example, the optional OS parameter string passed to the host RPC is
automatically converted from ASCII to EBCDIC (but is not converted to
uppercase).

Client Applications

Shadow RPC Direct client applications are programs written in any one of several
languages that use the Shadow Direct API to invoke and communicate with host
RPCs. These applications are normally written in C or C++, however, these
applications can be written in any language that can call DLL entry points
including Visual Basic (VB), PowerScript, Pascal, COBOL, etc. In practice,
amost any client application programming language can be used to invoke the
Shadow RPC Direct API.

The Shadow RPC Direct API isimplemented as:

s A DLL for Windows, Windows NT and OS/2.

m A shared library for UNIX environments (SunOS, etc.) supporting shared
libraries.

s Anarchivefilefor other UNIX environments.

1-2

Shadow Programming Guide December 1999

Product Architecture

Shadow RPC Direct applications must be linked using one of the two following
import libraries supplied with Shadow RPC Direct:

s SCCDBC. LI B, used with SCCDBC. DLL.
s SCCDBCTS. LI B, used with SOCDBCTS. DLL.

Since the SOCDBCTS. DLL contains numerous diagnostic, debugging, and support
tools, it should be used for al application development purposes. However,
because the SCCDBCTS. DLL is substantially larger and slower than its production
counterpart SCCDBC. DLL, production applications that have been fully debugged
should be switched to the SCCDBC. DLL for improved performance. .

Note:

CDBC. LI Bmust not be used with Shadow RPC Direct applications.
The architecture of Shadow RPC Direct does not support passing
calls from a Shadow RPC Direct application to the Shadow RPC
Direct DLL viathe Microsoft driver manager (CDBC. DLL).

Shadow RPC Direct applications written in C must include the scpghd. h header
file. Thisfile declares all Shadow RPC Direct structures and API entry points, and
must be included in all Shadow RPC Direct client application functions. It can be
used with both ANSI and non-ANSI C compilers, however, it is strongly
recommended that ANSI C be used for compiling and building Shadow RPC
client application programs. This header file will also work in al client
environments including Windows, OS/2, and UNIX.

Host Applications

Host RPCs can be written in any high-level language or 370 assembler. PL/I,
COBOL, FORTRAN and C are all supported. Host RPCs can be any AMODE
and/or any RMODE. To conserve 24-bit memory, RMODE ANY and AMODE 31
are strongly preferred, however, RMODE 24 and AMODE 24 are supported. Data
areas passed to and from the host RPCs can, in all cases, be either above or below
the 16 MB line.

Note:

There are certain special considerations for some languages, which
will be discussed below in detail.

Host RPCs

Host RPCs execute in the main Shadow address space as ordinary load modules.

In other words, host RPCs can use normal programming procedures to access and
update VSAM data sets, flat files, PDSs, etc. Host RPCs are not subject to any of
the restrictions that are normally associated with the CICS or IM S environments.

As previously mentioned, host RPCs can use standard programming constructs to
access and update host data. In addition, host RPCs can use APIs provided by
Shadow to perform certain additional functions.

December 1999

Shadow Programming Guide 1-3

Shadow RPC Direct

These APIsinclude facilities for:

Sending and receiving data buffers as large as 30 kilobytes.

Inserting messages into Shadow Server’s Trace Browse log.
Obtaining information about the current execution environment.
Updating information about the current environment.

Host RPCs can also access and update IMS databases using the DBCTL interface.
This interface allows host RPCs to communicate with either an IMS DB/DC
control region or a DBCTL limited function control region. In either case, the

same APl is used to execute DL/I calls. This API is almost identical to the API
used to execute IMS calls in the CICS environment. A host RPC starts by
scheduling a PSB and then uses the PCB list returned by the PSB schedule
operation to access and update IMS data.

A separate PRB is always created for each host RPC. This approach provides an
additional degree of isolation for the RPC. Specifically, the host RPC can use
ESTAE and ESPIE, as need be, to intercept and recover from abends and program
checks. There is no requirement that a host RPC establish an ESTAE or an ESPIE
of its own. Shadow Server will always establish an ESTAE to catch all abend
errors that occur while host RPC is executing. If Shadow Server does intercept an
abend while the host RPC is executing, the host RPC will be terminated and all
database changes (DB2, IMS) will be rolled back.

Client-RPC Interaction

Figure 1-1, Shadow RPC Direct Product Architecture, shows how client
applications interact with the MVS-based RPCs.

MVS Host
2
Shadow Server DB2
Windows/OS/2/UNIX Address Space
IMS
@ . User-Written
_User-Wn_tten_ RPCs - VSAM
Client Application A
PDSs
TCP/IP or

TCP/IP or

LU 6.2 TCP/IP or Flat Files
LU 6.2 < = | 3] LUG2

Figure 1-1. Shadow RPC Direct Product Architecture

1-4

Shadow Programming Guide December 1999

Product Architecture

1. Theclient application uses the Shadow RPC Direct API to establish either a
TCP/IP or LU 6.2 session with the host. The host RPC is initiated as part of
the session establishment process. A new host thread (or TCB) is always
created for each new session started using the Shadow RPC Direct API.

2. Thehost RPC starts execution in the Shadow Server address space. The host
RPC and client application can then communicate back and forth either
synchronously or asynchronously.

3. Thehost RPCs can access any number of different types of dataincluding
DB2,IMS, VSAM, PDSs, and flat files. DB2 data can be accessed using static
or dynamic SQL, although static SQL isthe preferred choice in most cases.
User-specified plans and packages can be used to access DB2 data, and all
DB2 security will be handled using the userid and password provided by the
client. IMS datais accessed using standard DL/I calls. For example:

The PLITDLI function can be used in PL/I programs.
COBTDLI can be used in COBOL programs.

CTDLI can be used in C programs.

ASMTDLI can be used in 370 assembler programs.

The supported DL/I calsinclude all DL/I callsthat can normally be used in
the CICS environment. Thisincludesall DL/I callsfor accessing and updating
databases, but excludes all DL/I callsfor accessing and updating the IMS

message queue.

VSAM files, PDSs, and flat files can also be accessed by the host RPC using
normal high-level language programming procedures.

As previously mentioned, the data flow between the client application and RPC is

entirely under the control of the client application and the host RPC. These

programs can be designed to send any combination of data buffers back and forth.

For exampl e, the client application might send one data buffer to the host RPC and

get one response back. Alternatively, agreat many data buffers might be sent back

and forth constituting an extended “conversation”. In other cases, there may be no
exchange of any data buffers between the client application and the host RPC.

I> Note:

Once the client application program sends a message to the host to
initiate execution of the host RPC, Shadow Server responds to the
client before starting execution of the host RPC. In other words, the
client application program will resume execution before the host
RPC starts execution. This means that the client application cannot
determine if the initiation of the host RPC has been successful or
not. This approach must be used to allow the client application to
regain control so that the client application and the host RPC can
send messages back and forth.

December 1999

Shadow Programming Guide 1-5

Shadow RPC Direct

Host Execution Environment

Host RPCs execute in avery specific environment. All host RPCs run as separate
TCBsinthe main product address space. A separate TCB is created for each client
session with the host. If a client application creates multiple sessions with one
copy of the product running on the host, multiple TCBswill be created on behal f
of that client. As aconsequence of the TCB processing architecture, host RPCs
are compl etely independent of each other and are executed in an environment very
similar to a TSO application or batch program.

Host RPCs run in problem, not supervisor, state for the following reasons:

s Host RPCsallowed to run in supervisor state could compromise the integrity
of the Shadow Server address space or perhaps even the system as awhole.

m Several high-level languages (PL/I, C) will not execute properly if they are
invoked in supervisor state.

Therestriction that all host RPCs execute in problem state should not restrict
which applications can be implemented using host RPCs. Host RPCs will always
executein KEY 8. Thisisthe standard protection key for al problem programs,
such as TSO applications or batch programs. Once again, this design does not
restrict which applications can be implemented using Shadow Server.

Although non-reentrant programs are supported, RPCs should be designed and
implemented as reentrant programs, if at al possible. Thiswill allow all users of
an RPC application to share one copy of the object code. This approach will
dramatically reduce memory utilization requirementsin many cases. If the
application runsin RMODE 24, reentrance is even more important due to the fact
that the storage below the 16 MB lineis scarce in many installations. The Shadow
Server address space itself uses no storage below the 16 MB line.

The client application can optionally pass a parameter string to the host RPC. The
parameter string length can range from 0 to 100 bytes. This string is passed to the
host RPC using an OS parameter list. In other words, the first word of the
parameter list points to atwo-byte prefix followed by up to 100 characters of
actual parameter data. The parameter string is placed in 24-bit storage so it can be
accessed by all host RPCs.

Virtual Storage Utilization

RPCs running in the Shadow Server address space can acquire and free 24- and/or
31-bit storage. However, use of 31-bit storage is very strongly recommended. As
previously mentioned, 24-bit storage is a scarce resource in many environments,
and serious problems can arise if the entire pool of 24-bit storage is depleted by
RPC applications.

An important consideration in this context is that Shadow RPC applications can

run for along time. This means that the storage used by these applications can be
long lived. Thisisan important point for the overall design of RPCsrunning in the
Shadow Server address space. Thetotal virtual storage utilization of all host RPCs

1-6

Shadow Programming Guide December 1999

Host Execution Environment

executing concurrently must not exceed the available 24- and 31-bit virtual
storage. In practice, there is often alarge amount of unused 31-bit storage,
whereas 24-hit storage may be sharply constrained.

Oneway of circumventing some of these constraintsis to use Shadow RPC Direct
RPCs which are in general much more short-lived than their Shadow RPC Direct
counterparts.

RPC Libraries

Each NEON Client RPC is comprised of one or more load modules. The RPC
name must be either a PDS member name or alias name in the RPC library. RPC
load modules must be stored in the SDBRPCL D concatenation of the Shadow
Server address space.

The Shadow Server JCL containsa SDBRPCLB DD statement. As many separate
RPC libraries as necessary can be concatenated using this DD statement. If this
DD statement is coded in the Shadow Server starter task JCL, all RPC load
modules will be loaded from this library concatenation.

There are several reasons for storing RPC load modules in the RPCL 1B
concatenation:

s Data sets comprising the RPCLIB concatenation do not need to be APF
authorized. By contrast, the libraries of the STEPLIB concatenation must be
APF authorized. This approach alows host RPC applications developers to
update the RPC library concatenation with a minimum of security. Stringent
security procedures are often required before APF libraries can be updated.
Additionally, this method providesisolation from the STEPLIB
concatenation.

m Useof the RPC library concatenation improves performance.

Other DD Statements

Host RPCs can use any other DD statements in the Shadow Server address space
JCL. Each installation can add additional DD statements for VSAM files, flat
files, PDSs, etc. to meet application requirements. The DD statements used by the
Shadow Server address space itself should not be changed. Please see the Shadow
Server User’'s Guidéor additional information about the Shadow Server address
space JCL.

The Shadow Server User’s Guidecuments procedures for running the Shadow
Server under TSO. This mechanism was specifically designed to facilitate the
development of host RPCs. Each application developer can work with an

individual copy of the Shadow Server running under TSO, allowing the devel oper

to work independently. The Shadow Server runs unauthorized in the TSO
environment and therefore cannot be used in any way to compromise system
security. All accessesto data are associated with the TSO userid of the application
developer. For additional information please see the Shadow Server User’s Guide

December 1999 Shadow Programming Guide 1-7

Shadow RPC Direct

Data Transmission between the Client
Application and the Host RPC

Datais transmitted between the client application and the host RPC using
messages. Each message is a single buffer of data, and has a specific length
(possible zero), specified by the sender. It will always be sent and received as a
single entity. In other words the sender passes compl ete messages on the sending
side, and the receiver receives complete messages on the receiving side. This
approach is different from the TCP/IP stream approach where the data sent by one
side can be received as multiple pieces on the other side, or multiple transmissions
from the sender can be received together by the receiver.

In all cases, the messages sent between the client application and the host RPC are
compressed to reduce network utilization. The compression/decompression
processis completely transparent at both ends. The compression algorithm used is
simple and fast, and consists of using compression factors of up to 10 and 20:1 for
the sending and receiving of sparse data buffers (many blanks or binary zeros).

Using Host Data

Host RPCs can access and update many different types of host data including
VSAM, DB2 and IMS. In general, host RPCs can use normal high-level language
facilitiesto access and update these databases. However, special considerations do
apply in some cases, and these considerations should be carefully reviewed before
attempting to access and update the databases listed below.

DB2

Host RPCs can use either static or dynamic SQL to access DB2 databases,
however, static SQL isused in most cases. Host RPC programs using either static
or dynamic SQL can be prepared using standard DB2 program development
procedures.

At run time, the plan name used by a host RPC with DB2 can be specified in the
following two ways.

m Theclient program that invokesthe host RPC can specify the host DB2
subsystem name and the plan name.

In this case, both the DB2 subsystem name and the plan name will be padded
with blanks and translated from ASCII to EBCDIC. Shadow Server will use
the DB2 subsystem name and the plan name to establish a connection to DB2
immediately prior to the execution of the host RPC. This approach eliminates
the need for the host RPC to establish its own connection to DB2.

The connection to DB2 will automatically be broken as soon as the host RPC
terminates. DSNALI close will be called to terminate the DB2 connection and
release any DB2 resources. DSNALI close will be called with a close type of
either SYNC or ABRT. By default, SYNC will be used to commit any

1-8 Shadow Programming Guide December 1999

Using Host Data

IMS

uncommitted changes. However, if the host RPC abended, ABRT will be used
to roll back any uncommitted DB2 changes.

s A host RPC can establish its own connection to DB2 using DSNALI.

Thisapproach isnot recommended. If ahost application establishesits own
connection with DB2 using DSNALI, then the authorization ID that DB2 uses
to validate all host RPC requests to access/update datawill be undefined.
Thisrestriction can be removed by installing the Shadow Server modification
to the DSN3@ATH exit. The best approach is simply to let Shadow Server
providethe DSNALI open and close calls rather than incorporating these calls
into the host RPC application.

Note:

A dlightly different link-edit procedure must be used for host RPCs
versus DSNALI command applications. Host RPCs must be linked
with DSNALI and DSNHLI2 rather than DSNELI. The correct
approach isto include only DSNALI in the link-edit step.

Host RPCs can access and update IM S databases using the DBCTL interface. This
interface allows any number of host RPCs to concurrently and independently
access and update IM S databases, however, it does not provide accessto IMS
message queues. Host RPCs that use DBCTL to communicate with IMS can use
al the IMSfacilities that are available to CICS transactions. In other words, host
RPCs have the same IM S programming facilities available as transactions running
under CICS. Host RPCs use the same mechanism (DBCTL) to communicate with
IMS as do CICS transactions running under CICS Version 3 and later releases.

DBCTL isafeature of IMS Version 3 and later releases. The DBCTL API is
provided by either a separate DBCTL address space or by an IMS DB/DC system.
See the IMS general information manual (GC26-4275) for additional information
about installing and utilizing DBCTL. There are no special IMS generation or
run-time parameters required to use the DBCTL API.

The DBCTL feature of the Shadow Server address spaceis not enabled by default.
This feature must be enabled using the required product feature string letter, ‘I'.
The product feature string is processed during product initialization.

Writing a Host RPC

Using DBCTL API

Host RPCs using the IMS interface can be written in any high-level language or
assembler. In each case, the application programmer should call the language-
specific interface routine. Host IMS RPCs are not passed a PCB list on entry.
Instead they must schedule a PSB by calling the language-specific IMS interface
function. This call (the function code'RCB’) returns a PCB list to the caller.

December 1999

Shadow Programming Guide 1-9

Shadow RPC Direct

The PCB list can then be used for subsequent IMS calls. Standard IMS function
codes (‘GN' , ‘DELT' , ‘ISRT , ‘REPL’) can be used to get segments, delete
segments, insert segments, and replace IMS segments.

The host RPC can either commit any changes it makes or terminate. If ahost RPC
neither commits changes nor terminates the PSB, Shadow Server will
automatically perform these tasks after the host RPC terminates. Shadow Server
will commit all changes made up to that point, if the RPC terminates normally.
Shadow Server will roll back any uncommitted changes, if the RPC abends.

VSAM

Host RPCs running under Shadow Server can use VSAM data sets. Each host
RPC must start by opening whatever data sets it needs. The DD statements for
these data sets should be incorporated into the Shadow Server address space
started task JCL. In the test environment, the VSAM data sets should be allocated
by the TSO user running atest copy of the Shadow Server address space.

Host RPCs can use hormal high-level language facilities to access and update
V SAM records. Standard VSAM data sharing facilities can be used to coordinate
updatesto VSAM files.

RPC Debug Support

Version 4.5 of Shadow Direct provides accessto a GUI, source level debugger for
RPC. Thisfeatureis called the Visual Age ™ Remote Debugger (VAD) and isa
product of IBM. It allows each programmer developing RPCs or stored
procedures to debug them on his or her own personal computer.

A major benefit of this debugger isthat a programmer no longer hasto run a
private copy of Shadow Server under TSO. In addition, this debugger requires no
changes to the invoking ODBC application or to Shadow Direct on the host.
Shadow Direct automatically invokes VAD on the same PC that is running the
ODBC application.

For more information about the VAD debugger, check the IBM website at http://
www-4.ibm.com/software/ad/c390/pt/.

To use the debugger:

1. Makesurethat VAD and Shadow Direct, Version 4.5, have both been properly
installed on your system. For more information about this step, check the IBM
installation documentation for VAD, and the Shadow Installation Guide for
Shadow Direct.

2. On the mainframe, compile and link the Stored Procedure written in C, C++,
Coboal, or PL/I with the TEST option.

1-10

Shadow Programming Guide December 1999

RPC Debug Support

Note:

The output listing from the compile step must be stored in afile
and not routed to SY SOUT.

3. Copy theload module to the standard RPC load module library, which will be
aSTEPLIB or RPCLIB in the started task environment. If the Shadow Server
isinvoked using TSO, the load module can also be stored in the ISPLLIB.

4. Usethe ODBC Administrator to set the Host Debug option to the correct
language type. To get to this screen, perform the following steps (for more
detailed information about these steps, refer to the NEON Client User’s
Guide, Chapter 2, “Installing NEON Client”):

a. Select the Neon_Client_Debug_Sample32 option from the User Data
Sources screen.

b. Click the <ADVANCED> button at the bottom of the Neon Client 32-bit
screen.

c. Click the <MORE> button at the bottom of the NEON Client Advanced
Information Screen. This will take you to the NEON Optional Client
Information Screen, as shown below:

NEON Client Optional Information

Optional Seftings Feyword: HODE

DTS Plan File o [Vale
Enable Multitazking
Extended Cursor Pool
Fast Logon ! CoBOL j
Fix INSERT statements

Fix DB2 Outer Joing

Fix Sting Length

Flaating to Character Digits
Gaiji Extenzion Support

G aiji Extenzion T able Mame
German HLS support This field iz uzed to contral the debugaing of -
iHost Uebugging Values hozt programs [generally Stored Procedures].

Description

Host User Parm Thiz figld iz either set to the type of language
Identifier Quote Dption the host program was wiitten in, or NOME. The
Ignore High Bound Column Errors hiost program language must be specified
lgnare Underscore Characters corectly 5o that the program can be invoked
Language ID with the correct debugaging options. The

Long data fis supported values are COBOL, PLI, C, and
Lotus Approach Compatibility C++. The default is HOME.

L7 Campression
tasimum Buffer Size
Meszage Type

M5 Access Compatibility
MTS Security SID Type
Multiet TCP/P Compatibility =l |

Ok, | Cancel Drefault Dietault Al | Helm |

Figure 1-2. NEON Client Optional Information Screen

December 1999

Shadow Programming Guide 1-11

Shadow RPC Direct

d. Select “Host Debugging Values” as the optional setting.
e. Select the appropriate keyword value. Options include:

COBOL
C

C++
PL/

5. Start the VAD Remote Debugger Daemon from the Windows Start menu, or
by clicking on an icon. You should see the following screen:

IBM<R?> WViszualAge<TH> Hemote Debugger Daemon

Uersion 5.0808

— Licensed Materials — Program—Property of IBH

(GC> Copyright IBM Corp. 1997 - All Rights Reserwved.

DBG> Initializing communication: protocol=tcpip, port=8008
Daemon started
DBG>» Waiting for connection...

Figure 1-3. Daemon Startup Screen

6. Start the ODBC application that invokes the host RPC. The following figure
shows an example of the GUI Debug screen. This screen will appear as soon
as the ODBC appplication executes the SQL CALLS for the RPC:

1-12 Shadow Programming Guide December 1999

RPC Debug Support

% DDEBC Test [(32-bit)

File Edt Connect Statement Besultz Catalog Mizc Tool: Window Help

_ﬁ|n| 2= L EEEE] EE

':'r;: Output 1] Y
¢ 1: ai38pds@P391. HONE H=

[1: 0x00BB068S B

call db2batch))|

4 F
Full Cannect:
dhe szSglState = "01004", *pfNativeErrar = 0, *pchErorsg = 54
szErrotsg="[NEDON][SCOD32TS DLL]Output connection sting truncated"
Successtully connected to DSMN 'F349T.NOMNE".

|User 'ai3Bpds' at DSM 'P3ST.NONE", HDBC: 0x00CAFESC

Figure 1-4. ODBC Test Debug Screen

7. Usethe VAD as needed to debug the host program. Figure 1-5 and Figure 1—
6 show examples of what the VAD screens look like when they are in the
process of debugging.

December 1999 Shadow Programming Guide 1-13

Shadow RPC Direct

E Source: DB2BATCH - Thread :1 M= E3
File Wiew Breakpointz Monitors Bun Options Windows Help

15 SOL-AVAR-ADDR1 PIC S9(9) COMP-4. s
15 SOL-AVAR-IND1 PIC S59(9) COMP-4.

* LINKAGE SECTION.

* 01 SOL-PARAM-FIELD .

* 05 SOL-PARAM-FILLER PIC 59(3) CCHE.
* 05 SOL-PARAM-VALUE FIC X(100).

FROCEDURE DIVISION.
DSHSOL SECTION.

L-INIT-END.

MOVE 1 TO SQL-INIT-FLAG.

CALL 'DSHHADDR' USIHNG SQL-APAEMETR OF SQL-PLIST1 SQL-AVAR-LIS
= TL.

CALL 'DSHNHADDR' USING SOL-AVAR-ADDRS OF SOL-PLIST1 DSNENM SOL
= —HULL.

CALL 'DSNHADDR' USING SOL-CODEFPTE OF SOL-FLIST1 SOLCA.
SOL-INIT-END.

CONTINUE.

HOVE 'OPEN ' TO CPENFH.

HOVE 'DSH1' TO S5ID.

MOVE 'DB2BATCH' TO FLAHMAME.

DISPLAY 'ABOUT TO CALL DSHALI'

CALL 'DSMALI' USING CFEWFN SS5ID PLANNAME RETCODE REASCOLDE
DISPLAY 'RETCODE FROM DSNALI OPEN: ' RETCODE

*
* EXEC SQL CONNECT TO DEZE
* END-EXEC.
* DISPLAY 'CONNECT SQLCODE: ' SQLCODE -
| Ll—‘
Figure 1-5.
Debugger - Sezsion Control =]
File Breakpointz Monitors Bun Options Windows Help
STATUS : Ready.
Threads DB2BATCH
Thread: 1] DB2BATCH
Figure 1-6.

1-14 Shadow Programming Guide December 1999

RPC Debug Support

The following information and restrictions apply to the VAD debugger:

m VAD can only be used to debug Shadow RPCs or Stored Procedure. It does
not support DB2 Stored Procedures at this time, however, it will in the future.

s VAD can only be used with OE TCP/IP and Interlink TCP/IP aslong as the
interlink stack is being ussed via OE sockets. It does not, and never will,
support LU6.2 and IUCV TCH/IP.

m VAD can only be used with LE/370, version 1.8 and later.
m VAD supports only OS/390 2.4 and later.

m VAD can be used with both started task and TSO versions of the Shadow
Server. The started task version eiminates the need to configure a separate
copy of Shadow Server (with its own port number) for each RPC devel oper,
and the TSO version provides a separate copy of Shadow Server to each RPC
developer.

m Thecurrent version of VAD gets a GPF in the termination phase. The GPF
occurs after host RPC has completed execution, and has no harmful effect.

December 1999 Shadow Programming Guide 1-15

Shadow RPC Direct

Client API Function Definitions

The Shadow RPC Direct API cals are used by Shadow RPC Direct applications
to establish a connection to the host and to transmit data to and from the host. All
these functions use the Pascal calling convention. None of these functions take a
variable number of arguments.

The following functions are available:

SCAsciiToEbcdic: Converts a string from ASCII to EBCDIC
SCEbcdicToAscii: Converts a string from EBCDIC to ASCII
SCReadBuffer: Receives a data buffer from the host

SCWriteBuffer: Sends a data buffer to the host

SCWriteReadBuffer: Writes a buffer to the host and receives data buffer

1-16 Shadow Programming Guide December 1999

Client API Function Definitions

SCAsciiToEbcdic

IMS DirectSCAscii ToEbcdic converts character data from ASCII to RPC Direct
EBCDIC. Thisfunction is normally used to convert data areas that are sent to the
host.

Syntax

RETCDBC SCAsci i TokEbedi c(hdbc, rgbAscii, rgbEbcdic, cbVal ue)

Arguments

The SCAscii ToEbcdic function accepts the following arguments:

Type

Argum

ent| Use Description

HDBC

hdbc

Input Connection handle.

PTR

rgbAscii

Input Pointer to storage area containing ASCII character datato be converted.

PTR

rgbEbcdic

Output Pointer to output area where converted EBCDIC characters should be stored.

SDWORD

cbValue

Input Number of bytesto convert from ASCII to EBCDIC.

Returns

SQL_SUCCESS
SQL_SUCCESS WITH_INFO
SQL_ERROR
SQL_INVALID_HANDLE

Diagnostics

When SCAscii ToEbcdic returns SQL_ERROR or

SQL_SUCCESS WITH_INFO, an associated SQL STATE value may be obtained
by calling SQLError. The following table lists the SQL STATE values commonly
returned by SCAsciiToEbcdic and explains each one in the context of this
function. The return code associated with each SQLSTATE valueis
SQL_ERROR, unless noted otherwise.

SQLSTATE

Error

Description

01000

Genera warning

Driver-specific informational message (function returns
SQL_SUCCESS WITH_INFO).

08003

Connection not open

Connection specified by hdbc argument was not open. Connection
processes must be compl eted successfully (and the connection must be
open) for the driver to perform this function.

S1009

Invalid argument value

Either rgbAscii or rgbEbcdic pointer was null.

S$1090

Invalid string or buffer length

Value specified for chValue was |ess than zero.

December 1999

Shadow Programming Guide 1-17

Shadow RPC Direct

Comments

Thisfunction is used to convert a character string from ASCII to EBCDIC. The
character string can be converted in place.

Note:

In the Visual Basic environment, fixed length character strings cannot be
converted in place. Visual Basic imposes this restriction because it
copies each of the character string arguments of this function into
temporary data areas and then restores temporary data areas in an
unpredictable order. However, variable length Visual Basic character
strings may be converted in place using this function.

Code Example

None at thistime.

Related Functions

For information about converting from EBCDIC to ASCII seethe
“SCEbcdicToAscii,” section on page 1-19.

1-18

Shadow Programming Guide December 1999

Client API Function Definitions

SCEbcdicToAscil

IMS Direct/RPC Direct

SCEbcdicToAscii converts character datafrom EBCDIC to ASCII. This function
isnormally used to convert data areas that are received from the host.

Syntax
RETCDBC SCebcdi cToAsci i (hdbc, rgbEbedic, rgbAscii, cbVal ue)

Arguments

The SCEbcdicToAscii function accepts the following arguments:

Type Argument | Use Description

HDBC hdbc Input Connection handle.

PTR rgbEbcdic Input Pointer to storage area containing EBCDIC character datato be converted.

PTR rgbAscii Output Pointer to output area where converted ASCII characters should be stored.

SDWORD | chValue Input Number of bytesto convert from EBCDIC to ASCII.

Returns

= SQL_SUCCESS

s SQL_SUCCESS WITH_INFO

s SQL ERROR

s SQL_INVALID HANDLE

Diagnostics

When SCEbcdicToAscii returns SQL_ERROR or

SQL_SUCCESS WITH_INFO, an associated SQL STATE value may be obtained
by calling SQLError. The following table lists the SQLSTATE vaues commonly
returned by SCEbcdicToAscii and explains each one in the context of this
function. The return code associated with each SQLSTATE valueis
SQL_ERROR, unless nhoted otherwise.

SQLSTATE | Error Description

01000 General warning Driver-specific informational message. (Function returns
SQ_SUCCESS WTH_| NFQ)

08003 Connection not open Connection specified by hdbc argument was not open. Connection
processes must be completed successfully (and the connection must be
open) for driver to perform this function.

S1009 Invalid argument value Either rgbAscii or rgbEbcdic pointer was null.

S1090 Invalid string or buffer length Value specified for cbhVaue was less than zero.

December 1999

Shadow Programming Guide 1-19

Shadow RPC Direct

Comments

Thisfunction is used to convert a character string from EBCDIC to ASCII. The
character string can be converted in place.

Note:

In the Visual Basic environment, fixed length character strings cannot be
converted in place. Visual Basic imposes this restriction because it
copies each of the character string arguments of this function into
temporary data areas and then restores temporary data areas in an
unpredictable order. However, variable length Visual Basic character
strings can be converted in place using this function

Code Example

None at thistime.

Related Functions

For information about converting from ASCII to EBCDIC seethe
“SCAsciiToEbcdic,” section on page 1-17.

1-20

Shadow Programming Guide December 1999

Client API Function Definitions

SCReadBuffer

RPC Direct

SCReadBuffer reads a complete data buffer from the host. Execution is suspended
until the data buffer is available or an error is detected.

Syntax
RETCDBC SCReadBuf f er (hdbc, rgbVval ue, chVal uehMax, pcbVal ue)

Arguments

The SCReadBuffer function accepts the following arguments:

Type Argument Use Description
HDBC hdbc Input Connection handle.
PTR rgbValue Output Buffer for input data. Part or al of this buffer may befilled
with data obtained from host.
SDWORD cbValueMax Input Maximum length of rgbValue buffer.
SDWORD FAR * pcbValue Output Total number of bytes read into buffer pointed to by rgbValue.
Returns
= SQL_SUCCESS
s SQL_SUCCESS WITH_INFO
s SQL ERROR
s SQL_INVALID_HANDLE
Diagnostics

When SCReadBuffer returns SQL_ERROR or SQL_SUCCESS WITH_INFO,
an associated SQL STATE value may be obtained by calling SQLError. The
following table lists the SQL STATE values commonly returned by SCReadBuffer
and explains each onein the context of this function. The return code associated
with each SQLSTATE value is SQL_ERROR, unless noted otherwise.

SQLSTATE | Error Description

01000 General warning Driver-specific informational message. (Function returns
SQL_SUCCESS WITH_INFO.)

08003 Connection not open Connection specified by hdbc argument was not open.
Connection process must be completed successfully (and
connection must be open) for driver to perform this function.

0801 Communication link failure Communication link between driver and data source failed

before or while the data buffer was being read from the host.

December 1999

Shadow Programming Guide 1-21

Shadow RPC Direct

SQLSTATE

Error

Description

22003

Buffer size error

Buffer transmitted from host was larger than data area
provided to receive buffer. Entire host buffer was discarded.

S1009

Invalid argument value Value specified for argument rgbValue was null.

S1090

Invalid string or buffer length Value specified for argument cbvalueMax was less than zero.

Comments

Thisfunction is used to read a buffer of data from the host. It will suspend
execution until either a data buffer is received from the error or a communication
error is detected. The size of the data buffer can range from zero to cbValueMax.
Zero length buffers are supported and can be transmitted both to and from

the host.

Note:

I> The buffer data area provided by the caller must be large enough to
contain the entire buffer transmitted from the host. If the dataareais
not large enough, the entire buffer will be discarded and an error will
be reported to the calling program.

Code Example

None at thistime.

Related Functions

For information about See

Converting datafrom ASCII to EBCDIC SCAsciiToEbcdic

Converting data from EBCDIC to ASCII SCEbcdicToAscii

Sending a buffer to the host SCWriteBuffer

Writing a buffer to a host and receiving areply SCWriteReadBuffer

1-22

Shadow Programming Guide December 1999

Client API Function Definitions

SCWriteBuffer

RPC Direct

SCWriteBuffer sends a buffer of datafrom the client application to the host RPC
program. Execution of the client application program is suspended until the datais
copied from the buffer provided by the caller.

Syntax
RETCDBC SCWii t eBuf f er (hdbc, rgbVal ue, cbVal ue)
Arguments
The SCWriteBuffer function accepts the following arguments:
Type Argument Use Description
HDBC hdbc Input Connection handle.
PTR rgbValue Input rgbValue argument contains a pointer to data buffer that should be
transmitted to host. This buffer is not null terminated.
SDWORD cbValue Input cbValue argument contains number of bytesto be transmitted to host.
This value must be greater than or equal to zero.
Returns
s SQL_SUCCESS
s SQL_SUCCESS WITH_INFO
s SQL ERROR
= SQL_INVALID HANDLE
Diagnostics
When SCWriteBuffer returns SQL_ ERROR or SQL_SUCCESS WITH_INFO,
an associated SQL STATE value may be obtained by calling SQLError. The
following table liststhe SQL STATE values commonly returned by SCWriteBuffer
and explains each one in the context of this function. The return code associated
with each SQL STATE valueis SQL_ERROR, unless noted otherwise.
SQLSTATE | Error Description
01000 Genera warning Driver-specific informational message. (Function returns
SQL_SUCCESS WITH_INFO.)
08003 Connection not open Connection specified by hdbc argument was not open.

Connection processes must be completed successfully (and
connection must be open) for driver to perform this function.

December 1999

Shadow Programming Guide 1-23

Shadow RPC Direct

SQLSTATE

Error Description

083501

Communication Link Failure Communication link between driver and data source to which
driver was connected failed before function completed
processing.

S1009

Invalid argument value rgbValue argument was a null pointer.

S1090

Invalid string or buffer length Value specified for argument chValue was less than zero.

Comments

Thisfunction is used to write a buffer of data from the client to the host. The
length of the buffer can range from zero up to approximately 30,000 bytes.
Control returns to the invoking application as soon as the data in the application
buffer is copied into the communication buffers. There is no guarantee that when
this function returns, the data has actually been transmitted to the host, nor isthere
any way of suspending execution until the data has been successfully transmitted.

Thisfunction will NOT turn the line around after the write operation is completed.
This means that the host RPC will not be able to send areply to the client. The
SCWriteReadBuffer function should be used if the host RPC is expected to send a
response buffer.

Note:
Thisisaconsideration only for LU 6.2 client/server sessions.

Code Example

None at thistime.

Related Functions

For information about See

Writing a buffer to a host and receiving areply SCWriteReadBuffer

Reading a buffer of data from the host SCReadBuffer

Converting datafrom ASCII to EBCDIC SCAsciiToEbcdic

Converting data from EBCDIC to ASCII SCEbcdicToAscii

1-24

Shadow Programming Guide December 1999

Client API Function Definitions

SCWriteReadBuffer

RPC Direct

SCWriteReadBuffer writes a buffer of datato the host and receives areply buffer
from the host. Execution of the client application program is suspended until a
buffer is received from the host, or a communication error occurs.

Syntax

RETCDBC SCWi t eReadBuf fer (hdbc, rgbVal ue, cbVal ue, cbVal ueMax,
pcbVal ue)

Arguments
The SCWriteReadBuffer function accepts the following arguments:

Type Argument Use Description

HDBC hdbc Input Connection handle.

PTR rgbValue 1/0 rgbValue argument points to the data buffer used to both send
and receive data. Buffer must initially contain data that will be
transmitted to host. This buffer is not null-terminated. Upon
successful completion of this function, buffer will contain data
received from host.

SDWORD chVaue Input cbValue argument contains number of bytes of datato send to
host.

SDWORD chValueMax Input Maximum length of rghValue buffer.

SDWORD FAR * pchValue Output Total number of bytes read into buffer pointed to by the
rgbValue argument.

Returns

s SQL_SUCCESS

s SQL_SUCCESS WITH_INFO,
= SQL_ERROR

s SQL_INVALID_HANDLE.

Diagnostics

When SCWriteReadBuffer returns SQL_ERROR or

SQL_SUCCESS WITH_INFO, an associated SQL STATE value may be obtained
by calling SQLError. The following table lists the SQL STATE values commonly
returned by SCWriteReadBuffer and explains each one in the context of this
function. The return code associated with each SQLSTATE valueis
SQL_ERROR, unless noted otherwise.

December 1999

Shadow Programming Guide 1-25

Shadow RPC Direct

SQLSTATE Error Description

01000 General warning Driver-specific informational message. (Function returns
SQL_SUCCESS WITH_INFO.)

08003 Connection not open Connection specified by hdbc argument was not open. Connection
processes must be completed successfully (and connection must be
open) for driver to performthis function.

0801 Communication link failure Communication link between driver and data source to which driver
was connected failed before function completed processing.

22003 Numeric value out of range Buffer transmitted from host was larger than data area provided to
receive buffer. Entire host buffer was discarded.

S1009 Invalid argument value rgbValue argument was a null pointer.
S1090 Invalid string or buffer length Value specified for argument chValue was less than zero.
Comments

Thisfunction is used to write a data buffer to the host and then receive areply.
Control isnot returned to the invoking application until either thereply isreceived

or acommunication error is detected. This function is normally used to send
“transactions” to the host and then receive a reply. If the data area is not large
enough, the entire buffer will be discarded and an error will be reported to the
calling program.

This function will turn the line around after the operation is completed. This
means that the host PC will be able to send a reply to the client. The
SCWriteBuffer function should be used if multiple buffers must be sent to the host
without an intervening read.

Note:
This is a consideration only for LU 6.2 client/server sessions.

Code Example

None at this time.

Related Functions

For information about See

Writing a buffer to a host SCWriteBuffer
Reading a buffer of data from the host SCReadBuffer
Converting data from ASCII to EBCDIC SCAsciiToEbcdic
Converting datafrom EBCDIC to ASCII SCEbcdicToAscii

1-26 Shadow Programming Guide December 1999

CHAPTER 2:

ODBC CALL RPCs

This chapter covers programming information for ODBC CALL RPCs, which can be used to access
most types of data residing on the mainframe.The information covered here includes ODBC CALL
RPC examples, sample ODBC CALL RPCsfor VSAM, and other sample RPCs.

This chapter appliesto Shadow Direct and Shadow OS/390 Web Server.

Introduction

ODBC CALL RPCs can be used to access ailmost any type of dataresiding on the
mainframe in the same manner RPC Direct RPCs can. ThisincludesDB2, IMS,
VSAM, PDSs, Flat Files, ADABAS, and M204. However, ODBC CALL RPCs
have a major advantage over RPC Direct RPCs:

s ODBC CALL RPCsdo not require any additional coding from the client
application.
Relational ODBC result sets are returned.
Multiple RPCs can be executed from the same connection.
ODBC CALL RPCs execute and end, unlike RPC Direct RPCs which remain
|loaded for the life of the connection or are terminated.

ODBC CALL RPCscan be executed with a CALL statement from any ODBC
compliant client application, such as Visual Basic, Powerbuilder, MS-Access, etc.
Since they are written using APIs provided on the host, they can return an ODBC
result set to the client application. With ODBC CALL RPCs, the remote programs
execute and end similar to the way anormal DB2 query executes and ends. The
results of the RPC are accessed in the same manner as the results of a DB2 query.

ODBC CALL RPC Examples

All the source to the sample ODBC CALL RPCsislocated in the
NEON. SV040100. SAVP dataset on the MV S host. Compiled copies of these
samples are also provided in the NECN SV040100. RPCLI B dataset.

The Visual Basic application, VBDEMO, which is shipped with the client ODBC
drivers, can be used to execute the sasmple ODBC CALL RPCs. In order to invoke
the RPC, usethe CALL statement preceding the RPC. Parametersto the RPCs are
defined by placing the parameters with parenthesis. Each parameter is separated
by acomma, literals are placed in quotes, and numeric datais | eft alone.

Example:

CALL RPCNAME(‘This is a literal’, The next parameter is a
number’,100)

December 1999

Shadow Programming Guide 2-1

ODBC CALL RPCs

Sample ODBC CALL RPC for VSAM

NEON SV040100. SAMP(SDOOVSP) isasample COBOL program that returns
records from a VSAM dataset. This program can return all rows of the VSAM
dataset or only the rows specified by an optional parameter.

Use the following steps to set up the sample application:

1. Allocate the sample VSAM cluster and popul ate it with sample data. Job
DEFSTAFF in NECN. SV040100. CNTL will allocate the VSAM cluster and
repro the sample data into the dataset.

2. Uncomment the SDBV S01 DDNAME in the main SDBB started task PROC.
Then update the DSNAME with the fully qualified name of the VSAM
dataset alocated in step 1, and restart Shadow Server. You can avoid
alocating the VSAM dataset within the SDBB started task by using dynamic
alocation within your RPC application.

3. The sample SDCOV SP program should already be compiled and linked and
placed in the NEON SV040100. RPCLI B dataset. If necessary, the sample
program can be recompiled and re-linked using the source code provided in
NECN SV040100. SAVP.

To run the sample, you can use any ODBC-compliant application on your client
workstation to issue a CALL program nane. The client application must have
the ability to run a user-defined SQL script, such as MS-Query, Visual Basic, etc.
The VBDEMO application that is shipped with Shadow Direct can be used for
this.

The sample RPC to VSAM is a prime example of how to use Shadow Direct’s
unique ODBC CALL RPC approach for developing your client-server
applications. The sample SDCOVSP RPC will:

= Read the VSAM dataset.
m Place the output in a relational ODBC result set.
m Return the results to the calling client application.

There are six ODBC calls used in this sample for this purpose. These calls and
others have all been simplified for the application developer by a common header
file that should be included in your RPC applications. These files provide all the
definitions needed for support of the Host APIs, and also contain documentation
for each API. The following header files are included in the SDB.SAMP dataset:

s SBCPHD For COBOL
SCCPHD for C
SPCPHD for PL/1

2-2

Shadow Programming Guide December 1999

Sample ODBC CALL RPC for VSAM

The following procedure division shows how to emulate ODBC callsin a host
RPC, using the program SDCOV SP as an example (for detailed information about
each parameter, please see the comments in the Header files):

1.

3.

CALL * SDCPG "’ USI NG CONNECTI ON- HANDLE SQL- USER- NAME SQL-
USER D SQ.- USERI D- LEN SQL- USER D- ACTUAL- LEN

SDCPGI or SQLGETINFO can be used to return information from Shadow
Server about the current environment. Examples of this information include
Userid of the person calling the RPC, the DB2 subsystem being accessed, etc.
For acomplete list of possible values, refer to the Header filein the

SDB. SAMWP dataset.

SQL- USER- NAME is the actual information requested.

SQ.- USER D isthe pointer to storage for the information.

SQ.- USER D LENis the maximum length of the requested data.
SQ.- USER D- ACTUAL- LENisthe actual length of the returned
information.

CALL ' SDCPNP’ US| NG STATEMENT- HANDLE SQL- PARAM
COUNT.

SDCPNP or SQLNUMPARANS is used to return to the program the number of
parameters sent to the RPC. This number will be returned in SQ_- PARAM
GOUNT.

CALL ’ SDCPDP US| NG STATEMENT- HANDLE
SQL- PARAM NUVBER

SQL- DATA- TYPE

SQL- PRECI SI ON

SQL- SCALE

SQL- NULLABLE- TYPE

SQL- PARAM TYPE

SQL- PARAM ADDRESS

SQL- PARAM LENGTH

SDCPDP or SQLDESCR BEPARAMperforms a describe parameter on behalf of
an ODBC CALL RPC. Thiscall is used to obtain information about the
parameter passed from the client to the host. SDCPDP should be executed for
each parameter being passed to the RPC.

» SQ- PARAM NUMBER should be set by the programmer to the parameter
number being requested.

December 1999

Shadow Programming Guide 2-3

ODBC CALL RPCs

4.

SQL- DATA- TYPE returns the datatype of the parameter, SQL-
VARCHAR, SQL-SMALLINIT, etc.

SQL- PRECI SI ON returns the precision of the parameter.

SQL- SCALE returnsthe scale of the parameter, used mainly with decimal
values.

SQL- NULLABLE- TYPE specifies whether or not the parameter is
nullable.

SQL- PARAM TYPE returns the type of parameter, which will mainly be
SQ.- PARAM | NPUT.

SQL- PARAM ADDRESS returns the pointer in storage for the parameter.

SQL- PARAM LENGTH returns the actual length of the column. The
length will be the same as the precision except for variable length fields
(character and binary). For variable length fields, the length will be the
current length.

CALL ' SDCPBC USI NG STATEMENT- HANDLE

SQ- CALUMN- NUMBER

SQL- G DEFAULT

SQL- SMALLI NT

SQL- PRECI S| ON

SQL- SCALE

SQ- NG NULLS

| D- VALUE

SQL- OCLUMN- LEN

SQL- OCLUMN- NAMVE

SQL- OCLUMN- NAME- LEN

SDCPBC or SQLBI NDCCL performs a bind column on behalf of an ODBC call
RPC. This call must be executed for each column being returned to the client.
SQLBI NDCCL assigns the storage and data type for a column in aresult set.
The following values will should be set by the RPC to properly bind the
column:

SQL- COLUMN- NUMBER is the number of the column in the result set.

SQL- G- DEFAULT isthe C data type column of the column data. This
value must be set to SQL_C_DEFAULT at thistime. This means that the
C type must match the SQL type.

2-4

Shadow Programming Guide December 1999

Sample ODBC CALL RPC for VSAM

m SQL- SMALLI NI T isthe SQL datatype of the column data.

s SQL- PRECI SI ONisthe precision of the data. Thisvaueis used
primarily with character and decimal data. If the value is an integer, it
should be set to “1".

m SQL- SCALE is the scale of the data type, used primarily with decimal
data.

m SQ.- NO- NULLS is the parameter specifying whether or not the data can
be nullable. This value will either I8 - NO- NULLS or SQL-
NULLABLE.

= | D- VALUE i s the actual value to be bound. If this value is a variable
field, the first two bytes must contain the length of the data.

m *SQL- COLUMN- LENis used to determine if the data is NULL; should be
set to “1” if the data is not NULL.

m SQL- COLUWMN- NAME is the name of the column.

= SQL- COLUMN- NAME- LEN is the precision of the name of the column.

Note:

When using RPCs to access DB2, if you want to return NULL data to the
client application, you will need to update ti8€1.- COLUMN- LENfield and

set it toSQL- NULL- DATA or - 1. For every column that may contain NULL
data, a separate value should be use8¢hr COLUW- LEN. When a row is
fetched from the database, the RPC needs to inspect whether the data is
NULL. If it is NULL, the corresponding(.- CCLUVN LEN value defined

in the SQLBI NDOCL call must be set t8QL- NULL- DATA or - 1.

5. CALL ' SDCPTH USI NG STATEMENT- HANDLE SCQL- THRON RON

SDCPTH or SQLTHRONROWsends a row from the RPC into the output buffer
created using th8CQLBI NDCCLUMN calls. This command is issued after a row
of data has been retrieved from the requested database. GBIIARGH with

a parameter ddQL- THROW DCONE signifies no more data is to be returned and
flushes the buffer, sending the results down to the client application.

December 1999 Shadow Programming Guide 2-5

ODBC CALL RPCs

6. CALL ' SDCPSE USI NG ENVI RONMENT- HANDLE
CONNECTI ON- HANDLE
STATEMENT- HANDLE
SQLSTATE- DATA- AREA
NATI VE- ERRCR- CCDE- AREA
ERRCR- MESSAGE- AREA
FB256 ERROR- MBG LENGTH AREA

SDCPSE or SQLERRCRs used to abtain error information that may have been
stored by aprior function call. Envi r onment - Handl e, Connecti on-
Handl e and St at enrent - Handl e areignored since only one host RPC can
execute at atime.

m SQLSTATE- DATA- AREA must be set to at least 6 bytesto allow for the
return of the SQL-Code from this call.

= NATI VE- ERROR- CODE- AREA returns a value describing the error.

m ERROR- MESSAGE- AREA returns a pointer to storage for the error
message text. Thiswill always be null-terminated.

m FB256 isthe maximum length of the error message buffer; the
recommended setting is 256.

m ERROR- MSG- LENGTH- AREA returns the actual length of the error
message.

7. CALL " SDCPRS USI NG CONNECTI ON- HANDLE TRACE- MESSAGE- AREA
SQ- NTS NATI VE- ERRCR- CCDE- AREA.

SDCPRS or SQLRETURNSTATUS returns the status to the client from an ODBC
call. The status data determines the return code from the SQ_LEXECDI RECT,
SQPREPARE, or SQLEXECUTE function that started the RPC. The client
application can retrieve the status data (message and native code) by calling
SQERRCR. The Connect i on- Handl e isignored since only one host RPC
can execute at atime. The following parameters are required:

» ERROR- MSG- LENGTH- AREA returns the actual length of the error
message.

m TRACE- MESSAGE- AREA isthe address of the message text.

m SQL.- NTSisthelength of the message text to be returned. Thisvalue can
be an actual length or SQL-NTS can be specified if the message is null-
terminated.

= NATI VE- ERROR- CODE- AREA isthe Native Error code. If thisvalueis
negative, the client return code will be SQL-ERROR. If thisvalueis

2-6 Shadow Programming Guide December 1999

Other Sample RPCs

positive, the client return code will be SQL-SUCCESS-WITH-INFO.
Thisfield cannot be zero.

Other Sample RPCs

Other sample RPC programs are availablefor useinthe NEON SV040100. SAMP
dataset. These RPC samples access various other types of databases using
COBOL, PL/1 and C. All use the same types of ODBC function calls asthe
VSAM sample above, in addition to other function calls necessary to access a
desired database, e.g. IMS, M204. The following Cobol RPC samples are
provided; () indicates that the sample supports an optional parameter.

SDCOIM
Reads sample data from the IM S parts database using IMS/DBCTL.
The IMS PARTs database is provided by IBM during the IMS IVP
install.
SDCOIMAP
Uses IMS/APPC to access the IMS Parts database. The IMS PARTS
database is provided by IBM during the IMS IVP ingtall.
SDCOM 24P()
Uses IFAM callsto access the sample M 204 database provided by
M204.
SDCODB()
A sample DB2 RPC that reads the Q.staff table provided by QMF.
SDCOCIEC

A sample RPC to access CICS using EXCI.

Writing RPCs that Access DB2

With DB2 RPCs, such as the sample SDCODB, specia considerations must be
followed. Refer to the NEON. SV040100. ONTL dataset, member cob2db?2, for the
Sample JCL to compile and link a Cobol for MVS RPC.

1. Since SDCODB uses static SQL, the program must first be run through the
DB2 precompiler to produce aDB2 DBRM.

2. Thecodeisthen compiled and linked. On thelink step, DSNALI must be
linked into the RPC load module.

3. Since Shadow Server will manage opening the thread to DB2 before
connecting to the Shadow Server, either in the ODBC datasource definition or
in the connection string, the PLAN parameter should be set to the name of the
plan bound into DB2 for this RPC. Optionally multiple RPC DBRMs can be
placed into asingle plan.

December 1999

Shadow Programming Guide 2-7

ODBC CALL RPCs

4.

Note:

If the 4th character of the Plan Name isan R, the NEON Client
ODBC driver assumes that your application is using a plan where
the plan was bound using an Isolation value of Repeatable Read. If
you are not using Repeatable Read please ensure that your plan
name does NOT have an R in the 4th character of the plan name as
does the Shadow default plan SDBR1010. If itisany other character
than an R we assume the plan was bound with an Isolation Level of
Cursor Stahility.

In the datasource, Static SQL (CD) should be selected or set to YESin the
connection string.

Under the Advanced/More option of the datasource definition, Always
Convert Dynamic SQL (ALCD) should be set to NO. If it is not, the Shadow
ODBC driver will attempt to convert ALL SQL sent through the driver to
Static. Although all the SQL in the RPC will run statically, theinitial CALL
statement for the RPC is run dynamically. ALCD=YES can also be set in the
connection string of the application.

Note:
If you are running client code dated 11/19/97 or above, selecting
Static SQL and setting ALCD=NO is no longer required.

Customer-written PL/l programs must NOT usethe FETCH, CALL, or
RELEASE statementsif SSL is used for encryption of session data. Thisis
due to Language Environment for VM & MV S restrictions.

Special Considerations for Cobol Il

Coboal Il was originaly designed with CICS in mind. Under CICS, Caboal 11
programs are kept serialized and thus can be Reentrant. If you wish to use Cobol
I1 with NEON Client, the following restrictions apply:

All RPCs, including RPC Direct, must be compiled with NORENT, NORES
and NODYNAM.

All RPCs, including RPC Direct, must also be linked with NORENT.

All RPCsmust be AMODE 31, regardless of language, if you are passing
parameters to the RPC.

Programs must be linked with AMODE 31, since Shadow stores the
parameter in a 31-bit address.

These restrictions, with the exception of being AMODE 31, are not necessary if:

2-8

Shadow Programming Guide December 1999

Other Sample RPCs

You are using the latest releases of the Cobol compiler, including Cobol for
MV S or Cobol/370 as it was recently called.

You are using PLI, C or Assembler.

The following information (in italics) is from the IBM VS Cobol |1 Application
Programming Guide for MVSand VSE:

Multiple tasks within the same region are supported for RESIDENT run units
only under CICS. Multiple OStasks within the same region are not supported
by COBOL in conjunction with the Library Management feature (RES
option). COBOL does not preclude multitasking if the run units are compiled
with NORES However, any restrictions and conventions of multitasking
imposed by the operating system, access methods, and so on, must be
observed.

Wth Cobol Il you have the following valid combinations of DYNAM,
RESDENT, and RENT:

There are five valid combinations of the DYNAM, RES DENT, and RENT
compiler options.

» NORENT and NORES and NODYNAM
Nonreentrant code, no COBOL Library Management feature, CALL
literal is static call.

= NORENT and RESand NODYNAM
Nonreentrant code, COBOL library routines called dynamically, CALL
literal is static call.

= NORENT and RESand DYNAM
Nonreentrant code, COBOL library routines and user subprograms all
called dynamically.

s RENT and RES and NODYNAM
Reentrant code, COBOL library routines called dynamically, CALL
literal is static call.

s RENT and RES and DYNAM
Reentrant code, COBOL library routines and user subprogramsall called
dynamically.RENT or DYNAM causes the RESIDENT option to be forced
on.

Asthe IBM restrictions indicate, RES is only alowed running multiple tasks
under CICS. As aresult, the only valid combination for NORES is NORENT,
NORES and NODY NAM. Attempting to run two simultaneous RPCs under
Shadow with DY NAM or RENT will result in an abend followed by alGZ015I
Cobol error which states:

A recursive call was attempted to a program that was still active. COBOL
does not allow reinvocation of a program which has begun execution, but has

December 1999

Shadow Programming Guide 2-9

ODBC CALL RPCs

not yet terminated. For example, if program A calls program B, program B
cannot call program A. The job was canceled.

Running Cobol I RPCs can also cause storage problems. Since al RPCs must be
coded NORENT, NORES and NODY NAM, all external routines must be
statically linked in with the RPC, causing a separate RPC to be loaded for each
execution of the RPC. If the number of loaded Non-Reentrant RPCs exceeds the
amount of private storage available to Shadow Server, an S806 abend will occur.
In this case, one of the following actions must be chosen:

m Upgradeto Cobol for MV S.
= Set up multiple Shadow Servers and do work load balancing.
m Place the RPCsin the RPC Specia Requirements parameter list.

The RPC Special Requirements parameter list is used to define the RPCs that
should be serialized. By placing the RPC name on thislist, Shadow Server will
seriaize al executions of these RPCs. This means that no more than one of these
RPCswill be allowed to execute at atime. All other execution requests for the
same RPC will be queued for execution. This function can cause significant
performance degradation for a high-transaction environment.

The Specia Requirements parameter list can be specified in the Shadow
Initialization exec member, SDBxINOO, located in the dataset allocated to

SY SEXEC in the Shadow Server started task. The parameter is

RPCxx SPECI ALREQ where xx is anumber between 01 and 10. The syntax for
placing thisin the Shadow Initialization exec is:

MDDl FY PARM NAME (RPCxxSPEQ ALREQ VALUE(r pcnare)

You can also add these RPCs dynamically using option 5.2 from the Shadow
Server Primary Options menu (SDF | SPF panel), and selecting the the PRODRPC
group of parameters. However, all changes made in this manner are only
temporary until the next time the Shadow Server started task is recycled. To make
the changes permanent, they should be placed in the SDBxINOOQ initialization
exec.

For more detailed information and restrictions about running Cobol |1, please
refer to the IBM VS Coboal |1 Application Programming Guide for MVSand VSE.

Special Considerations for Cobol for MVS and
Other LE/370 Languages

With Cobol for MVS or other LE/370 languages, your RPCs will perform best if
you minimize the amount of storage that your application programs use to below
the 16 megabyte line. Whenever possible, design your RPCs to run above the 16
megabyte line. If you use the default LE/370 run-time options, you can only run a
small number of RPCs concurrently within the Shadow Server address space. For
programs that can run above the line, do the following:

s For COBOL programs, use the RES and DATA(31) compiler options.

2-10

Shadow Programming Guide December 1999

Other Sample RPCs

m Link-edit the program with the AMODE(31) and RMODE(ANY) attributes.
m Usethefollowing LE/370 run-time options:

HEAP(,,ANY) allocates program heap storage above the 16MB line.
STACK(,,ANY) allocates program stack storage above the line.
STORAGE(,,,4K) reduces the storage area below the 16MB line to 4K.
BELOWHEAP(4K,,) reduces the below the 16MB heap storage to 4K.
LIBSTACK(4K,,) reducesthe library stack below theline to 4K.

s Compile and link-edit the RPC as reentrant.

s ALL31(ON) indicatesthat all programs contained in this stored procedure run
with AMODE(31) and RMODE(ANY).

JCL for compiling and linking a user CEEUOPT module can be found in member
CEEWUOPT of the NEON SV040100. ONTL dataset. This JCL can be used to
override system installation defaults for Cobol for MVS. CEEWUOPT has been
modified to contain the current recommendations for running Cobol for MVS
application under Shadow Server. This module should be linked with any Caobol
for MVS programsin order for the options to be used. If not, the installation
defaults for Cobol for MV S will be used. Optionally, the recommended changes
can be made to CEEDOPT, thus making these options the default, and eliminating
the required link for every RPC with CEEUORPT.

To improve performance, all eligible LE/370 runtime modules should be moved
into the MLPA. Thefollowing information (in italics) was obtained from the IBM
Language Environment for MVS & VM Installation and Customization on MVS
Release 5 Document Number SC26-4817-06. Please reference this manual for up-
to-date information.

Placing Language Environment Modules in Shared
Storage
Placing routines in shared storage reduces overall system storage requirements.

Also, initiate/terminate (init/term) timeis reduced for each application, since load
time decreases.

All of the re-entrant modules in CEE.V1R5MO0.SCEERUN can be included in
shared storage on MVS. To include them:

s Authorize the data set CEE.V1R5MO0.SCEERUN.

» Include CEE.V1IR5MO0.SCEERUN in the LNKLSTnn concatenation (optional
for MVSESA Version 4).

s Create an |IEALPANN member in SYS1.PARMLIB that lists the modules to be
made resident in the MLPA when the systemis | PLed.

Several members are installed in CEE.V1R5MO0.SCEESAMP for you to use as
examplesin creating your |EALPANN member. The table below lists the members,
their content, and the level of MVS/ESA they are to be used in. Note that the

December 1999

Shadow Programming Guide 2-11

ODBC CALL RPCs

format of the IEALPAnn member changed between MVS'SP Version 3 and MVY
ESA SP \ersion 4. Use the format appropriate for the release level of MVSat your
ste.

Member Name Description MVS/ESA Level
CEEWMLPA All language Environment base modules eligible for the LPA except Version 3
callable service stubs.
EDCWMLP1 All C/C++ component modules eligible for LPA. Version 3
1IGZWMLP1 All language Environment COBOL component modules eligible for LPA | Version 3
assuming modified, full COBPACKS (must reside below the 16M line).
1IGZWMLP2 All language Environment COBOL component modules eligible for LPA | Version 3
assuming COBPACKs will reside above the 16M line (All routines with
RMODE (ANY)).
IBMALLP1 All language Environment PL/I component modules eligible for LPA. Version 3
AFHWMLP1 All language Environment FORTRAN modules eligible for LPA. Version 3
CEEWMLP2 See description for CEEWMLPA. Version 4
EDCWMLP2 See description for EDCWMLP1. Version 4
IGZWMLP3 See description for IGZWMLP1. Version 4
IGZWMLP4 See description for IGZWMLP2. \ersion 4
IBMALLP2 See description for IBMALLP1. Version 4
AFHWMLP2 See description for AFHWMLPL. Version 4
If you want to load modulesinto the LPA under MVSESA Version 4, you do not
need to place CEE.V1R5M0.SCEERUN in the LNKLSTnhn concatenation. For
earlier versions of MVS, you must do one of the following:
s Add CEE.V1R5MO0.SCEERUN to the LNKLSTnn concatenation.
m Makethe non-LPA modules available to stepsthat run Language Environment
applications by either:
m Copying the non-LPA modules to a data set that isin the LNKLSTnn
concatenation, or
m Copying the non-LPA modulesto a data set that can be used as a STEPLIB or
a JOBLIB.
Using the entire CEE.V1R5MO0.SCEERUN dataset as a STEPLIB defeats the
purpose of placing the modulesin the LPA.
Shared Storage Considerations
Modules you copy into another (non-LPA) data set are not automatically updated
by SMP/E when you apply a service update. You must rerun your copy job after
2-12 Shadow Programming Guide December 1999

Other Sample RPCs

you apply service to Language Environment to make the updated modules
available in the LNKLSTnn data set or in the STEPLIB.

Examinethe lists carefully to make sure that you are installing the correct module
for the national language support you have installed. Comments in CEEWMLPA,
CEEWMLP2, EDCWMLP1, EDCWMLP2, IBMALLP1, and IBMALLPZ2 identify
the mixed-case U.S. English modules and the Japanese modules. In IGZWMLP1,
|GZWMLP2, | GZWMLP3, and | GZWMLP4 remove the module name
IGZCMGEN if U.S. English mixed-case is not installed and add |GZCMGJA if
Japanese isinstalled and you want it to be in the LPA.

Refer to the following books for more information on including modulesin the
LPA:

. MVSESA System Programming Library: Initialization and Tuning for MVY
SP \ersion 3, GC28-1828

. MVSESA Initialization and Tuning Reference for MVSESA SP Version 4,
GC28-1635

. MVSESA Initialization and Tuning Reference for MVSESA SP Version 5,
SC28-1452

When all recommended modules have been placed into MLPA, the runtime
library from the Shadow Server started task SDBRPCLB concatenation can be
removed to take advantage of the modulesin MLPA.

It is aso recommended that the PREL OAD option be used to preload the
following LE runtime modules:

CEEEV005
IGZEINI
IGZEPLF
IGZEPCL
CEEBINIT
CEEPLPKA
IGZCPAC

Using LE/370 languages for RPCswith Shadow Direct provides several important
advantages:

m Shadow Direct can exploit the LE/370 Library Routine Retention feature. If
the LIBKEEP parameter (in the PRODRPC parameter group) isset to YES,
Library Routine Retention support is enabled for LE/370 programs. Shadow
Direct will preload the required Library Retention support routines at
initialization time, and create the Library Routine Retention environment for
each transaction program TCB. Initial tests have shown a 50% decrease in
total CPU time for RPCs executed with the new Library Retention support
enabled. Benchmarks are easily performed by simply turning the LIBKEEP
parameter on and off. The following MCDI FY PARM statement placed in the
Shadow Initialization exec, SDBxINOO will turn on the Library Routine
Retention support:

December 1999

Shadow Programming Guide 2-13

ODBC CALL RPCs

MODI FY PARM NAVE(LE370LI BKEEP) VALUE(YES)

Shadow Direct provides an RPC Preload feature. In high transaction volume
environments, applicationsthat utilize RPCs must repeatedly invoke
operating system services to bring programs into memory for execution. This
can cause severe performance degradation and overhead, to the point of
eliminating the performance benefit of RPCs.

Shadow Direct provides an extremely effective solution to this problem. The
PREL OAD option when set to YES will preload programs from a special
library designed to contain RPCs which have very sensitive response time
regquirements. Shadow Direct will aso bypass operating systems services
which are typically used to pass control to programs and give control to these
programsdirectly. Thislibrary should be allocated to the SDBRPCPL ddname
in the Shadow Server started task JCL.

The performance improvement and CPU time reduction when using the
Preload feature has shown to be substantial for high volume RPC transactions.
The Preload feature can also be used with PLI or C. The only requirement for
these RPCsisthat they be compiled and linked with the REENTRANT
option. With the following parameter set, all RPCs allocated to the
SDBRPCPL ddname in the Shadow Server Started Task JCL will be
preloaded at Shadow Server startup time.

MODI FY PARM NAVE(PRELOAD) VAL UE(YES)

Note:

Any changes made to these RPCs will require the Shadow

Server started task to be recycled in order to pick up the new
changes. Also, since each preloaded RPC will be stored in the
Shadow Server private area below the 16 meg line, the more

RPCs loaded will decrease the amount of private storage

available for Shadow Server’s use. Only highly used RPCs that
have sensitive response time requirements should be placed in
this library.

Support for compiling programs with DY NAM option.

Using ODBC CALL RPCs in Visual Basic

The following sample Visual Basic code is an example of using Visual Basic with
DAO to return the results of an SQL query and returning the results from the
sample ODBC CALL RPC, SDCOV SP. This sample can be found on the NEON
Systems CD, in the sanpl e/ vb4/ daot est directory.

D m nyDB As Dat abase
D mMRs As Recordset
DmMSQ As String
DmMRPC As String
Dmrc As String

2-14

Shadow Programming Guide December 1999

Other Sample RPCs

Set nyDB = Wirkspaces(0). QpenDat abase("", Fal se, Fal se, "CDBC')
MyRPC = “call sdcovsp”
MySQL =“Select * from Q.STAFF"

You can base the record set after a DB2 table, a query, or the
RPC.
‘SDCOVSP also returns the same column names as the Q.Staff table.

"Set M/Rs = nyDB. (penRecor dset (M/RPC, dbQpenDynaset ,
dbSQ@_PassThr ough)
"Set M/Rs = nyDB. (penRecor dset (M/SQ@., dbQpenDynaset,
dbSQ@_PassThr ough)

‘Q.STAFFI is a DB2 table with a unique index on the id column.
Set MyRs = myDB.OpenRecordset(“Q.STAFFI", dbOpenDynaset)

The bel ow Text fields are text boxes on the nain form
‘The record set is updatable ifthe record set s based on a table
with a unique index

rc = M/Rs. Updat abl e
M/Rs. MoveFi r st
txtname.Text = MyRs(“name”)
Txtid. Text = MyRs(“id")

txtjob. Text = MyRs(“job”)
txtdept. Text = MyRs(“dept”)

Using ODBC CALL RPCs in Powerbuilder

The following sample Powerbuilder script is an example of using Powerbuilder’s
support for stored procedures to execute and return the results of the sample
ODBC CALL RPC, SDCOVSP. This code is supplied on the NEON System’s
CD-ROM, and can be found in directagnpl es/ pb/ t est . pbl .

string | s_EnpNane, |s_EnpJob

long Il _Enpl D, |l _EnpDept, Il_EnmpYears, ||_NewRow, || _Row,
[l _I nput Num

11

/1 Assign values to the ShadowDirect transaction

11

Shadowbi rect = reate Transacti on

ShadowDirect DBMS =“ODBC”"

ShadowDirect. AutoCommit = TRUE

ShadowDirect.database =""

ShadowDirectuserid ="

ShadowDirect.dbpass =
ShadowDirectlogid ="
ShadowDirect.logpass =
ShadowDirect.servername = “DB2A”

ShadowDirect.dbparm = “ConnectString="DSN=Sample_Direct”
/I Connect to the ShadowDirect ODBC transaction object
CONNECT USING ShadowDirect;

Il

/IReset the DataWindow

December 1999 Shadow Programming Guide 2-15

ODBC CALL RPCs

11

DW 1. Reset ()

11

/1Get the enployee ID entered fromthe input box
11

Il _I'nput Num = Long(em1. Text)

11

/I'When the input is zero, call the RPC without a parareter
11
IF Il _InputNum= 0 THEN
11
/I Decl are the RPC
11
Decl are Get St af f | nf oWOPar am Procedure for SDOOVSP
usi ng ShadowbDi rect;
11
//Call the RPC
11
Execute Get St af f I nf oWDPar am
11
/1 Process the result set
11
CHOCSE CASE ShadowbDi r ect . SQLCode
CASE 0
DO WH LE ShadowD rect. SQ1.Code = 0
FETCH Get St af f | nf oWOParam | NTO : || _Enpl D
, - | s_EnpName
, - 11 _EnpDept
, - 1's_EnpJob
, .11 _EnpYears;
| F ShadowDi rect. SQ.Code = 0 THEN
Il _NewRow = Dw 1. I nsert Row(0)
Il _Row = DW1. Scrol |l ToRow(I'l_NewRow)
DW1. Setltenm(Il_NewRow "enmpid" , |II_EnplD)
DW1. Setltenm(|1 _NewRow "enpdept" , || _EnpDept)
DW1. Setlten{ |1 _NewRow, "enpjob" , |s_EnpJob)
DW1. Setlten{ |1 _NewRow, "enpnane” , |s_EnmpNane)
DW1. Setlten{ Il _NewRow, "enpyears” , ||_EnpYears) END I F
LaooP
CASE ELSE
END CHOCSE
11
/1d ose the procedure
11
d ose Get St af f | nf oWOPar am
ELSE
11
/1 Declare the RPC with a paraneter
11
Declare Get Stafflnfo Procedure for SDOOVSP : 11 _I nput Num
usi ng ShadowbDi rect;
11
//Call the RPC
11

2-16

Shadow Programming Guide December 1999

Other Sample RPCs

Execute Get Staffl nfo;
/1
/I Process the result set
/1
CHOCSE CASE ShadowDi r ect . SQLCode
CASE 0
DO WA LE Shadowbi rect. SQ1.Code = 0
FETCH Get StaffInfo INTO: | _Enpl D
, .ls_EnpName
, .11 _EnpDep
, .ls_EnpJob
, .11 _EnpYears;
| F ShadowD rect. SQ.Code = 0 THEN
Il _NewRow = Dw 1. | nsert Row(0)
Il _Row = DW1. Scrol |l ToRow(Il_NewRow)
DW1. Setlten(Il _NewRow, "empid" , Il _EnplD)
DW1. Setlten{ |1 _NewRow, "enpdept" , || _EmpDept)
DW1. Setlten{ |1 _NewRow, "enpjob" , |s_EnpJob)
DW1. Setlten{ |1 _NewRow, "enpnane” , |s_EmpNane)
DW1. Setlten(Il _NewRow, "enpyears” , ||_EnpYears) END I F
LOCP
CASE ELSE
END CHOOBE
/1
/1d ose the procedure
/1
Commit usi ng ShadowDi rect;
A ose Get Stafflnfo;
END I F
DI SCONNECT USI NG ShadowDi r ect

Using ODBC CALL RPCs in EXECSQL

The following sample /* EXECSQL script is an example of using /* EXECSQL
support for stored procedures to execute and return the results of the sample
ODBC CALL RPC, SDCOV SP, which readsaVSAM file:

[*\WW / NEQV | MSEXECL

R SRR R R SRR SRS SRR R R R R R EEEEEEREEEEEREEEEEREEEEEEEEEEEE

* SAMPLE APPLI CATI ON THAT | LLUSTRATES THE USE CF AN EXECSCL *
* PROCESS SECTION THE AUTCFORVAT KEYWRD CALLS FCR THE ROW *

* DATA TO BE FCRVATTED | NTO AN HTM. TABLE. *

R SRR R SRS RS SRR RS E R R R R EEEEEEEEREEEEEEREEEEEEREEEEEEEEEEEE

/ * EXECSQL MAXROAS(100) -

December 1999

Shadow Programming Guide 2-17

ODBC CALL RPCs

SUBSYS(NCNE) PLAN(NONE) -
AUTCFCRVAT(Tl TLE(’ SAMPLE RPC CALL USI NG / *EXECSQL’) -

BCDY(’ BGOOLOR="#FFOC33"") -

CALL SDCOVSP(100)

Note:
This applies to Shadow 0S/390 Web Server only.

2-18 Shadow Programming Guide December 1999

CHAPTER 3:

Running DB2 Stored Procedures

This chapter covers programming information for running DB2 stored procedures. It includes
information about the execution, preparation, and troubleshooting of the DB2 stored procedures.

This chapter appliesto Shadow Direct and Shadow OS/390 Web Server.

Introduction

IBM stored procedures are fully supported by Shadow Direct and Shadow Web
Sever version 3.1 and above at maintenance level SVFX3270 and above. In order
to run DB2 stored procedures, you must be running DB2 version 4.1 or above. For
specific information on writing and using DB2 stored procedures, please refer to
the IBM DB2 Application Programming and SQL Guide.

The Syntax

The syntax for invoking an IBM stored procedure using the Neon Client ODBC
driver is

Call SYSPROC.procedure-name(parameter,parameter,)

Where:

SYSPROC
isthe prefix that identifies the stored procedures as IBM rather than a
NEON stored procedures (RPCs).

pr ocedur e- nane
isthe procedure namein the DB2 catal og.

par anmet er, paraneter,
are the parameters for the DB2 stored procedures.

This syntax matches the IBM SQL stored procedure naming conventions.

December 1999 Shadow Programming Guide 3-1

Running DB2 Stored Procedures

DB2 Stored Procedures

Result Sets

Shadow Direct supports returning zero or one result set from an IBM stored
procedure. If the DB2 stored procedure returns more than one result set, the
remaining result sets are ignored (without any error messages or warnings). This
is the same restriction for NEON RPCs.

Retrieving Column Names

If you want to retrieve column names from any DB2 stored procedures that return
result sets, the DESCSTAT installation parameter must be set to YES. (DESCSTAT
isset in the DB2 DSNZPARMmember at DB2 install time. DSNZPARMis created via
the DB2 installation job, DSNTI JUZ.).

Note:

If the DESCSTAT DB2 installation parameter isnot set to YES, then the
result set column names will always be zero length strings. Some IBM
documentation incorrectly implies that thisis a B ND parameter. It is not a
Bl ND parameter and must be set as part of the installation of DB2.

You must bind the DBRM used by Shadow Direct (CPRXSQ or Shadow 0S/390
Web Server (SWRXSQ) with the package used by the DB2 stored procedure in
order for this procedure to be called successfully.

Samples

m Result Set. A sample job, DB2PROCL, has been provided in the
NEON SV040100. CONTL dataset which shows how to properly compile and
bind a DB2 stored procedure that returns aresult set. This sample processes
the example stored procedure, DB2PRCOCL, in the NEON SV040100. SAMP
dataset.

= VBOutput Parameter. A sample job, DB2PROC2, has been provided in the
NEQON SV040100. ONTL dataset which shows how to properly compile and
bind a sample DB2 stored procedure that returns an output parameter. This
sampl e processes the exampl e stored procedure, DB2PROZ2, in the
NECON SV030100. SAVP dataset.

s VB4.0 Program. A sample VB 4.0 program is provided in the Shadow
sanpl es/ vb4/ DB2Pr oc?2 directory with the install of the Neon Client
32-bit driver version 3.02 or above. This sample shows how to properly use
the ODBC API to invoke DB2PROC?2.

s VB5.0 Program. A sample VB 5.0 program is provided in the Shadow
Sanpl es/ vb5/ ADCsanp directory with theinstall of the NEON Client 32-
bit driver version 3.04 or above. This sample shows how to do the following
using ADO:

3-2

Shadow Programming Guide December 1999

DB2 Stored Procedures

Call aDB2 stored procedure that returns a result set.

Call aDB2 stored procedure that returns an output parameter.
Call a Shadow RPC program.

Create an updateable recordset using an SQL query.

Preparing a DB2 Stored Procedure

The following steps need to be completed to properly prepare a DB2 stored
procedure:

1. Updatethe DB2 SYSI BM SYSPROCEDURES table with information regarding
the stored procedure. If any of thisinformation changes, you must stop the
DB2 stored procedure and restart it using the DB2 —START and —-STOP
PROCEDURE command. If you don’t, the changes will not take effect.

2. Run the DB2 Pre-Compiler against the DB2 stored procedure to create the
DBRM.

3. Compile the DB2 stored procedure.

4. Link-edit the DB2 stored procedure. The DB2 stored procedure must be
placed into a library in th8TEPLI B of the DB2 stored procedure address
space.

5. Bind the DB2 stored procedure into a DB2 package.

6. Bind the DB2 plan with the DB2 packlist and the Neon DBRM.

Note:

If the 4th character of the Plan Name is an R, the NEON Client
ODBC driver assumes that your application is using a plan where
the plan was bound using an Isolation value of Repeatable Read. If
you are not using Repeatable Read please ensure that your plan
name does NOT have an R in the 4th character of the plan name as
does the Shadow default plan SDBR1010. If it is any other character
than an R we assume the plan was bound with an Isolation Level of
Cursor Stability.

The plan used for the connection to DBRst have available the packages used
by all of the stored procedures. Since only packages are supported for stored
procedures, the plan must include a PKLIST that has all of the required packages.

Coding Cursors in Return Result Sets

When coding DB2 stored procedures, the cursors used in stored procedures
should be declared WITH HOLD in addition to WITH RETURN. Otherwise, any
COMMIT (either issued by DB2 or by Shadow Server) will destroy the result
set(s). If WITH HOLD is not specified and if COMMIT_ON_RETURN is set to

December 1999 Shadow Programming Guide 3-3

Running DB2 Stored Procedures

“Y”in SYSI BM SYSPROCEDURES, each stored procedure will not appear to
return any resukets,even if it actually does.

Here's an example of an EXEC SQL statement in a DB2 stored procedure:

EXEC SQL
DECLARE C1 QURSCR WTH HOLD WTH RETURN
FCR SELECT I D, NAME, DEPT, JGCB,
YEARS, SALARY, COW
FROM Q STAFF
END- EXEC.

Troubleshooting DB2 Stored Procedures

Be aware of the following situations that can arise when executing DB2 stored
procedures:

m Itis common to get a zeX®) SQ.CCDE from a stored procedure that
actually failed because it could not access the associated package (timestamp
errors, etc.). The reason is that all of the DB2 operations attempted by the
stored procedure failed and there is no indication why.

m All stored procedures that actually create result sets exit wil6@
SQ.CCDE unless the result set is destroyed by a commit (as described above).
This is neither an error nor a warning. It just means the stored procedure
successfully created at least one result set.

m A -204 SQCCLCE indicates that the DB2 stored procedure hame is unknown
to DB2. Unlike NEON stored procedures, all IBM stored procedures must be
defined in the DB2 catalog.

A -440 SQ.CCDE indicates the parameters passed by the application do not
match the parameter definitions in the DB2 catalog.

s A-480 SQ.CCDE indicates that the stored procedure created one or more
results without using¥ TH HCLD cursors and a subsequ&€avM T issued by
Shadow Server destroyed those result sets befoBESER BE PROCEDURE
was completed.

m Azero(0) SQQOCDE can result from a DB2 stored procedure that is
designed to return one or more results sets for at least two reasons.

m All of the EXEC S(L statements in the stored procedure are failing because
the required package is not available.

m The cursors used to return the result sets were not declaredd WihHCLD,
andCOMWM T_CON RETURNis settd Y' .

3-4 Shadow Programming Guide December 1999

CHAPTER 4:

Shadow IMS Direct

This chapter provides programming information for Shadow IM S Direct, a component of Shadow
Direct. Information includes the product architecture and installation, the progrmming of IMS
applications, client API function definitions, and Sample IM S batch message program code.

This chapter applies specifically to Shadow Direct.

Introduction
Shadow IM S Direct alows you to write client DL/l applications that:

m Accessand update IM S databases.
m Access and update the IMS message queue.

These client applications can be written in almost any programming language,
including C, C++, Visua Basic (VB), and PowerScript.

This chapter assumes that the reader is generally familiar with IMS and
specifically familiar with DL/I programming.

Product Architecture

Shadow IM S Direct allows two types of DL/l programs to be written:

m A Batch Message Program (BMP), providing single-threaded accessto IMS
databases and the message queue.

s A DBCTL program, providing multi-threaded accessto IM S databases.

The type of program that is chosen depends on the type of access needed.

Single-Threaded Access to IMS Databases and
the Message Queue

For accessing and updating the IM S message queue, a Batch Message Program
(BMP) should be run in Shadow Server’s address space. However, because only
one copy of the BMP can run inside Shadow Server at a time, this IMS interface is

December 1999 Shadow Programming Guide 4-1

Shadow IMS Direct

limited to one client application at any given time. In other words, only single-
threaded accessis possible.

Note:

If multiple requests are received to run a BMP, al subsequent requests
will be enqueued. As each BMP request is completed, a request will be
removed from the queue and processed. The queuing processis

automatic and invisible (save for possible delays) to client applications.

This type of access is shown in Figure 4-1.

Windows/OS/2/UNIX Client

MVS Host
(1.3) IMS @) IMS
Agpllcanon Shadow Server DB/DC or
rogram Address Space DBCTL
Control
Region
4,7)
Shadow IMS (6? IMS
Interface — IMSDirect |— Databases
¢ BMP hnllgl
(5) -<«>»{ | IMSMsg ||
TCP/IP or TCP/IP Queue
LU 6.2
TCP/IP or
» VTAM
LU 6.2

Figure 4-1. Shadow IMS Direct Product Architecture
(IMS Message Queue and Database Access)

The stepsin this process are:

1. A session beginswhen IMS Direct is invoked by a Windows/OS/2/UNIX

client application and establishesa TCP/IP or LU 6.2 connection to Shadow
Server.

The Shadow Server address space receives the request from the Windows/OS/
2/UNIX client and attaches the IM S Batch Message Program (BMP). The
IMS BMP then waits for work from the client system.

4-2

Shadow Programming Guide December 1999

Product Architecture

3. On the client system, the user’s application program calls the IMS Direct

DL/I interface function (SCCToDL) to access and update IMS databases or
the IMS message queue.

4. The Shadow IMdterface routine analyzes and checks each DL/ call.

5. Shadow IMS Direct compresses each requests and sends it via TCP/IP or
LU 6.2 to the BMP running inside the Shadow Server address space.

6. The BMP decompresses each request and invokes the actual IMS DL/I
interface. The BMP compresses the data returned by IMS and sends it back to
the client system.

7. The Shadow Direct SCCToDLI interface routine checks and analyzes each
result and returns control to the application program. When the application
program terminates, Shadow IMS Direct terminates the BMP running in the
Shadow Server address space and closes the communication link.

Multi-Threaded Access to IMS Databases

If you do not need to access IMS message queues, you can write client
applications that take advantage of Shadow IMS Direct’'s multi-threaded database
access. These client applications architecturally resembles a CICS DL/I
transaction prograrﬁ.‘l’hey are therefore subject to the same restrictions as CICS
transactions that issue DL/I cdlls.

This type of access is illustrated in Figure 4-2.

* The SCCToDLI function is used with C and C++ language applications; the SCCToDL IPascal function is used
with Visua Basic and PowerBuilder.
t Shadow IMS Direct does not use any CICS facilities.

December 1999

Shadow Programming Guide 4-3

Shadow IMS Direct

Windows/OS/2/UNIX Client MVS Host
(1) IMS
Application Shadow Server IMS DB/DC or
Program Address Space DBCTL Control
* Region
(3,6) (2,5) IMS
Shadow IMS IMS Direct €7 Databases
Interface t
TfE’ '6Pz°r TCP/IP or
) VTAM
A A
| @)

LUG6.2

Figure 4-2. Shadow IMS Direct Product Architecture

(Multi-Threaded Database Access)

The steps in the process are:

1

A session begins when Shadow IMS Direct is invoked by a Windows/OS/2/
UNIX client and establishes a TCP/IP or LU 6.2 connection to Shadow
Server.

The Shadow Server address space recognizes the request from the Windows/
OS/2/UNIX client and establishesalink to IMS.

An IMS application program requests IMS services using the DL/I interface
routine (SCCToDL) to access and update IM S databases.

The Shadow DL/I interface routine checks and analyzes each request and
sendsit viaTCP/IP or LU 6.2 to the Shadow Server address space.

Shadow Server decompresses requests and invokes the actual IMS DL/I
interface. When IMS returns information, Shadow Server compresses it and
sends it back to the client system.

The Shadow IMS Direct SCCToDLI routine decompresses the returned
information and returns control to the application program.

4-4

Shadow Programming Guide December 1999

Installing Shadow IMS Direct

Installing Shadow IMS Direct

Configuring Shadow Server

Before any programs created using Shadow IM S Direct can be used to
communicate with the mainframe, several of Shadow Server’s parameters must be
properly set. This section will assume that Shadow Server is already installed and
running on the mainframe. If not, refer to the Shadow IM S section in the Shadow
Server User’s Guide. This guide is useful for maneuvering through the various
screens of the |SPF/SDB application.

By default, the Shadow Server address space does not alow either single-threaded
or multi-threaded access to IMS. Each of these facilities must be enabled using a
letter in the feature code string. IM S support is enabled using the feature letter
code ‘I'.

Note:
Only one single-threaded or multi-threaded IMS feature per Shaodw
Server can be enabled at a time.

To specify which feature is to be used by Shadow Server, one of the following
access parameters should be set to YES before the product is started:

m Single-threaded access.
= Multi-threaded access.

These parameters, which are explained in the following sections, can be set by
entering them into the SDBXINOO initialization REXX EXEC:DBCTL for multi-
threaded or BMP for single-threaded. After start time, they can be modified using
the SDB Parameters screen (SDB option 5.2) of the ISPF/SDB application.

Setting Parameters for Single-Threaded Access

The following parameters are used for single-threaded access to IMS. Note that, in
almost all cases, the default values are appropriate. The parameters are:

BMPPARM
Specifies the IMS BMP Parameter string. This parameter is not used
at this time, but may be used at some point in the future.

BMPNAME
Enters the name of the IMS BMP Region Controller. The default is
DFSRRCOO.

* For information on theinitiaization EXEC, see Appendix A of the Shadow Server User’s Guidd-or information
about the SDB Parameters window, see Chapter 3 of the Shadow Server User’s GuidS&ome parameters must be
set before the Shadow Server address space is started; see the Shadow Server User’s Guider details.

December 1999 Shadow Programming Guide 4-5

Shadow IMS Direct

IMSBMPTIMEOUT
Specifiesthe IMS BMP read time out value in units of seconds. This
value is used to control how long the IMS BMP will wait for
additional DL/I calls from the client application. If the time out limit
is reached, the communication session with the client application will
automatically be severed, and all IMS updates will automatically be
rolled back. This value is used to prevent afailing client application
or network problem from hanging the BMP in the main Shadow
Server address space indefinitely. There is no default value for this
field.

Setting Parameters for Multi-Threaded Access

The following parameters are used for multi-threaded accessto IM S databases:

IMSID
Specifiesthe IMSID of the DBCTL region. This should be the four-
character name of the DBCTL region, which is the same as the
IMSID parameter inthe DBCTL procedure. Thereis no default value
for this parameter. A DBCTL region is not required to use multi-
threaded access to IMS databases. All IMS DB/DC systems
automatically provide DBCTL functionality as of IMS/ESA Release
3.0 or later. Required.

IMSUSERID
Specifies the userid of the product region. This should be the eight
character name of the CCTL region. Thereis no default value.
Optional.

IMSFUNCLEVEL
Specifies the function level of the product region. This parameter
should indicate what DRA level the CCTL supports, so setting this
parameter to 1 means that the CCTL uses the DRA at the IMS 3.1
level. The default valueis 1. Optional.

M SSUFFIX
Specifies the suffix of the DFSPZP module. The default value is “00”.

IMSMAXTHREADS
Sets the maximum number of DRA thread TCBs to be available at
one time. The maximum number is 255. The default is “1”.

IMSMINTHREADS
Specifies the minimum number of DRA thread TCBs to be available
at one time. The maximum number is 255. The default is “1".

IMSWAITTIME
Sets the identity retry wait time. This parameter should indicate the
amount of time (in seconds) that the DRA should wait between
attempts to identify itself to CCTL during an INIT request. The
default is 60 seconds.

4-6 Shadow Programming Guide December 1999

Installing Shadow IMS Direct

IMSDDNAME
Specifies the DDname used to allocate RESLIB. This should be the
oneto eight character DDname that will be used to dynamically
alocate the DBCTL RESLIB data set. The default DDnameis
CCTLDD. Thislibrary must contain the DRA modules.

IMSDSNAME
Specifies the DSName of the DRA RESLIB. This should be the one
to forty-four character name of the DBCTL RESLIB data set. This
library must contain the DRA modules and must be MVS APF
authorized. The default data set name is ‘IMS.RESLIB'.

IMSFPBUFFERS
Indicates the number of Fast Path DEDB buffers to be allocated and
fixed per thread. The default is “0".

IMSFPOVERFL OW
Indicates the number of the Fast Path DEDB overflow buffers to be
allocated per thread. The default is “0".

IMSCLASS
Specifies the snap dump sysout output class.

IMSGROUPNAME
Specifies the Application Group Name. This should be a one to eight
character application group name to be used as part of the DBCTL
security function.

IMSNBABUFFERS
Specifies the total number of Fast Path NBA buffers that the CCTLs
can use.

IMSTIMEOUT
Enters the DRA term time out value. This should be the amount of
time (in seconds) that a CCTL should wait for the successful
completion of a DRA TERM request. This value should be specified
only if the CCTL is coded to use it. This value is returned to the
CCTL upon completion of an INIT request.

Note:

In almost all cases the default values are appropriate. The only
parameter that must be set is the IMSID.

In order to set up the connection between Shadow Server and IMS using DBCTL,
the IMS DBCTL interface will need to be active. DBCTL requires DBRC to be at
the SHARECTL level; if it is not, DBCTL will not start. To initialize the RECON,
specify (or let it default to) INIT. RECON SHARECTL. The example below
shows some sample JCL you can copy to initialize the RECON. If you have CICS
already connected to IMS and you are using DBCTL, this has probably already
been done.

December 1999

Shadow Programming Guide 4-7

Shadow IMS Direct

/11N TREC JCB 1, PQVER D, CLASS=Q MBGCLASS=A
/1%

//RECCN EXEC PQVEDSPURX00, REG CN=1000K
// STEPLI B DD DSNel M5. RESLI B, DI SP=SHR

/ | DFSRESLB DD DSN=I M5. RESLI B, DI SP=SHR
/1 SYSPR NT DD SYSQUT=*

//RECCNL DD DSNEl M5. RECONL, DI SP=SHR
//RECCN2 DD DSNEl M5. RECON2, DI SP=SHR
/ISYSIN DD *

I N T. RECON SSI (| MBA)

/*

For further information on how to setup DBCTL, refer to the CICS-IMSDatabase
Control Guide.

Programming IMS Applications

Using Shadow IM S Direct always involves two separate programs:

m A client application.
An MV S transaction program.

The client initiates the MV S transaction program. After the transaction program
has been started, the client application sends requests to the host TP for execution.
All requests are executed synchronously. By default, all data areas sent from the
IM S application program to the host are converted, as needed. Most data areas are
simply translated from ASCII to EBCDIC before being sent to the host, and from
EBCDIC back to ASCII upon receipt from the host. PCBs are converted to host
format on afield by field basis. All conversions can be turned off by passing
negative length values to the Shadow IM S Direct interface function. The
SCAsciiToEbcdic and SCEbcdicToAscii functions are provided to Shadow IMS
Direct applications for any data conversions needed.

Client Applications

Shadow IM S Direct client applications are programs written in any one of several
languages that use the Shadow IM S Direct API to execute IMS DL/I requests on
the host. These applications are normally written in C or C++. However, these
applications can be written in any language that can call DLL entry paints,
including Visual Basic (VB), PowerScript, Pascal, COBOL, etc. In practice,
amost any client application programming language can be used to invoke the
Shadow IM S Direct API.

The Shadow IM S Direct APl isimplemented asaDLL in the Windows, Windows
NT, and OS/2 environments. The Shadow IMS Direct APl isimplemented asa
shared library object in those UNIX environments (SunOS, etc.) that support
shared libraries. In other UNIX environments, the API isimplemented as an
archivefile.

Shadow IM S Direct applications must be linked using one of the two import
libraries supplied with Shadow IM S Direct:

4-8

Shadow Programming Guide December 1999

Programming IMS Applications

SQODBC. LI B, which is used with SOCDBC DLL
SOCDBCTS. LI B, used with SOCDBCTS. DLL

The SCCDBCTS. DLL contains numerous diagnostic, debugging, and support tools.
Asaresult, this DLL should be used for all application development purposes.
However, since the SCODBCTS. DLL issubstantially larger and slower than its
production counterpart (SCODBC. DLL), production applications that have been
fully debugged should be switched to SCODBC. DLL for improved performance.

Note:

I> CODBC. LI B must not be used with Shadow IM S Direct applications.
The architecture of Shadow IMS Direct does not support passing
calls from a Shadow IM S Direct application to the Shadow IMS
Direct DLL, viathe Microsoft driver manager (CDBC. DLL).

Shadow IMS Direct applicationswritten in C or C++ must include the scpghd. h
header file. This header file declares all the Shadow IM S Direct structures and
API entry points, and must be included in al Shadow IMS Direct client
application functions. The header file can be used with both ANSI and non-ANSI
C compilers, however, ANSI C isthe recommended choice for compiling and
building Shadow RPC client application programs. This header file will also work
in al client environmentsincluding Windows, OS/2, and UNIX.

Client APl Function Definitions

The following functions are available with Shadow IMS Direct API cals:

SCCToDLI: Execute DL/I callsfrom aC or C++ program.

SCCToDL | Pascal: Execute DL/I callsfrom aVB or PowerBuilder program.
SCPackedToAscii: Convert packed decimal datato ASCII.
SCAsciiToPacked: Convert an ASCII string to packed decimal data.

These API calls, which are detailed in the following sections, are used by Shadow
IMS Direct applications to establish a connection to the host and to execute DL/I
calls on the host.

December 1999 Shadow Programming Guide 4-9

Shadow IMS Direct

SCCToDLI

IMS Direct

SCCToDLI executes DL/I requests on behalf of aclient application. Most DL/I
requests are passed to the host for processing, and the results are returned to the
client application program. However, in afew cases, DL/I requests are executed
locally. This function takes a variable number of arguments, and is intended to be
called by C or C++ application programs. It cannot be called by Visual Basic or
Power Script applications.

Syntax

RETCDBC SCCToDLI (hdbe, cpar, rgbl MsFunction, rgbVal uel,

rgbval ue2, rgbVal ue3, rgbVal ued, rgbVal ue4, rgbval ue5, rgbVal ueé,
rgbval ue7, rgbval ue8, rgbVal ue9, rgbval uel0O, rgbVal uell,

rgbval ue12, rgbval uel3, rgbVal ueld, rgbVal uel5, rgbVal uels,
rgbval uelz, rgbval uel8, rgbVal uel9, rgbVal ue20, rgbVal ue?1,
rgbval ue22, rgbval ue?23, rgbVal ue24, rgbVal ue25, rgbVal ue26,
rgbval ue27, rgbval ue28, rgbVval ue29, rgbVal ue30, rgbVal ue3l,
rgbval ue32, rgbval ue33, rgbVal ue34)

Arguments

The SCCToDLI function accepts the following arguments:

Type

Argument

Use

Description

HDBC

hdbc

Input

Connection handle.

SDWORD

cpar

Input

Number of parameters. This value includes the IMS function string,
but does not include the connection handle, the number of
parametersitself, or any length values provided for the other
arguments.

rgblM SFunction

Input

IMS function code. Thisfield must point to afour-byte string
containing the IM S function code. The function code does not need
to be null-terminated, but must be in uppercase and padded with
trailing blanks, if needed

PTR

rgbValuel-17

110

Use of this argument depends on the IMS function code string and
the number of parameters. See the comments below for additional
information.

PTR

rghValuel8-34

Input

Use of this argument depends on the IMS function code string and
the number of parameters. See the comments below for additional
information.

4-10

Shadow Programming Guide December 1999

Programming IMS Applications

SQL_SUCCESS WITH_INFO

A positive IMS status code stored in the least significant two bytes of the

Returns

= SQL_SUCCESS

: SQL_ERROR

= SQL_INVALID HANDLE
) return code.
Diagnostics

When SCCToDLI returns SQL_ERROR or SQL_SUCCESS WITH_INFO, an
associated SQLSTATE value may be obtained by calling SQLError. The
following table lists the SQL STATE vaues commonly returned by SCCToDL |
and explains each onein the context of this function. The return code associated
with each SQLSTATE value is SQL_ERROR, unless noted otherwise.

SQLSTATE Error Description

01000 Genera warning Driver-specific informational message. (Function returns
SQL_SUCCESS_WITH_INFO.)

08003 Connection not open Connection specified by hdbc argument was not open. Connection
processes must be compl eted successfully (and the connection must
be open) for driver to perform this function.

08s01 Communication link failure Communication link between driver and data source to which driver
was connected, failed before function completed processing.

S1000 General error Error occurred for which there was no specific SQLSTATE and for
which no implementation-specific SQL STATE was defined. Error
message returned by SQLError in the argument szErrorMsg
describes error and its cause.

S1009 Invalid argument value The parameter count cpar was less than one.

The parameter count cpar exceeded the maximum value. The
maximum valueis 18.

The rgblMSFunction pointer was null.
One of the rghValue arguments was null.
One of the argument length values was not set.

For the “PCB “ IMS Function code, the parameter capat was
not 3.

For either the “GPCB” or “PPCB” IMS function code values, the
cpar parameter count was not 4.

The IMS function codegblMSFunction did not contain a valid IMS
function code string.

The PCB length value passed was invalid.
An invalid PCB address was detected.

December 1999

Shadow Programming Guide 4-11

Shadow IMS Direct

Comments

The SCCToDLI function provides all IMS servicesto an IMS Direct client
application. This function can be used three ways

m Toissuestandard DL/I callsthat get, replace, insert, and delete IMS segments.

= To obtain the PCB list and the number of PCBs on behalf of the caller.

m To access and update individual fieldsin a PCB. Different arguments are
passed for each use of thisfunction.

The correct arguments for each use of this function are described below.

= All of the arguments passed to this function must be four bytes long.

Note:

In many cases, large data areas are passed to this function,
however, these data areas are passed using pointers that are
actually four byteslong. The practical significance of this
requirement isthat all length and count values must be passed as
four-byte integers. Length and count values can be cast to four-
byte integers, if needed. The SDWORD cast can be used to
ensure integers are passed to this function correctly.

s The SDWORD cast can be used to ensure integers are passed to this function
correctly.

m Some forms of this function (see below) take a PCB as the fourth argument
(rgbValuel). PCBs can be passed as either an address or afour-byte PCB
number. Visua Basic and PowerScript applications must pass a PCB number
value.

= Thenumber of arguments passed to this function is variable. The actual
number will range from three to thirty-seven.

Note:

The actual number will always be equal to the cpar argument
value, multiplied by two, plus one. Thisrelationship can be
explained asfollows:. alength parameter must be supplied for all
data arguments other than the IM S function code string pointed
to by rgblM SFunction; in addition, the cpar argument does not
include itself and the connection handle.

m Length values arerequired for all arguments except for the first three. The
length values always follow the data arguments. If, for example, cpar istwo,
the cpar argument will be followed by two data areas and one length. If cpar
isthree, the cpar argument will be followed by three data areas and two
lengths. The number of lengths will always be one less than the number of
data areas, because alength vaue is not provided for the rgblMSFunction
argument.

4-12

Shadow Programming Guide December 1999

Programming IMS Applications

s TheSCCToDLI function can only be called by languages that support passing
avariable number of arguments. This means that this function cannot be
called by Visual Basic and PowerBuilder applications. Visual Basic and
PowerBuilder applications can, however, call the SCCToDL IPascal function
described below. A C or C++ program can use this function without
restriction.

m Thereturn code from this function will either be an ODBC return code or an
IMS status code. The ODBC return codes are described above. IMS status
codes are two byte character strings stored in the return code variable. The
sample IM S applications show how these status codes can be tested.

Note:

If an IMS operation succeeds, the IMS status code will be two
blank characters. However, the two blank characters will NOT
be stored in the return code variable. Instead, a return code of
SQL_SUCCESS (which is actually zero) will be returned to the
caller. This is the same convention that the mainframe CTDLI
function uses. For more information about IMS status codes, see
IMS Messages and Codes (SC26-4290).

Obtaining the PCB List Structure

This function can be used to obtain the PCB list from the Shadow IMS Direct

interface. The PCB list isa structure that contains the number of PCBs, avector of
pointers to PCBs, and some additional information. The PCB list structure imst is
typedef’ed in thescpghd. h header file. The PCBs pointed to by the PCB list in
this structure are copies of the actual PCBs on the host. Shadow IMS Direct
automatically synchronizes the client application PCBs and the actual PCBs on
the host. The first PCB pointed to by the PCB list vector is the I/O PCB. The
second, and all subsequent PCBs in the PCB list vector are database PCBs. This
structure, and the PCBs pointed to by this structure, cannot be used in Visual
Basic and PowerBuilder applications. Visual Basic and PowerBuilder do not have
adequate capabilities for pointer manipulation.

SCCToDLI is called as follows, in order to obtain the PCB list structure:

rc = SCCToDLI(hdbc, 3, “PCB “, “DUMMYPSB", &lcimst, 8,
sizeof(imst))

The parameter count for retrieving the PCB list structure is always 3. The “PCB “
function code is used on the host to schedule a PSB and returns a vector of PCB
pointers. However, thBCCToDL | function returns the PCB vector list but does

not actually schedule the PSB. The PSB is scheduled as part of the host session
initiation process. The PSB name is specified using the PSB keyword in the
connection string or in a section of the ODBC.INI file.

The “DUMMYPSB” argument is the PSB name; as mentioned above, this
function cannot be used to schedule a PSB. However, PSB scheduling capability

December 1999

Shadow Programming Guide 4-13

Shadow IMS Direct

may be added at some point in the future. The “DUMMYPSB?” string should be
passed to maintain upward compatibility with future versions of this function.

Note:
The PSB string must be null-terminated.

Thelcimst argument is the local data area structure into which the PCB list
structure will be copied. This area should be allocated usinignshéypedef.

The length values are the sizes of the “DUMMYPSB” string and the size of the
localimst area, respectively. Thazeof function is used to determine the size of
theimst as a convenience and to ensure future upward compatibility.

Accessing and Updating PCB Fields

The function can also be used to access and update fields in the PCB. This
capability is provided for languages such as Visual Basic, or PowerScript, that
cannot access PCB fields using pointers. Of course, this function can also be
called from C or C++ applications. The IMS function code is “GPCB” for
accessing PCB fields and “PPCB” for updating PCB fields.S®&ToDL |

function is called as follows to access or update a PCB field:

rc = SCCToDLI (hdbc, 4, rgbl MBFunction, rgbVal uel, data type, data
area, sizeof (PCB_STRUCT 8 TYPE), sizeof(data type), sizeof(data
area))

The parameter count for accessing and updating PCB fields is always four. The
IMS function code stringgblMSFunction must either be “GPCB” or “PPCB” as
mentioned above. The PCB (argument 3) itself can be passed one of two ways

s As apointer to a PCB.
m Asthe PCB number (cast to a SDWORD).

PCBs in the PCB vector list are numbered starting with “1” for the I/O PCB. In
other words, the first database PCB is always PCB number 2.

The data type is either a pointer to a null-terminated character string or an integer
cast to a SDWORD with the data type number. Mabkalutely sure that, if the

data type is passed asiateger, afour-byteinteger is usedDo not pass a two-

byte integer in any case. You will get a program fault.

Note:

Do not pass the global const values defined in the Visual Basic
sample programs without first assigning them to long integer values.

4-14 Shadow Programming Guide December 1999

Programming IMS Applications

The possible data type values are:

Data Type Integer

Data Type String

Description

SC DB_PCB

“SC_DB_PCB’

Entire DB PCB area

SC_DATABASE NAME

“SC_DATABASE_NAME”

DB PCB database name

SC_SEGQVENT_LEVEL_NUMBER

“SC_SEGMENT_LEVEL_NUMBER”

DB PCB segment level number

SC_STATUS OCDE

“SC_STATUS_CODE”

DB and DC PCB status code

SC PROCESSI NG CPTI ONS

“SC_PROCESSING OPTIONS”

DB PCB processing options

SC_SEGQVENT_NAME

“SC_SEGMENT_NAME”"

DB PCB segment name

SC_KEY_AREA LENGTH

“SC_KEY_AREA_LENGTH"

DB PCB key feedback area length

SC_SENSI Tl VE_SEGQVENTS

“SC_SENSITIVE_SEGMENTS”

DB PCB number of sensitive

segments
SC KEY_AREA “SC_KEY_AREA” DB PCB key feedback area
SC DC PCB “SC_DC_PCB” Entire DC PCB area

SC_TERM NAL_NAME

“SC_TERMINAL_NAME”"

DC PCB terminal name

SC_OURRENT _DATE

“SC_CURRENT_DATE”"

DC PCB current date

SC_CURRENT_TI ME

“SC_CURRENT_TIME”

DC PCB current time

SC_SEQUENCE_NUMBER

“SC_SEQUENCE_NUMBER”

DC PCB input message sequence
number

SC_DESCR PTCR_NAME

“SC_DESCRIPTOR_NAME"

DC PCB output descriptor name

SC USER D

“SC_USERID”

DC PCB user identification

The data area must be large enough to contain any data returned by the “GPCB”
function code. If the “PPCB” function code is used, this area must contain all the
data that will be copied into the PCB. The first length value must be the size of the
PCB passed usimgbValuel. The actual size will depend on whether the client
application program is passing an I/O or a DB PCB. The size of I/O PCBs is
always fixed; the size of DB PCBs depends on the size of the key feedback area.

The size of the data type will depend on whether a character string or a numeric
data type is passed. In either case, the correct length should be passed to this
function. If a character string data type is passed, the size is the length of the
string. If a numeric data type is passed, the size will always be four. The size of
the data area will depend on field in the PCB that is being accessed or updated.
The correct size of the data area should always be passed to this function.

Sending DL/I Requests to the Host

This most common use of this function is to pass DL/I calls to the host. The IMS
function codes that can be used for this purpose are documented in the IMS

December 1999

Shadow Programming Guide

4-15

Shadow IMS Direct

Application Programming: DL/l Calls manual (SC26-4274). Seethe CICS with
DBCTL section of the table documenting which IMS calls are available in which
environments. Of course, all the standard get, delete, insert, and replace calls can
be used with the SCCToDL I function. SCCToDLI is called as follows for passing
DL/l callsto the host.

rc = SCCToDLI (hdbc, cpar, rgbl MSFunction, rgbVal uel, rgbVal ue2,
o)

The rgblMSFunction will contain the IMS function code that will be sent to the
host and executed. This argument must point to a four-byte uppercase string
containing IM S function code padded with blanks, if needed. This string is not
null-delimited. rgbValuel can either point to a PCB or contain afour-byte PCB
number. rgbvalue2 through rgbValuel? are used to pass a segment and segment
search arguments to this function. The segment and the segment search arguments
may or may not be passed, depending on the IMS function code. A length value
must be supplied for each of the rgbValuesthat are actually passed. The number of
arguments will be one plus the number of optional data areas actually passed. The
length values must immediately follow the last data area passed to this function.

Code Example

None at thistime.

Related Functions

For information about See

Executing DL/I callsfrom a VB or PowerBuilder program SCCToDL | Pasca
Converting datafrom ASCII to EBCDIC SCAsciiToEbcdic
Converting data from EBCDIC to ASCII SCEbcdicToAscii

4-16

Shadow Programming Guide December 1999

Programming IMS Applications

SCCToDLIPascal

IMS Direct

SCCToDL IPascal executes DL/I requests on behalf of a client application. Most
DL/I requests are passed to the host for processing and results are returned to the
client application program. However, in afew cases, DL/I requests are executed
locally. This function takes a fixed number of arguments and is intended to be
called by Visua Basic or PowerScript applications, however, it can also be called
by C or C++ application programs.

Syntax

RETCDBC SCCToDLI Pascal (hdbc, cpar, rgbl MSFunction, rgbVal uel,
rgbVal ue2, rgbVal ue3, rgbVal ued, rgbVal ue5, rgbVval ue6, rgbVal ue7,
rgbVal ue8, rgbVal ue9, rgbVal uel0O, rgbVal uell, rgbVal uel?,

rgbVal uel3, rgbVal ueld, rgbVal uel5, rgbVal uel6, rgbVval uel?,

cbVal uel, chbval ue2, chVal ue3, cbVal ue4, cbVal ue5, chVal ue6,

cbval i ue7, cbVal ue8, cbval ue9, cbVal uelO, chVal uell, chVal uel2,
cbVal uel3, chVal ueld, cbVal uel5, cbVal uel6, chVal uel?)

Arguments
The SCCToDLIPascal function accepts the following arguments:

Type Argument Use | Description

HDBC hdbc

Input Connection handle.

SDWORD | cpar

Input Number of parameters. This value includes the IMS function string, but does
not include connection handle, number of parametersitself, or any length
values provided for the other arguments.

PTR rgbIMSFunction | Input IMS function code. Thisfield must point to a four-byte string containing the

IM S function code. The function code does not need to be null-terminated, but
must be in uppercase and padded with trailing blanks if necessary.

PTR rgbValuel-17 1/0 Use of this argument depends on IM S function code string and number of
parameters. See comments below for additional information.

SDWORD | cbValuel-17 Input These arguments are the lengths of the rgbValuel-17 arguments. Number of
lengths actually used must be equal to number of rgbValuel-17 valuesthat are
actually used.

Returns

= SQL_SUCCESS

s SQL_SUCCESS WITH_INFO

s SQL ERROR, SQL_INVALID HANDLE

m A positive IMS status code stored in the least significant two bytes of the

return code.

December 1999

Shadow Programming Guide 4-17

Shadow IMS Direct

Diagnostics

When SCCToDL IPascal returns SQL_ERROR or

SQL_SUCCESS WITH_INFO, an associated SQL STATE value may be obtained
by calling SQLError. The following table lists the SQLSTATE vaues commonly
returned by SCCToDL IPascal and explains each one in the context of this
function. The return code associated with each SQLSTATE valueis
SQL_ERROR, unless nhoted otherwise.

SQLSTATE

Error

Description

01000

General warning

Driver-specific informational message. (Function returns
SQL_SUCCESS WITH_INFO.)

08003

Connection not open

Connection specified by hdbc argument was not open.
Connection processes must be completed successfully (and
connection must be open) for driver to perform this function.

08301

Communication link failure

Communication link between driver and data source to which
driver was connected, failed before function completed
processing.

S1000

General error

Error occurred for which there was no specific SQLSTATE
and for which no implementation-specific SQLSTATE was
defined. Error message returned by SQLError in argument
szErrorMsg describes error and its cause.

S1009

Invalid argument value

Parameter count cpar was less than one.

Parameter count cpar exceeded maximum value. Maximum
valueis 18.

IMS Function was null.
One of the rgbValue arguments was null.
One of the argument length values was not set.

For “PCB “ IMS Function code, parameter coapar was not
3.

For either “"GPCB” or “PPCB” IMS function code valuepar
argument was not 4.

The IMS function codegblMSFunction did not contain a
valid IMS function code string.

PCB length value passed was invalid.
An invalid PCB address was detected.

Comments

The SCCToDLIPasca function providesall IMS servicesto a direct client
application. This function can be used three ways:

m Toissuestandard DL/I callsthat get, replace, insert, and delete IMS segments.
= To obtain the PCB list and the number of PCBs on behalf of the caller.
m To access and update individual fieldsin a PCB.

The arguments passed to this function for each of these uses are different. The
correct arguments for each use of this function are described below.

4-18

Shadow Programming Guide December 1999

Programming IMS Applications

All of the arguments passed to this function must be four bytes long.

Note:

In many cases, large data areas are passed to this function.
However, these data areas are passed using pointers that are
actually four bytes long. The practical significance of this
requirement is that all length and count values must be passed as
four-byte integers. Length and count values can be cast to four-
byte integers, if needed. The SDWORD (no embedded blanks)
cast can be used to ensure integers are passed to this function
correctly.

The number of arguments passed to this function is fixed. The actual number
will always be thirty-seven. The cpar argument must be set to the number of
rgbValues that are actually used plus one for the IMS function code string,
pointed to by rgblIMSFunction. A null pointer must be passed for al of the
unused rgbValues. Actual lengths must be passed using the cbValues for all
the rgbValues that are actually used. Zero must be passed for all the unused
length values. The number of used length values will always be equal to cpar
minus one.

Length values are required for all arguments except the first three. The length

values alwaysfollow the dataarguments. If, for example, cpar istwo, then the

cpar argument will be followed by two used data areas, 16 unused data areas,

one actual length, and 16 unused lengths. If cpar isthree, then the cpar

argument will be followed by three data areas, 15 unused data areas, two

actual lengths, and 15 unused lengths. The number of lengths will always be

“1” less than the number of data areas because a length value is not provided
for thergblMSFunction argument.

Some forms of this function (see below) take a PCB as the fourth argument
(rgbValuel). PCBs can be passed as either an address or a four-byte PCB
number. Visual Basic and PowerScript applications must pass a PCB number
value.

The SCCToDLI function can be called by all languages. This function is
intended for use by Visual Basic and PowerBuilder applications. C and C++
programs can call the SCCToDLI function without dummy arguments. The
SCCToDLI is described above.

The return code from this function will either be an ODBC return code or an
IMS status code. The ODBC return codes are described above. IMS status
codes are two-byte character strings stored in the return code variable. The
sample IMS applications show how these status codes can be tested.

December 1999

Shadow Programming Guide 4-19

Shadow IMS Direct

Note:

If an IMS operation succeeds, the IMS status code will be two
blank characters. However, the two blank characters will NOT
be stored in the return code variable. Instead, a return code of
SQL_SUCCESS (which is actually zero) will be returned to the
caller. This is the same convention that the mainframe CTDLI
function uses. For more information about IMS status codes, see
IMS Messages and Codes (SC26-4290).

Obtaining the PCB List Structure

This function can be used to obtain the PCB list from the Shadow IMS Direct

interface. The PCB list isastructure that contains the number of PCBs, avector of
pointers to PCBs, and some additional information. The PCB list structure imst is
typedef’ed in thescpghd. h header file. The PCBs pointed to by the PCB list in
this structure are copies of the actual PCBs on the host. Shadow IMS Direct
automatically synchronizes the client application PCBs and the actual PCBs on
the host. The first PCB pointed to by the PCB list vector is the I/O PCB. The
second, and all subsequent PCBs in the PCB list vector, are database vectors. This
structure and the PCBs pointed to by this structure cannot be used in Visual Basic
and PowerBuilder applications. Visual Basic and PowerBuilder do not have
adequate capabilities for pointer manipulation. SCCToDLIPascal is called as
follows, in order to obtain the PCB list structure:

rc = SCCToDLI Pascal (hdbc, 3, “PCB *, “DUMMYPSB’, &lcimst, (PTR
NULL, (PTR NULL,

(PTR NULL , (PTR) NULL,

(PTR NULL , (PTR NULL,

(PTR NULL , (PTR NULL ,
(PTR NULL , (PTR NULL ,
(PTR NULL , (PTR NULL ,
(PTR NULL , (PTR NULL ,
(PTR) NUWL,8 sizeof (imst),

(SDARD) 0, (SDWRD) O,

(SDACRD) 0, (SDWRD) O,
(SDARD) 0, (SDWRD) O,
(SDARD) 0, (SDWRD) O,
(SDACRD) 0, (SDWRD) O,
(SDACRD) 0, (SDWRD) O,
(SDARD) 0, (SDWRD) O,
(SDVRD) 0)

The parameter count for retrieving the PCB list structure is always “3". “PCB “
function code is used on the host to schedule a PSB and returns a vector of PCB
pointers. However, the SCCToDLIPascal function returns the PCB vector list but
does not actually schedule the PSB. The PSB is scheduled as part of the host
session initiation process. The PSB name is specified using the PSB keyword in
the connection string or in a section of EBBC. | N file.

4-20

Shadow Programming Guide December 1999

Programming IMS Applications

The “DUMMYPSB” argument is the PSB name; as mentioned above, this
function cannot be used to schedule a PSB. However, PSB scheduling capability
may be added at some point in the future. The “DUMMYPSB?” string should be
passed to maintain upward compatibility with future versions of this function.

Note:
The PSB string must be null-terminated.

Thelcimst argument is the local data area structure into which the PCB list
structure will be copied. This area should be allocated usinignshéypedef.

The length values are the sizes of the “DUMMYPSB” string and theilmsal
area, respectively. Thaizeof function is used to determine the size ofithgt as a
convenience and to ensure future upward compatibility.

Accessing and Updating PCB Fields

This function can also be used to access and update fields in the PCB. This
capability is provided for languages such as Visual Basic or PowerScript, which
cannot access PCB fields using pointers. Of course, this function can also be
called from C or C++ applications. IMS function code is “GPCB?” for accessing
PCB fields and “PPCB?" for updating PCB fields. T®#@CToDL | Pascal function

is called as follows to access or update a PCB field:

rc = SCCToDLI Pascal (hdbc, 4, rgbl MGFunction, rgbVal uel, data type,
data area, (PTR NUL, (PTR NULL, (PTR NULL, (PTR NULL,

(PTR NULL, (PTR NULL, (PTR NULL,

(PTR NULL, (PTR NULL, (PTR NULL,

(PTR NULL, (PTR NULL, (PTR NUL,

(PTR NULL,

si zeof (PCB_STRUCT_8_TYPE) ,

sizeof (data type), sizeof(data area),

(SDWRD) 0, (SDWRD) O,
(SDWRD) 0, (SDWRD) O,
(SDWRD) 0, (SDWRD) O,
(SDWRD) 0, (SDWRD) O,
(SDWRD) 0, (SDWRD) O,
(SDWRD) 0, (SDWRD) O,
(SDWRD) 0, (SDWRD) 0)

The parameter count for accessing and updating PCB fields is always four. The
IMS function code stringgblMSFunction must either be “GPCB” or “PPCB” as
mentioned above. The PCB itself can be passed one of two ways:

= As a pointerto a PCB.
m Asthe PCB number (cast to SDWORD).

PCBs in the PCB vector list are numbered starting from “1” for the I/O PCB. In
other words, the first database PCB is always PCB number 2.

The data type is either a pointer to a null-terminated character string data type
description or an integer cast to a SDWORD with the data type number. Make

December 1999

Shadow Programming Guide 4-21

Shadow IMS Direct

absolutely surethat if the datatypeis passed asan integer, afour-byteinteger is
used. Do not pass a two-byte integer in any case. You will get a program fault.
Do not pass the global const values defined in the Visual Basic sample programs
without first assigning them to long integer values. See the SCCToDL I function
located in this chapter for the datatype list.

The data area must be large enough to contain any data returned by the “GPCB”
function code. If the “PPCB” function code is used, this area must contain all the
data that will be copied into the PCB. The first length value must be the size of the
PCB passed usimgbValuel. The actual size will depend on whether the client
application program is passing an I/O or a DB PCB. The size of I/O PCBs is
always fixed; the size of DB PCBs depends on the size of the key feedback area.

The size of the data type will depend on whether a character string or a numeric
data type is passed. In either case, the correct length should be passed to this
function. The size of the data area will depend on what field in the PCB is being
accessed or updated. The correct size of the data area should always be passed to
this function.

Sending DL/I Requests to the Host

The most common use of this function is to pass DL/I calls to the host. The IMS
function codes that can be used for this purpose are documented in the IMS
Application Programming: DL/l Calls manual (SC26-4274). See the CICS with
DBCTL section of the table. This section documents which IMS calls are
available, and in which environments. Of course, all the standard delete, get,
insert, and replace calls can be used with the SCCToDLIPascal function.
SCCToDLIPascal is called as follows for passing DL/I calls to the host.

rc = SCCToDLI Pascal (hdbc, cpar, rgbl MBFunction, rgbVal uel,
rgbVal ue2, ..., chVvaluel, cbValue2,...)

ThergblMSFunction will contain the IMS function code that will be sent to the
host and executed. This argument must point to a four-byte uppercase string
containing IMS function code padded with blanks if needed. This string is not
null-delimited.rgbValuel can either point to a PCB or contain a four-byte PCB
numberrgbvalue2 throughrgbValuel7 are used to pass segments and segment
search arguments to this function. The data area and the segment search
arguments may or may not be passed, depending on the IMS function code. A
length value must be supplied for each of the rgbValues that are actually passed.
The number of arguments will be one plus the number of optional data areas
actually passed. The length values must immediately follow the last data area
passed to this function.

Code Example

None at this time.

4-22

Shadow Programming Guide December 1999

Programming IMS Applications

Related Functions

For information about See

Executing DL/I callsfrom aC or C++ program SCCToDLI
Converting data from ASCII to EBCDIC SCAscii ToEbcdic
Converting data from EBCDIC to ASCII SCEbcdicToAscii

December 1999 Shadow Programming Guide 4-23

Shadow IMS Direct

SCPackedToAscii

IMS Direct

SCPackedToAscii converts packed decimal datato ASCII. To properly display
IMS Datathat contains packed decimal fields, the data must be converted
manually to ASCII. Since the SCCToDLIPascal API translates data from
EBCDIC to ASCII automatically, conversion should be turned off to properly
process the packed decimal data. To do this, specify a negative value for the
length of the data being returned. If the value is negative, no EBCDIC to ASCII
tranglation will occur using SCCToDL |Pascal. Next, call the SCEbcdicToAscii
API to convert the EBCDIC data, and call the SCPackedToAscii APl to convert
the packed decimal data.

Syntax
RETCDBC SCPackedToAsci i (hdbc, packed, precision, scale, rc, ascii)

Arguments
The SCPackedToA SCII function accepts the following arguments::

Type Argument Use | Description

HDBC hdbc Input ODBC connection handle.

PTR cbpacked Input Pointer to the packed decimal data.

LONG chprecision Input | Packed decimal data's pr eci si on value.

LONG chscale Input | Packed decimal data's scal e value.

INT pchrc Output | Returned code.

CHAR pchascii Qutput | Converted ASCII data buffer.
Returns
s SQL_SUCCESS
s SQL_SUCCESS WITH_INFO
m SQL_ERROR
s SQL _INVALID HANDLE
m A positive IMS status code stored in the least significant two bytes of the

return code
Diagnostics
When SCPackedToAscii returns SQL_ERROR or
SQL_SUCCESS WITH_INFO, an associated SQL STATE value may be obtained
by calling SQLError. The following table lists the SQLSTATE va ues commonly
returned by SCPackedToAscii and explains each one in the context of this
4-24 Shadow Programming Guide December 1999

Programming IMS Applications

function. The return code associated with each SQLSTATE valueis
SQL_ERROR, unless noted otherwise.

SQLSTATE | Error Description

01000 Genera warning Driver-specific informational message. (Function returns
SQL_SUCCESS WITH_INFO.)

08003 Connection not open Connection specified by the hdbc argument was not open. Connection
processes must be completed successfully (and connection must be open) for
driver to perform this function.

08s01 Communication link failure | Communication link between driver and data source to which driver was
connected, failed before function completed processing.

S1000 General error Error occurred for which there was no specific SQL STATE and for which no
implementation-specific SQL STATE was defined. Error message returned
by SQLError in argument szErrorMsg describes error and its cause.

S1009 Invalid argument value Parameter count cpar was less than one.

Parameter count cpar exceeded maximum value. Maximum valueis 18.

IM S Function was null.

One of the rgbValue arguments was null.

One of the argument length values was not set.

For “PCB “ IMS Function code, parameter coapar was not 3.

For either “GPCB” or “PPCB” IMS function code valuepar argument
was not 4.

IMS function code'gblMSFunction did not contain a valid IMS function
code string.

PCB length value passed was invalid.
An invalid PCB address was detected.

Example VB Code

Dmrc As |Integer

Dmlenl As Long

Dmsgarl As String * 1015

Dmsgar2 As String * 4

D m packed_data As String * 12

D m buf f er _si ze, packed_preci si on, packed_scal e As Long

lenl = 64

packed_precision = 8

packed_scale = 0

buf fer_size = 12

rc = SCCToDLI Pascal (hdbc, 4, "GN ", 3, sgar, "STCKSTAT ", "", "",
0o, 00600 0 O 0 0, 0, O0b 0, 0

"assign the packed decimal data at offset 65 to sgar?2

sgar2 = Md(sgar, 65, 4)

"convert data stored in sgar fromEbcdic to Ascii and store in
sgarl

rc = SCebcdi cToAsci i (hdbc, sgar, sgarl, |enl)

"convert packed data in sgar2 to Ascii and store in packed_data
rc = SCPackedToAsci i (hdbc, packed_data, buffer_size, sgar?2,
packed_pr eci si on, packed_scal e)

December 1999

Shadow Programming Guide 4-25

Shadow IMS Direct

SCAsciiToPacked

IMS Direct

SCAsciiToPacked converts an ASCII string to packed decimal data. Thisfunction
can be called by any other routine. It returns standard ODBC retcode.

Notes:

The ASCII string passed by the caller is assumed to be properly
null-terminated.

The size for the packed decimal buffer should be large enough to
store al the numeric nibbles, specified by the precision argument,
and the sign nibble at the end.

The converted packed decimal might lose significant digitsif the
precision of the ASCI| string is higher.

Syntax

RETCDBC SQ._API SCAsci i ToPacked(hdbc, rgbAscii, rgbPacked,
cbVal ue, cbPrecision, cbScale)

Arguments
The SCAscii ToPacked function accepts the following arguments:

Type Argument Use Description
HDBC hdbc Input Connection block pointer
PTR rgbAscii Input ASCII string
PTR rgbPacked Output | Packed decimal data
SDWORD | chValue Input Packed decimal buffer length
SDWORD | cbPrecision Input Packed decimal’s precision
SDWORD | chScale Input Packed decimal’s scale
C Example
Given an ASCII string of "100.02", and assuming the precision and the scale for
the defined packed decimal field isaso 5,2:
char * ascii_string = "100.02";
char packed buffer[3]; /* packed decimal data will takes up 3
bytes */
rc = SCAsci i ToPacked(hdbc, ascii_string, packed buffer,
si zeof (packed_buffer), 5, 2);
4-26 Shadow Programming Guide December 1999

Sample IMS Batch Message Program Code

Sample IMS Batch Message Program Code

The following sample program uses an IMS BMP to access segments from an
IMS database. This program can be used interoperably in the Windows/OS/2/

UNIX environments.

Note:

In some cases, cross-platform portability is obtained using

preprocessor statements.

In the Windows environment, this program is designed to run as a QuickWin
application. In the 0S/2 and UNIX environments, this program will write to
standard output and standard error. Explanatory notes corresponding to the

numbersin boxes are located immediately following the program.

/**/

/* __ */
/* Include all of the standard header files < */
R R e e e e e e s S Sy A
#i ncl ude <stdi 0. h> /* standard I/Olibrary */
#include <stdlib. h> /* standard functions */
#i ncl ude <assert. h> /* assert macro support */
#i ncl ude <string. h> [* string functions */
#include <time. h> /* time functions and definitions */
#i ncl ude <sys/types. h> /* nmore time functions and defs */
#i ncl ude <sys/tinmeb. h> /* nore time functions and defs */
/* __ */

/* A fewdefines so that the CDBC header files will work wth Ugx¢x-—=t

R e S R A s - REEEE Sy 4 |

#i f ndef MsSDOB /* not M5 DCS environnent ? */
#define FAR /* FAR is not needed for UN X */
#define far [* far is not needed for UN X */
#define _ stdcall [* _stdcall is not needed for UN X */
#define _ cdecl /[* _cdecl is not needed for UNX */
#defi ne EXPORT [* EXPORT is not needed for UN X */
#defi ne CALLBACK /[* CALLBACK is not needed for UNX */
#define HMD i nt /* HWWD nust be treated as integer */
#define _tineb tineb [* fix struct _tineb declaration */
#define _ftime ftinme [* fix _ftine function nane */
#endi f /* end M5-DCOB environment check */
/* __ */
/* 1nclude the CDBC header files */
R R . e Rt EEEEE SR SR S A |
#i f def MSDOB /* N5 DCS environnent ? */
#define _ STDC 1 /* define the ANSI C constant */
#i ncl ude <wi ndows. h> /* standard Wndows header file */
#i ncl ude <sql . h> /* Core CDBC header fide 2t
#i ncl ude <sql ext. h> /* Extended CDBC header file */
#defi ne RETCDBC RETOCDE [* fix CDBC return code typedef */
#el se /* else, not Ms-DOB environment */
#incl ude <x_sql . h> /* Core CDBC header fil & 7
#i ncl ude <x_sql ext. h> /* Extended CDBC header file */

December 1999 Shadow Programming Guide

4-27

Shadow IMS Direct

#endi f
#i ncl ude <scpghd. h>

*/
*/

/* end MB-DCOB environment check
/* standard product header fues

#ifdef _ STDC /* check for ANSI C */
int __cdecl main(int argc , char *argv[]) /* ANSI function prototype */
#el se /* else, KGR C */
int _ cdecl main(argc, argv) /* non- ANSI function prototype */
i nt ar gc; /* nunber of argunents */
char *argv[]; /* argument pointer vector */
#endi f /* end of ANSI versus K&R c */
{ [* start routine processing */
/* __ */
/* Declare a few vari abl es needed bel ow */
R e L R i e SRR EEE S A
HENV henv; /* environnment bl oclg X/
HDBC hdbc; /* connection bl ock */

i st i mar; /* inmst data area */

i nt al ev; /* environment allocated flag */

i nt al cn; /* connection allocated flag */

i nt cnex; /* connection executed flag */

i nt firc; [* final return code val ue */

i nt acrc; /[* "AC return code val ue */

i nt gbrc; [* "@& return code val ue */

i nt rc; /* general purpose return code */

i nt i; /* count of DL/l calls */
typedef unsigned char u_char; /* define an unsigned char type */

/* __ */
/* Define a few local val ues */

R Rl L aEEEE =

T - M

#define STATUS K 0x0000 /* I MB status code of zeros */
#defi ne STATUS AC 0x4143 /* ASC | |MB status code AC */
#define STATUS (B 0x4742 /[* ASA| | M status code GB */
/* __ */
/* Data areas for SCCToDLI */
R e L e L e R bRl TR S A

static char duny[8] = "DUMWPSB"; /* dummy PSB nane stig-ng—*/

static char ssaunsol [10] = "SMIOUVBR "; /* set segnent search arg */

typedef struct{PCB STRUCT(24)} PCB 24 TYPE, /* PCB type */

/* __ */

/* Segment structure */

A L R el e .) L LR ST A

st ruct /* start the structure =7

{ /* begin segnent definition */

char type[2]; [* type */

char terninal [5]; [* term nal */

char message[25]; /* message */

} unsol _root; /* end segnent definition */

/* __ */

/* 1/0output structure */

R L e bl L e e Rl LR ST A

#fif (1 =2 /* bypass the follow ng struct */

st ruct /* start the structure */
4-28 Shadow Programming Guide December 1999

Sample IMS Batch Message Program Code

{ /* begin |/O area definition */
short 1|1; /* length field */
short zz; /* other data area */
char nsg[80]; /* message */

} 10 _ares; /* end /O area definition */

#endi f /* struct not needed for now */

/* __ */

;*--St}?r1I-???L-??TIZ??-S-+--—-3----+--——4-----:---5----+----6----+----7*; 10
| O PCB TYPE far *io_pch; [* define 1/0O PCB */

PCB 24 TYPE far *tbl _pcb; /* define DB PCB */

/* __ */
/* Afewlength fields */
R e i T S e e SRR ST CEET S S b
| ong szpc24 = sizeof (PCB 24 TYPE); /* size of PCB */
| ong szioar = sizeof(unsol _root); /* size of a segment */
| ong szssar = sizeof (ssaunsol); /* size of the SSA */
/* __ */
/* Initialize a fewlocal variables */
R e L e R e R EEEE SRR EEE S A |
alev = alcn = cnex = 0; [* clear the flags */
gbrc = STATUS GB; /* set the status variable */
acrc = STATUS AGC /* set the status variable */
/* __ */
/* Initialize a fewlocal fields */
R e L e i e e EEEE SRR EEE S A |
firc = 0; /* assunme a zero return code */
/* __ */
/* 1ssue programstart nessage */
R e L e e e EEEE SR EEE ST A |
pr|ntf("\nProgram Starts\n\n"); /* start nessage */

i =0; /* clear count of DL/l calls */

/* __ */
/* Alocate the environnent block < >/ 1
R e L R R e R EEEE SRR EEE S A

/* allocate the environment block */

rc = SQLA | ocEnv(&henv);

if (rc !'= SQ_SUCCESS & /* operation did not succeed? */

rc 1= SQ_SUCCESS WTH INFO /* nor success w th info? */
goto exl b; /* yes - exit to the caller */
alev = 1; /* show environment all ocated */
/* __ */
/* Alocate the connection bl ock */
I e L A R . et E SEE L EEEEE ST cEET TS S A
rc = SQLA | ocConnect (henv, &hdbc); /* allocate connection bl oq.k_;. 12
if (rc !'= SQ_SUCCESS & /* operation did not succeed?
rc = SQ_SUCCESS WTH INFO /* nor success with info? */
goto exl b; /* yes - exit to the caller */
alcn = 1; /* show connection block allocated */
/* __ */
/* Connect to the data source */
I e R S e e AR ST CCET TS S A
rc = SQDriver Connect (hdbc, /* pass the connection bl ock */
(WMD) NULL, /* no w ndow handl e */
(u_char far *) /[* cast the connection str */
December 1999 Shadow Programming Guide 4-29

Shadow IMS Direct

"U D=ai 38pds; PWD=zr c003;" /* usid */
"PCORT=1250; HOBT=202. 0. 12. 6;" /* TCP/ I P */
"DSN=Tul d; " /* Data source nane 4 */ 13
"APPL=BWP;" /* application type string */
" BMPA=BWP, SMI00004, SMI00004, SMb63011; ",
SQ@L NTS, /* string is null-termnated */
NULL, O, NULL, SQ_DR VER NCOPROWPT);
if (rc !'= SQL_SUCCESS & /* operation did not succeed? */
rc = SQL_SUCCESS WTH INFO /* nor success with info? */
goto exl b; /* yes - exit to the caller */
cnex = 1; /* show connection conpl ete */
/* __ */
/* Get the IM5 PCB |ist */
R e i T S e e SRR ST CEET S S b
rc = SCCToDLI (hdbc, /* pass the connection bl oc# i 14
(SDWRD) 3, /* nunber of paraneters */
"PCB ", /* I M5 function code */
duny, /* duny PSB string area */
& nar, /* I M5 status area address */
(SDWRD) si zeof (duny), /* dummy PSB area size*/
(SDWRD) sizeof(imar)); /* I M5 status area size*/
firc = (rc) ?2rc : firgc; /* reset the return code */
if (firc <0) /* sone type of serious error? */
goto exl b; /* yes - exit with an error code */
/* __ */
/* 1/0 PCB
R T e e a4
iopcb = (1OPCBTYPE far *) imar.inpcar[0]; /* define I/O PCB 15
| % e e e e e e e e
/* Database PCB
R e L e s e e e aE Tl EEEE S A
tbl _pcb = (PCB 24 TYPE far *) imar.inpcar[1]; /* define DB PCB */
/* __ */
/* Attenpt to retrieve the first segnent. Note that the */
/* PCB can be passed either using the PCB address or using */
/* the PCB nunber. The call bel ow passes an actual PCB address. */
/* The following call uses the _ cdecl entry point. The call */
/* Dbel ow uses the pascal entry point. Both entry points nay be */
/* wused froma C program The pascal entry point is intended */
/* for Visual Basic prograns and ot her desktop productivity */
/* tools. */
R e EE o e e S Rl SR ST A
rc = SCCroDLI (hdbc, /* pass the connection bl ock */
(SDWRD) 4, /* nunber of paraneters */
"GN ", /* I M5 function code */
tbl _peh, /* DB PCB <7 16
&unsol _root, /* segnent work area */
ssaunsol , /* segnent search argurent */
(SDWRD) szpc24, [* size of DB PCB */
(SDWRD) szioar, /* size of I/O area */
(SDWRD) szssar); [/* size of SSA */
firc = (rc) ?2rc : firgc; /* reset the return code */
if (firc <0) /* sone type of serious error? */
goto exl b; /* yes - exit with an error code */
4-30 Shadow Programming Guide December 1999

Sample IMS Batch Message Program Code

/* __ */
/* Check for a special return code val ue < */
R R e i e e e R SRR S A
if (acrc ==rc) [* "AC return code? */
goto exl b; /* yes - exit with an error code */

/* __ */
/* Print the data returned */
R R e i e e R Rt SRR S A
if (rc == STATUS (X) [* first operation worked? */

{ /* yes - display the data */

printf("unsol _root.type = %2s\n",unsol _root.type);
printf("unsol _root.termnal = %5s\n",unsol _root.terninal);
printf("unsol root.nessage = % 25s\n", unsol _root. message);

} /* end of first operation check */
2 * [
/* Attenpt to retrieve the remaining segments */

R e EE o e s L h e CE T S A
while ((rc == STATUS OK) && (i < 4)) [/* while return code zero */

{ /* fetch each remai ni ng segment */
/* __ */
/* The pascal function can be used instead of the standard */
/* function. However, dummy val ues nust be supplied for all */
/* of the unused addresses and | engths. Note that the PCB */
/* is passed as a PCB nunber rather than a PCB address. */
/* Thi s approach is supported for both the SCCToDLI and */
/* the SCCToDLI Pascal entry points. */

R e EE o e s e e EEh R R S A
rc = SCCToDLI Pascal (hdbc, /* pass the connection bl ock —

(SDNCRD) 4, /* nunber of paraneters */
"GN U, /* I M5 function code */
(SDNCRD) 2, /* DB PCB */
&unsol _root, /* segment work area */
ssaunsol , /* segnent search argument */

(char far *) NUL, (char far *) NUL, /* dummy */
(char far *) NUL, (char far *) NUL, /* dummy */
(char far *) NUL, (char far *) NUL, /* dummy */
(char far *) NUL, (char far *) NUL, /* dummy */
(char far *) NUL, (char far *) NUL, /* dummy */
(char far *) NUL, (char far *) NUL, /* dummy */
(char far *) NUL, (char far *) NUL, /* dummy */

(SDNCRD) szpc24, [/* size of the DB PCB */
(SDNMRD) szioar, /* size of the I/O area */
(SDNMCRD) szssar, [/* size of the SSA */

(SDACRD) NULL, (SDWORD) NULL, /* dummy val ues */
(SDACRD) NULL, (SDWORD) NULL, /* dummy val ues */
(SDACRD) NULL, (SDWORD) NULL, /* dummy val ues */
(SDACRD) NULL, (SDWORD) NULL, /* dummy val ues */
(SDACRD) NULL, (SDWORD) NULL, /* dummy val ues */
(SDACRD) NULL, (SDWORD) NULL, /* durmmy val ues */
(SDACRD) NULL, (SDWRD) NULL); /* durmmy val ues */

firc = (rc) ?2rc: firc; /* reset the return code */
if (firc <0) /* sone type of serious error? */
goto exl b; /* yes - exit with an error code */

printf("unsol _root.type = %2s\n",unsol _root.type); /[* printf */

December 1999 Shadow Programming Guide 4-31

Shadow IMS Direct

printf("unsol _root.termnal = %5s\n",unsol _root.terninal);
printf("unsol root.nessage = % 25s\n", unsol _root. message);

i ++; /* increment DL/1 call counter */

} /* end of fetch segnent |oop */

/* __ */
/* 1f the status is not blank or "GB" then something is wong */

R R e i e e R Rt SRR S A
if (rc != STATUS (K & rc != STATUS (B) /* any type of error? */

19

{ /* yes - report the error */
printf("Error Detectedin\n"); /* error heading */
printf("ctdli rc = %/ Ox9®4x\n",rc,rc); [/* display the rc */
printf("ctdli status = '%%’\n", /* display |Ms status code */

tbl _pcb -> dbpc_stcd[0], /* first byte of the status */
tbl _pcb -> dbpc_stcd[1]); /* second byte of the status */
printf("ctdli seg = 9%\n", /* display the segnent nane */
tbl _pcb -> dbpc_sgna); /* segnent nane area */
printf("ctdli kfb =9%\n", /* display the key */
tbl _pcb -> dbpc_kyar); /* display the key area */
firc = 8; /[* exit with an error code */
} /* end of error reporting */
/* __ */
/* Standard exit |abel */
R e EE s e o e aE T EE T ST A
ex| b: /* standard exit | abel */
printf("\nProgramEnds\n\n"); /* terninate nessage */
/* __ */
/* Release all resources and return to the caller */
R e EE o e s e o Eh R EE T ST A
if (cnex) /* connection executed? */
SQ.DO sconnect (hdbc) ; /* yes - disconnect from hogt */
if (alcn) /* connection all ocated? */
SQFr eeConnect (hdbc) ; /* yes - free the connection block */

if (alev) /* environnent all ocated? */

SQLFreeEnv(henv); /* yes - free the environnent bl ock */

/* __ */
/* Return a value to the caller */
R e EE e s e e aE Tl EE T S A
return(firc); /* exit with a zero return code */

} /* end routine processing */

1. Thisprogram uses several standard C library functions. These header files
declare the entry pointsto the standard C library. The standard C library can
be used interoperably between the Windows, OS/2, and UNIX environments.

2. The#definesin this section alow the ODBC header filesto be used in the OY
2 and UNIX environments. These #defines are not needed (nor are they used)
in the Windows environment.

3. Thestandard ODBC header files used in the Windows environment are
included here. These header files can only be used in the Windows
environment.

4-32 Shadow Programming Guide December 1999

Sample IMS Batch Message Program Code

10.

The modified header files for OS2 and UNIX are included here. These
ODBC header files are slightly modified versions of the standard Windows
ODBC header files.

The scpgd.h header file is the only Neon Systems-specific header file. This
header file contains all the declarations and definitions needed for the Shadow
IMS Direct and Shadow RPC Direct extensions to the ODBC specification.
This header file must be included by all Shadow IMS/RPC Direct
applications.

These statements define the environment block and the connection block
handles used in this application. All callsto the ODBC API, including the
Neon Systems extensions to the ODBC AP, require that either an
environment block or connection block handle be passed.

These defines are provided to help a programmer check the results from a
DL/I call. DL/I calswill return either an ODBC return code or an IMS two
byte status code stored in the return code itself. Each DL/I return code should
be checked to seeif it contains either SQL_SUCCESS, an ODBC error code
(such as SQL_ERROR), or an IMS two byte status code.” Note that
STATUSOK, and SQL_SUCCESS are both defined to the same value: zero.

The PSB name string should always be set to the value “DUMMYPSB”. The
“DUMMYPSB” name string is not used in IMS BMP applications at this
time; however, it may be used in IMS BMP applications in the future, and this
value is strongly recommended for upward compatibility.

The segment search argument is used to identify specific records in the IMS
database. This value is unique to the current sample IMS BMP application
and would, of course, be different in any user application. Note that the SSA
string ends with a blank. This is the same SSA string termination convention
used on the host.

The PCB type defined here is a database PCB. Note that 24 bytes have been
provided for the key feedback area. The size of the key feedback area is
entirely application-specific, and must be set to the correct value for each user
application.

The unsolicited root structure maps a segment in the IMS database used by
this application. This structure is specific to this sample program and would,
of course, need to be different in any Shadow IMS Direct user application
program.

The pointers to the I/O PCB and DB PCB are defined here. These pointers are
set so that the I/O PCB and DB PCB can be manipulated using standard C
language programming constructs. The lengths of each of the data areas
passed to and from the Shadow IMS Direct interface functions must be
known. The C language statements in this section determine and store the
length of each of these data areas. Note that the requirements for data area

* For more information, about IM S status codes, see the IBM Manual, IMS Messages and Codes (SC26-4290).

December 1999

Shadow Programming Guide 4-33

Shadow IMS Direct

11.

12.

13.

14.

lengths is a significant difference between the Shadow IMS Direct DL/I
interface function and the standard C language DL/I interface function
CTDLI on the host. Note that if these lengths are converted to negative
values, then all automatic data conversions will be turned off. In other words,
data areas passed to and from the Shadow IM S Direct interface functions will
not automatically be converted from ASCII to EBCDIC before they are sent
to the host or from EBCDIC to ASCII when they are returned from the host.
Automatic ASCII/EBCDIC conversion must be turned off if any data areas
being passed to and from the IM S interface function contain binary fields
such asintegers.

Automatic datatype conversion can even be turned off for PCBs passed to the

IMS function. However, it's seldom necessary to disable conversion for
PCBs. The conversion routines are aware of the internal structure of both DB
and 1/0 PCBs and will automatically convert each field (including binary
fields) correctly.

The environment block is allocated here. It is used as a handle for maintaining
the list of connection blocks below. A Shadow IMS Direct application can
actually establish any number of connections to the host. All of the
connections can actually be connections to different hosts running completely
different types of code for each different connection.

The connection block includes all of the connection-specific information. The
connection block must be successfully allocated before a connection to the
host can be attempted.

TheSQL Driver Connect function is used to establish a connection to the host
and to initiate the BMP running inside the Shadow Server address space. The
connection string includes all the information needed to establish the host
connection and to initiate the BMP in the Shadow Server address space. The
application type is specified as BMP. This value is required for all BMP type
connections to the host. The BMP parameter string is also specified as part of
the overall connection string. The BMP parameter string includes the host
PSB name and the LTERM name. When this function call returns to the
application program, either a successful connection to the host will have been
established, or the connection attempt will have failed. If a successful
connection has been established, a BMP will now be waiting for requests
from the client.

SCCToDLI obtains the IMS PCB list from the DL/I interface routine. An

IMS PCB list contains the actual number of PCBs available and a vector of
pointers to the individual PCBs. This call is executed entirely by the Shadow
IMS Direct driver and does not require any communication with the host. The
first operand to this call is the connection handle. Of course, only a

connection handle that has been successfully used to establish a connection to
the host can be used to obtain the PCB list. The second operand to this call is
a parameter count. This value (3) is passed as a four-byte integer to the DL/I
interface routine. The DL/I interface routine uses the number of parameters to
analyze and check the rest of the parameter list. The parameter count includes

4-34

Shadow Programming Guide December 1999

Sample IMS Batch Message Program Code

15.

16.

17.

18.

the IM S function code string, the PSB string and the IM S status area address,
but does not include the two length values at the end of the parameter list.

The next argument to this function is the IMS function code, “PCB.” The

IMS function code string is used to specify what type of processing the DL/I
interface routine should perform. In this case, the “PCB*" function code is

used to request the PCB list. The “PCB" function code is used on the
mainframe to schedule a PSB in the CICS environment and to obtain the PCB
list. This is a significant difference between the mainframe and client
implementation of the DL/I interface. However, in the future, the "PCB"
function code may be supported as a means of scheduling a PSB in the client
environment as well (but only for multi-threaded IMS operations).

The next argument to tHf&CCToDL | function code is the “DUMMYPSB”

string. The dummy PSB string is not actually used by this call. However, the
literal “PSB” should be passed for compatibility with future releases of this
product. The fifth operand is the IMS status area address. This control block is
filled in by this call to the IMS interface routine. This control block is defined

in the scpghd.h header file.

The last two operands are the lengths of the dummy PSB string and the IMS
status area. These lengths must be correctly specified. These length values are
used to determine how much data is transmitted to the host and returned from
the host. The requirement that these lengths be specified is another difference
between the Shadow IMS Direct implementation ofS6&€ToDL | function

and the mainframe implementation of the CTDLI function. Also, the length
arguments are not included in the overall parameter count. In addition, no
length value is specified for the IMS function code string. The IMS function
code string is always four bytes long and, as a consequence, no length value is
needed. The length values can be switched to negative values. If negative
values are passed to this function then all argument conversion is turned off.

These statements extract the addresses of the I/O PCB and the DB PCB from
the PCB list and store the PCB addresses in local variables. The PCB address
values are used below in tBECToDLI calls.

This call actually fetches a segment from an IMS database. The number of
parameters is four, including the IMS function code, the address of the DB
PCB, the address of the segment work area, and the address of the segment
search argument (SSA). As mentioned above, only three length values are
needed because the length of the IMS function code string is always known.

This statement checks to see if the DL/I call set a status code of AC. If the AC
status code was returned, this program automatically terminates.

This call to thesCCToDL | Pascal function is actually identical to the

SCCToDL1 function call above. The main difference is that the Pascal entry
point has been used in this case. A C program can, of course, call either entry
point, as needed. In general, it is easier for a C program to call the

SCCToDLI entry point because dummy values are not needed for all of the
missing arguments. Another minor difference between this ca@@roDL |

December 1999

Shadow Programming Guide 4-35

Shadow IMS Direct

and the earlier call isthat the PCB has been selected by number rather than by
address. It isalways possible to specify which PCB should be used for agiven
call by specifying the PCB number as afour-byte integer. The PCB number is
two in this case because PCBs are numbered from one, not zero. The PCB can
be specified by number rather than by address for both the SCCToDL | Pascal
and SCCToDL I calls. The code in this section checks for any kind of
unexpected error and uses the pointer to the PCB to extract fields from the
PCB that are used to describe the error.

19. Thecallsin this section are used to break the connection with the host and
release all of the resources that were obtained for connection to the host. The
disconnect call will terminate the BM P running inside the Shadow Server
address space. The two free calls release the connection block and the
environment block, respectively.

4-36 Shadow Programming Guide December 1999

CHAPTER 5:
Transaction Server for IMS

This chapter covers programming information for SHADOW_IMS, a generic RPC that allows you to
invoke an existing transaction. I nformation includes examples showing use of SHADOW _IMS.

This chapter appliesto Shadow Direct and Shadow OS/390 Web Server.

Introduction

SHADOW_IMS can be invoked from any ODBC-compliant application on the
client workstation as a pass-through query.

The SHADOW _IMS RPC isinvoked using the following ODBC CALL
Statement:

CALL SHADON I MS(' | ME ,’ TRANSACTI CN PROGRAM NAME | ' | M5- PARTNER- LU
NAMVE ’ |, " SEOUR TY-TYPE , TP PARAMETERS' , " CCLUW NAVE , ' LOCAL LU
NAVE , " MCDE NAME , " SYMDEST , ' USERI D , ' PASSWRD , * PRCFI LE , * SEND-
TYPE ,’ MESSAGE- LENGTH)

Parameter Definition

"I ME A keyword describing the interface.

" TRANSACTI ON Name of IM S transaction to be executed.
PROGRAM NANVE

" | M5- PARTNER The name of the IMS Partner LU as defined in SY S1L.PARMLIB(APPCPMXX).
LUNAVE

' SEQURI TY- TYPE | Defines the type of security in use:
« NONE specifies to omit access security information on this allocation request.

* SAME specifies to use the userid and security profile (if present) from the allocation request
that initiated the local program. The password (if present) is not used; instead, the userid is
indicated as being already verified. If the allocation request that initiated execution of the
local program contained no access security information, then access security information is
omitted on this allocation request.

« PROGRAM specifies to use the access security information that the local program provides
on the call. The local program provides the information by means of the USERID, PASS-
WORD, and PROFILE parameters. These values are passed exactly as specified, without
folding to uppercase.

' TP PARAMETERS' | Parameters for Transaction Program.

December 1999 Shadow Programming Guide 5-1

Transaction Server for IMS

Parameter Definition

" COLUWN NAME Column name or map name used for returned data.

or For the MAP keyword, the syntax is: ‘MAP(NAME(PARTREXX) FIELDS(*))’

" VAP NAVE NAME: Thisentry should correspond to the name assigned to the map during extraction.

FIELDS. There aretwo waysto return datafrom all columns that are enabled in the map
definition:

¢ Use an asterisk after FIELDS.

¢« Omit FIELDS altogether.

To exclude some columns, enter the names of the enabled columns you do want returned in
parentheses after FIELDS.

For more information about the Data Mapping facility, refer to3raglow Server User’s Guide.

"LOCAL LU NAME

Optional. Name of local LU where caller's allocate request originates. The ability to specify local
LU name allows caller to associate its outbound conversations with particular LUs. The caller's
address space must have access to the named LU. Otherwise, a parameter_error return code is
returned.

This is the new local LU Name specified in SYS1.PARMLIB(APPCPMxx) This parameter is
optional. The default is to use the APPC Base LU, as defined in SYS1.PARMLIB(APPCPMXxx).

Note: It is recommended that a separate Local LU be defined for each Shadow Server you have
running using IMS/APPC. Application developers should be informed of which LU should be
used with which copy of thghadow Server. The APPC base LU will work in most cases, however
using a separate Local LU tends to be more reliable.

" MCDE NAME

Optional. Specifies the mode name designating the network properties for the session to be
allocated for the conversation. The network properties include, for example, the class of service to
be used. The mode name value of 'SNASVCMG' is reserved for use by APPC/MVS. If a mode
name of 'SNASVCMG' is specified on the Allocate service, the request is rejected with a return
code of parameter_error.

If you specify a symbolic destination name in the SYMDEST name parameter, set MODE NAME
to blanks to obtain the MODE NAME from the side information.

If the partner LU is the same or on the same system as the LOCAL LU NAME, MODE NAME is
ignored. If the partner LU is on a different system, and you do not specify a SYMDEST name, a
blank MODE NAME defaults to any mode in effect for the local and partner LUs, or causes a
return code of parameter_error.

Optional. Specifies a symbolic name representing the partner LU, the PARTNER TP NAME, and
the MODE NAME for the session on which the conversation is to be carried. The symbolic
destination name must match that of an entry in the side information data set. The appropriate
entry in the side information is retrieved and used to initialize the characteristics for the
conversation.

If you specify a SYMDEST name, the PARTNER LU NAME, MODE NAME, and TP NAME are
obtained from the side information. If you also specify values for the PARTNER LU NAME,
MODE NAME, or TP NAME parameters on the Allocate service, these values override any
obtained from the side information.

The SYMDEST name in this field can be from 1 to 8 characters long, with characters from
character set 01134. If the SYMDEST name is shorter than eight characters, it must be left-
justified in the variable field, and padded on the right with blanks. To not specify a SYMDEST
name, set the SYMDEST name parameter value to 8 blanks and provide values for the PARTNER
LU NAME, MODE NAME, and TP NAME parameters.

5-2

Shadow Programming Guide December 1999

Introduction

Parameter

Definition

"USER D

Optional. Specifies the userid. The partner LU uses this value and the password to verify the
identity of the end user that initiated the allocation request. The partner LU may use this value for
auditing and accounting purposes, and, together with the security profile (if present), to determine
which partner programs the local program can access.

When the partner LU is on MV S with RACF protection, the userid must be 1-8 al phanumeric
characters.

This parameter is significant only when the Security _type parameter contains a value of Pgm.
Otherwise, this parameter has no meaning and isignored.

" PASSWORD

Optional. Specifies the password. The partner LU uses this value and the userid to verify the
identity of the end user that made the all ocation request. When the partner LU is on MV Swith
RACF protection, the password must be 1-8 a phanumeric characters padded with blanks.

This parameter is significant only when the Security _type parameter contains a value of Pgm.
Otherwise, this parameter has no meaning and isignored.

" PRCFI LE

Optional. Specifies additional security information that may be used to determine what partner
programsthe local program may access, and which resources the local program may access. When
the partner LU is on MV Swith RACF protection, APPC/MV S treats the profile name as a RACF
group name for verifying access to partner programs. The profile name must be 1-8 a phanumeric
characters.

This parameter is significant only when the Security _type parameter contains a value of Pgm.
Otherwise, this parameter has no meaning and isignored.

" SEND- TYPE

Optional. SEND-TY PE specifieswhat, if any, information is to be sent to the partner program in
addition to the data supplied. SEND-TY PE aso lets you combine operations (for example,
Send_and_confirm) and save extracallsto APPC.

Default valueis 1. Vaid values for this parameter are:
¢ 0 Buffer_data

Specifies that no additional information isto be sent to the partner program, and the data may
be buffered until a sufficient quantity is accumulated.

¢ 1Send _and_flush

Specifies that no additional information isto be sent to the partner program. However, the
supplied datais sent immediately rather than buffered. Thisis functionally equivaent to a
Send_data call with the Send_type parameter set to Buffer_data followed by a Flush call.

¢ 2 Send_and_confirm

Specifies that the supplied datais to be sent to the partner program immediately, along with a
reguest for confirmation. Thisis functionally equivalent to a Send_data call with the
Send_type parameter set to Buffer_data followed by a Confirm call.

e 3 Send_and_prepare_to_receive

Specifies that the supplied dataiis to be sent to the partner program immediately, along with
send control of the conversation. Thisis functionally equivalent to a Send_data call with the
Send_type parameter set to Buffer_data followed by a Prepare_to_receive call with the
prepare_to_receive _type set to sync_level and the locks parameter set to short.

e 4 Send_and_deallocate

Specifies that the supplied dataisto be sent to the partner program immediately, along with a
deallocation notification. Thisis functionally equivalent to a Send_data call with the
Send_type parameter set to Buffer_data followed by a Dedllocate call with the
deallocate_type set to sync_level.

" MESSAGE
LENGTH

Optional. Specifiesthe length of the messages that are written to or read from the message queue.
Default valueis 32k.

December 1999

Shadow Programming Guide 5-3

Transaction Server for IMS

Examples of Using Shadow_IMS

COBOL

See sample program in hlg.SAMP(SDCOIM for Shadow Direct or SWCOIM for
Shadow OS390 Web Server) for DBCTL.

See sample program in hlg.SAMP(SDCOIMAP for Shadow Direct or
SWCOIMAP for Shadow OS390 Web Server) for Transaction Server for IMS.

Visual Basic 3.0

Thissample code usesthe IM S| VP sample database DI2I| PART and the IM S
sampletransactions:

Set myDB = OpenDatabase(*”, False, False,
“ODBC;DSN=SHADOW_DIRECT")

Part numbers:

AN960C10 7438995P002
3003806* 7618032P101*
3007228 922399-001
3013412 82125-869
652799

Thetransaction PART inquires into the part number database for information
from the part master and standard information segments of a specific part number.
Theinput format istransaction code, part number entered as follows:

MySQL =“CALL
SHADOW_IMS(“”IMS””,””PART””,””IMSLUGZ””,””NON E””,””ANQGOC].OH”,””A
PPC-IMS-DATA™)"

The transaction DSPALLI displays all inventory, cycle count, and back-order
information for a specific part. Theinput format is transaction code, part number
entered as follows:

MySQL =“CALL

"APPC-IMS-DATA™)’

5-4

Shadow Programming Guide December 1999

Examples of Using Shadow_IMS

To display inventory information for key 28009126 and part number
an960c10, the input format is transaction code, part number, inventory-
location-key entered as follows:

MySQL =“CALL
SHADOW_IMS(*IMS™,”DSPINV"™,IMSLU62™,""NONE™,” AN960C10,280
09126™,"APPC-IMS-DATA™)"

Set myset = myDB.CreateDynaset(MySQL, 64)
myset.MoveFirst
txtoutput. Text = myset(‘APPC-IMS-DATA”)
=1
myset.MovelLast
myset.MovFirst
Do Until myset.EOF
N= myset(“APPC-IMS-DATA") & |
IstData.Addltem N
myset.MoveNext
I=1+1
Loop
myset.MoveFirst
End Sub

PowerBuilder 4.0

Thefollowing Power Builder script invokesthe sample IMSIVP PART
transaction:

I

/ICall SHADOW_IMS

I

LONG Il_Row, II_NewRow

String Is_PartlD,PARM1,PARM2,PARM3,PARMA4,PARM5,PARM6
intli_Count

transaction ShadowDirect

I

/ICreate the ShadowDirect transaction object

Il

ShadowDirect = Create Transaction

I

/IAssign values to the ShadowDirect transaction
Il

ShadowDirect DBMS ="ODBC"
ShadowDirect.database ="
ShadowDirect.userid ="
ShadowDirect.dbpass =
ShadowDirectlogid ="
ShadowDirect.logpass =
ShadowDirect.servername = "NONE"
ShadowDirect.dbparm =
"ConnectString="DSN=SHADOW _DIRECT;PWD=x0xxxxX""

December 1999

Shadow Programming Guide 5-5

Transaction Server for IMS

/1 Connect to the ShadowD rect CDBC transacti on obj ect
CONNECT US| NG ShadowDi rect

/* Sheet opening - reflect sheet count in title */

i _Count = w genapp_frame. w_get sheet count ()
this.Title = "Sheet:" + string (li_Count)

/* Modify nenu text for platform?*/

w_genapp_frane. wf _set menut ext (nenui d)

11
//Declare the RPC with a paraneter
11

PARML="1 M5"

PARMR=" PART"

PARMB="1 MBLUG2"

PARMI=" NONE"

PARMS=" AND60C10"

PARMG="APPG- | M5- DATA'
Decl are CGetl| MBData Procedure for SHADOW I MB
sparnd, : parn®, : parn8, : par i, : par nd, : par n6
usi ng ShadowbDi rect;

[/

//Call the RPC

[/

Execut e Get| MsDat a;

/1

[/ Process the result set
[/

CHOCSE CASE ShadowbDi r ect . SQLCode
CASE O
DO WH LE Shadowbi rect. SQ.Code = 0
FETCH Get| MBData INTO :|Is_Partl D
I F
END CHOOSE

11

/1d ose the procedure

11

/1 Commit using ShadowDirect;

d ose Get | MBDat a;

5-6 Shadow Programming Guide December 1999

Examples of Using Shadow_IMS

/"EXECSQL

Thefollowing /*EXECSQL script invokesthe sample IMS PARTS
transaction for part number 3007228 and returnsthe results:

/ *\WNV/ NEQN/ | NBEXECL

kkkkhkkhkkkkkhkkhkhkhkhkkhkhkhkhkhkhkhkhkkhkkhkhkhkkhkhkhkhkhkhkhkhkkhkkhkhkhkhkkhkhkhkkkk khkhkhkkhkk,kkkk,k,k*,k*k*%
* SAMPLE APPLI CATI ON WA CH | LLUSTRATEST THE USE OF AN EXECSQL *
* PROCESS SECTION THE AUTGFCRVAT KEYWORD CALLS FCR THE *
* RONDATA TO BE FCRVATTED | NTO AN HTM. TABLE *

RS R R RS RS E SRR E R R R R EEEEEEEEEREEEEEREEEEEEREEEEEEEEEEEE

*

/ * EXECSQL MAXROM(100) -
SUBSYS(NONE) PLAN(NONE) -
AUTCFORMAT(Tl TLE(® SAMPLE | M5 QUERY USI NG/ *EXECSQL’) -
BODY(’ BAOOLOR="#FFCC33" ") -
)
CALL SHADOW I MS(’ IMS ,’ PART ,’ | MBLUB2' ,* SAME ,* 3007228 ,’ APPG-
DATA)

Note:
This script applies to Shadow OS/390 Web Server only.

December 1999

Shadow Programming Guide 5-7

Transaction Server for IMS

5-8 Shadow Programming Guide December 1999

CHAPTER 6:
Transaction Server for CICS

This chapter covers programming information for SHADOW _CICS, a generic RPC that allows you to
invoke an existing transaction as long as the transaction does not send back a prompt requiring a

response.

This chapter appliesto Shadow Direct and Shadow OS/390 Web Server.

Introduction

SHADOW_CICS can be invoked from any ODBC-compliant application on the
client workstation as a pass-through query (please see the Visual Basic and
Powerbuilder samples).

You can invoke the RPC with the following ODBC CALL statement.

CALL
SHADOW_CICS(NNNN’,'CCCC', TTTT,'PPPPPPPP’,1,2,3,4,5,6, DATA)

Parameter Description

‘NNNN' Connection-type as defined in the SD exec, “EXCI".

‘CCccC Connection-name as defined in the SD exec.

TTTT Tran-1D as defined in CICS. For EXCI, thisisthe Tran-1D that is associated with the DFHMIRS
program.

‘PPPPPPPP’ Program name as defined in CICS.

‘v First parameter expected by program.

2 Second parameter expected by program.

3 Third parameter expected by program.

‘4 Fourth parameter expected by program.

‘5 Optional. Length of commarea. If not present, default is 32k.

(5} Indicates if recursive execution of transaction is required.

Possible values are

e Y foryes
N forno.

Default value isN.

December 1999

Shadow Programming Guide 6-1

Transaction Server for CICS

Parameter Description

‘DATA’ Column name or map name to be used for returned data.

or For MAP keyword, syntax is: ‘MAP(NAME(EXCI) FIELDS(*))’

‘MAP’ NANE: This entry should correspond to name assigned to map during extraction.
FI ELDS: There aretwo ways to return datafrom all columns that are enabled in the map
definition:

. Use an asterisk after FIELDS
¢« Omit FIELDS altogether

To exclude some columns, enter the names of the enabled columns you do want returned in
parentheses after FIELDS.

For more information about the Data Mapping facility, refer to3raglow Server User’s Guide.

‘NNNN' Connection-type as defined in the SD exec, “EXCI".

Table 6-1. Shadow_CICS ODBC Call Parameters

Example of EXCI demo transaction:

CALLSHADOW A CS('EXA ' ," EXCS ,’ EXA ', DFHBAXCS , 2, FILEA ',
) 17’77’100’11,!mTA1)

I> Note:

In the above statement FILEA isfollowed by three spaces (for atotal of
eight characters) and “1” is preceded by five spaces (for a total of six
characters).

Examples of Using Shadow for CICS
COBOL

See sample program in hlg.SAMP (SDOOO ECfor Shadow Direct or SWOOC EC
for Shadow OS/390 Web Server).

Visual Basic 3.0

This sample code uses the CICS IVP sample VSAM file FILEA and the sample
CICS transaction EXCI:

Set nyDB = penDat abase("", Fal se, Fal se,
" CDBC, DSN=SHADOW DI RECT™)

The transaction EXCI executes an external CICS interface program named
DFH$AXCS that browses the sample VSAM file FILEA. Theinput format is:

nySQ = "CALL +

SHADON A CS(""BEXA "™, ""EXCS'", ""BEXA "", " " DFHBAXCS'", 2, ""FI LEA " ",
+

" " e, e e onn AL 386N, A CS
DATA'")"

6-2 Shadow Programming Guide December 1999

Examples of Using Shadow for CICS

To call an RPC program that executes the same sample EXCI transaction, use the
following format:

"nySQ = "CALL SDCOd EC'

Set nyset = nyDB. O eat eDynaset (nySQ@., 64)
nyset . MoveFi r st

To display thefirst row of output from the SHADOW_CICScall in atext box, use
the following exampl e (the dataiis returned in a single column with multiple rows
from call shadow_cics):

txt Qut put. Text = nyset (" d CS DATA")

To display thefirst of row output from the call rpc SDCOCIEC in atext box, use
the following example (the rpc returns the data in seven columns with multiple
rows):

"txtQutput. Text = (nyset("Nunber") & " " & nyset("Nanme") & " " +
& nyset ("Address") & " " & nyset ("Phone"))

"txtQutput. Text = txtQutput. Text & (" " & nyset("date") & " " +
& nyset("anount") & " " & nyset("comment"))

I =1
nyset . MvelLast
nyset . MoveFi r st

To display the remaining data from the call:

Do Until nyset.ECF
Unconment next line for use with CALL RPC SDCOO EC
"N = nyset ("Nunber") &" " & nyset("name") &" " +
& nyset ("address") & " " & nyset ("phone")
"Uncomment next line for use with SHADON O CS
N = Left $(nyset ("C CS- DATA'), 80) & |
| st Dat a. Addl tem N
nyset . MoveNext

I =1 +1
Loop
nyset . MoveFi r st
End Sub

+ Indicates a continuation where code should all be on the same |ine

December 1999 Shadow Programming Guide 6-3

Transaction Server for CICS

PowerBuilder 4.0

The following PowerBuilder script is used to invoke the ssmple SHADOW_CICS
transaction:

11

//Call SHADON O CS

11

LONG || _Row, |1 _NewRow
String PARVL, PARMVR, PARVB, PARMA, PARMG, PARW, PARVB, PARMLO, PARML1
string Is PartlD

int Ii_Count, PARVE, PARMVD

transacti on ShadowD rect

11

/1 Oreate the ShadowD rect transaction object

/11

Shadowbhi rect = Oreate Transacti on

/11

/1 Assign values to the ShadowDirect transaction

11

ShadowDi r ect . DBVB
ShadowDi r ect . dat abase
ShadowDi rect . useri d
ShadowDi r ect . dbpass
ShadowDi rect. | ogi d
ShadowDi r ect . | ogpass
ShadowDi r ect . ser ver nane
ShadowDi r ect . dbpar m

"Connect St ri ng=" DSN=P39016"

/1 Connect to the ShadowD rect CDBC transaction obj ect
CONNECT US| NG ShadowDi rect
/* Sheet opening - reflect sheet count in title */
i _Count = w genapp_frame. w_get sheet count ()
this.Title = "Sheet:" + string (li_Count)
/* Mdify nenu text for platform?*/
w_genapp_frame. wf _set nenut ext (menui d)
/11
//Declare the RPRC with a pararet er
11
/lcall shadow cics(’'EXQ’,’ EXCS ,’ EXA ', DFHBAXCS , 2,’ FI LEA
1','',120,' ", EXA - DATA)

PARML="EXQ "

PARMR=" EXCS'

PARMB="EXQA "

PARMI=" DFHBAXCS'

PARMG=2

PARMG="FI LEA

PARM/ =" 1"

PARMB=""

PARMD=120

PARMLO=""

PARML1="EXJ - DATA"

6-4

Shadow Programming Guide December 1999

Examples of Using Shadow for CICS

Decl are Get G CSData Procedure for SHADON O CS
sparnd, : parn®, : parn8, : parnd, : par nd, : parn®, : parnv, : parng, : parn®, : p
armlo, : parnil

usi ng ShadowDi rect;

/1

//Call the RPC

/1

Execute Get O CSDat a;

/1

/1 Process the result set

/1

CHOCSE CASE ShadowDi r ect . SQLCode

CASE 0

DO WA LE Shadowbi rect. SQ1.Code = 0

FETCH Get A CSData INTO :Is_Partl D

| F ShadowDi rect. SQ.Code = 0 THEN

Il _NewRow = Dw 1. | nsert Row(0)

Il _Row = DW1. Scrol | ToRow(Il _NewRow)

DW1. Setltenm(I1_NewRow "part_id" , Is PartlD)
END I F

LOCP

CASE ELSE

END CHOOSE

/1

/1d ose the procedure

/1

/1 Commit using ShadowDirect;

d ose Get d CSDhat a;

/"EXECSQL

Thefollowing /* EXECSQL script is used to invoke the sample SHADOW_CICS
transaction:

/*\WW/ NEQN O CEXECL

R SRR RS RS RS SRR E R E R R R R EEEEEREREEEEEREEEEEREREEEEEEEEEEEE

* Sanpl e application which illustratest the use of *
* an EXECSQ* process section. *
* *

R SRR R RS RS E SRR E R E R R R R EEEEEREEEEEEREEEEEEREEEEEEEEEEEE

/ * EXECSQL MAXROAB(100) -
out put f or nat (ddname(SAMPDATA) MEMBER(SQLEXEC3) -
CONTENTTYPE(text/htm) -
)

call shadow cics("EXA’',"BEWSS ,'EXA ", DFHSAXCS , 2, FILEA '’
1, -
1,120, ", MAP(NAME(EXA MAP) FIELDS(*)) ')

Note:
This script applies to Shadow OS/390 Web Server only.

December 1999

Shadow Programming Guide 6-5

Transaction Server for CICS

6-6 Shadow Programming Guide December 1999

CHAPTER 7:

Host Application API Function Calls

This chapter describes all Host Application Program Interface (API) functions, and applies to Shadow
Direct and Shadow Web Server.

API Description DIRECT WEB SEF WEB/RX
ODBC CALL RPC APIs
To bind columnsfor SQLBINDCOL
result set: or SDCPBC ® ® ®
To describe passed SQLDESCRIBEPARAM
parameter: or SDCPDP ® ® ®
To access number of SQLNUMPARAMS
parameters: or SDCPNP ® ® ®
Toreset parameters: SQLRESETPARAM

or SDCPRP \Y \Y \Y
Toreturn statusto SQLRETURNSTATUS
client: or SDCPRS ® ® ®
Toreturnrow toresult | SQLTHROW
at or SDCPTH \Y \Y \Y
IMS/APPC APIs
To connect to APPC SQLAPPCCONNECT SWSAPPCCONNECT SDBAPCON SWSAPCON
for IMS: or SDCPAC or SWCPAC
To disconnect from SQLAPPCDISCONNECT | SWSAPPCDISCONNECT | SDBAPDIS SWSAPDIS
APPC for IMS: or SDCPAD or SWCPAD
To receive and wait SQLAPPCRECEIVE SWSAPPCRECEIVE SDBAPRCV SWSAPRCV
from APPC for IMS: | or SDCPAR or SWCPAR
Toperformasendto | SQLAPPCSEND SWSAPPCSEND SDBAPSND SWSAPSND
APPC for IMS: or SDCPAS or SWCPAS
CICS APIs
To establish EXCI SQLEXCICONNECT SWSEXCICONNECT SDBEXCON SWSEXCON
connect: or SDCPEC or SWCPEC
To perform DPL SQLEXCIDPLREQ SWSEXCIDPLREQ SDBEXDPL SWSEXDPL
request using EXCI: or SDCPED or SWCPED
To perform EXCI SQLEXCIINITUSR SWSEXCIINITUSR SDBEXINI SWSEXINI
initusr: or SDCPEI or SWCPEI
To perform EXCI SQLEXCIDISCONN SWSEXCIDISCONN SDBEXDIS SWSEXDIS

disconnect:

or SDCPEL

or SWCPEL

December 1999

Shadow Programming Guide

Host Application APl Function Calls

API Description DIRECT WEB SEF WEB/RX

Web Server Specific APIs

Totransmit datato Web Server ® SWCPSN ® SWSSEND

clients:

To buffer outbound HTTP ® SWCPRE ® SWSRESP

response headers:

To transmit data directly to web SWCPFI SWSFILE

client: ® ®

To provide new URL value: ® SWCPSO ® SWSSET

To provide ameansto issue an ® SWCPWT ® SWSWTO

MV Swriteto operator:

RPC Direct APIs

To access cur rent execution sdcpif

environment information: ® ® ®

To add text messageto trace sdcpmg

browser log: ® ® ®

Toread buffer of datafrom sdcprd

e Q Y Y

To send buffer of datato client: | sdcpwr ® ® ®

General APIs

To get error information: SQLERROR SWSERROR SDBERROR SWSERROR
or SDCPSE or SWCPSE

Toreturn information to ODBC | SQLGETINFO SWSINFO SDBINFO SWSINFO

CALL RPC: or SDCPGI or SWCPGI

Towrite messageto trace SQLTRACEMSG SWSTRACEMSG SDBTRACE SWSTRACE

browser: or SDCPTM or SWCPTM

To dynamically allocate afile: SDBALLOC SWSALLOC SDBALLOC SWSALLOC
or SDCPAL or SWCPAL

To de-allocate datasets: SDBFREE SWSFREE SDBFREE SWSFREE
or SDCPFR or SWCPFR

Tofetch or set transaction run- | SDBVALUE SWSVALUE SDBVALUE SWSVALUE

timevariable values: or SDCPVL or SWCPVL

To saveand restore transaction- | SQLTOKEN SWSTOKEN SDBTOKEN SWSTOKEN

oriented data: or SDCPTK or SWCPTK

To concatenate multiple SDBCONCT SWSCONCT SDBCONCT SWSCONCT

DDNames under a single or SDCPCC or SWCPCC.

DDName.

7-2

Shadow Programming Guide

December 1999

API Description DIRECT WEB SEF WEB/RX

Web Server REXX and SEF only APIs

To clear REXX external data queue: ® SWSClearQueue ® SWSCLEDQ
or SWCPQL

To perform security authorization ® ® SDBECURE SWSECURE

processing:

To serialize usage of resour ces: ® ® ® SWSENQ

“PARSE PULL" operation in Shadow/ SWSGetQueue

REXX: ® or SWCPQG ® ®

To set or display SWS product ® ® SDBPARM SWSPARM

parameter values:

Equiyalent to Sh?dow/REXX “Queue” ® SWSPutQueue ® ®

(not “QUEUED()"): or SWCPQP

Partly equivalent to Shadow/REXX SWSQueryQueue

built-in function “QUEUED()": ® or S\NCPéQ ® ®

To create and write customized SMF ® ® SDBSMF SWSSMF

records:

To transmit out-bound data to web SWSXMIT

server clients: ® ® ®

December 1999

Shadow Programming Guide

Host Application APl Function Calls

The High-Level Language (HLL) Interface

The Shadow Web Server's High-Level Language (HLL) interface isimplemented
using anumber of small glue routines. There is a separate glue routine for each of
the Web Server’'s Application Program Interfaces (APIs). Each glue routine is
actually an alias pointing to asmall routine within the SWCPBC, SWCPAC or
SWCPIC load modules.

Compiling and Linking HLL Application Programs

When high-level language programs are linkage edited, the product’s load library

must be availableto the linkage editor. Calls from a high-level language program’s
object module are resolved by including the NEON-supplied glue routinesin the

final load module built by the linkage editor.

The Shadow Web Server'sload library must be included in the SY SLIB dataset
concatenation whenever user-written web transaction programs are linkage edited.

Each glue routine receives control via standard MV S linkage conventions, and
carries out the work of locating web server internals and then executing the
requested function. When the glue routines are entered, the calling HLL programs
may have been operating in any of the modes:

= AMODE(31) or AMODE(24)
= RMODE(24) or RMODE(ANY)

The glue routines handl e the detail s of switching to the Server's normal
AMODE(31), RMODE(ANY) operational mode. (We strongly recommend that,
if possible, al routines be compiled and linked as AMODE(31), RMODE(ANY).)

NEON-Supplied Source Copy Members

In order to successfully invoke a Web Server API routine, each caller must pro-
vide one or more parameters in the form expected by the server. Three NEON-
supplied sample library members, one for each of the supported languages, con-
tain manifest constants and other data structures which you will need to invokethe
server's API routines.

Samplesfor C, COBOL, and PL/I are available in the SAM P dataset.

Layout of the HLL Reference Pages

Each of the HLL API interface is documented separately. Each reference pageis
laid out in substantially the same format.

s Each HLL reference page contains aleading section which briefly explains
the use of the API interface.

m Thisisfollowed by the Arguments Section which defines each of the
parameters which can be passed to the function. For some Web Server
functions, this section can be further broken down into sub-sections (one for
each of the mgjor sub-functions of the interface).

7-4

Shadow Programming Guide December 1999

The High-Level Language (HLL) Interface

m The Arguments Section describes parameter values using the terminology
given below. The argument type, for each supported language is also shown.
(Notethat for C/370, the NEON-supplied header file contains typedef
statements which define the values shown.)

m Additional details showing how to create and use arguments of the proper
type, areillustrated in the examples for each supported language.

= After the arguments’ section, the return code val ues are explained.

m Finally, thereisan example for each of the supported languages; C, COBOL,
and PL/I.

Note:

All manifest constants shown outside of the COBOL language
examples are given with underbar characters (e.g.

SWE SUCCESS). The corresponding COBOL constant
definitions use the hyphen character wherever underbars are
shown (e.g. SW&- SUCCESS).

Call by Reference

Some compilers employ acall by value mechanism. When subroutines are
invoked using a call by value mechanism, some parameter values are passed
directly to the called program using the 1st-level parameter list area, or a general
purpose registers. Values are frequently returned directly within ageneral purpose
register.

All Shadow Web Server API interface routines expect to be invoked using a call
by reference mechanism, implemented with the standard MV S parameter list for-
mat.

Upon entry to any Web Server API routine, general purpose register 1 must point
to aparameter list composed of 1 to n fullwords. Bit zero of the last fullword
within the parameter list must be set to one.

Each fullword of the parameter list contains an address value referring to the main
storage location containing the actual function argument.

The method for ensuring that call by reference conventions are used for subrou-
tine cals varies by language.

m For C/370 each sub-routine prototype contains the specification:
#pragma linkage(name,0s)

s For COBOL thisisautomatic.

s For PL/I, each API routine is declared as;
DCL NAME ENTRY EXTERNAL OPTIONS(RETCODE, INTER, ASM);

December 1999 Shadow Programming Guide 7-5

Host Application APl Function Calls

Terminology Used in the Reference Pages
The following terminology is used within the HLL API Reference page:

Address

A main-storage address, specified by the low-order 31-bits of afour-byte (32-hbit)
fullword. In the various high-level languages, the term "address’ is generally
equivalent to 'pointer’.

Buffer Area

An arbitrary number of contiguously located bytesin main storage. The size of the
buffer area can be a pre-defined val ue, as specified for the individual API inter-
face. Most buffer areas, however, are user-created and variable in length. Either
the length of the entire buffer, or the length of the data value contained within the
buffer, is specified as an argument to the API function.

Flag-Word

As pertains to the Web Server APIs, afour-byte signed or un-signed integer,
stored within afullword. The storage format, in most cases, isidentical to un-
signed integers, except that the fullword is not processed as an integer value.
Instead, each individual bit position specifies a parameter option value.

Usually manifest constants, defined within the header files, are used to specify the
value of flag-word arguments. These manifest constants can often be added or
logically OR-ed together to form the four-byte flag word.

Fullword

A four-byte storage area, generally adigned on afour-byte boundary. A fullword,
can contain either a storage address or a signed or un-signed binary integer.

Manifest Constant

A value defined within a NEON-supplied header file and used (possibly added or
OR-ed with other constants) as a function call argument.

Depending on the high-level language, manifest constants can be compiler pre-
processor symbols (C and PL/1) or actual program constant data areas (COBOL
and PL/1). Manifest constants can be formed as Flag-word values or as signed or
un-signed integers.

Null-terminated String

Within a buffer area, null terminated strings can often be used to indicate the
actual length of the data value. The end of the value (and by derivation the value
length) is delimited by aone-byte binary zero (X’00"). The value beginsin the first
position of the buffer area (if non-zero), and continues up-to, but not including,
the delimiting binary zero at the end. A zero-length null-terminated string is rec-
ognized when the first byte of the buffer isabinary zero.

7-6

Shadow Programming Guide December 1999

The High-Level Language (HLL) Interface

Signed Integer

As pertains to the Web Server APIs, afour-byte, signed binary integer, stored
within afullword.

Unsigned Integer

As pertains to the Web Server APIs, afour-byte, un-signed binary integer, stored
within afullword.

December 1999

Shadow Programming Guide 7-7

Host Application APl Function Calls

ODBC CALL Host APIs

This section covers the following ODBC CALL Host APIs:

API Description DIRECT WEB SEF WEB/RX
ODBC CALL RPC APIs
To bind columnsfor result set: | SQLBINDCOL

or SDCPBC © © ©
To describe passed parameter: | SQLDESCRIBEPARAM

or SOCPOP © © ©
To access number of SQLNUMPARAMS
parameters: or SDCPNP ® ® ®
Toreset parameters: SQLRESETPARAM

or SOCPRP © © ©
Toreturn statusto client: SQLRETURNSTATUS ®

or SDCPRS

Toreturn row to result set:

SQLTHROW
or SDCPTH ® ® ®

The standard ODBC Host APIs (SQL DescribeParam and SQL ResetParam) sup-
port long parameters without any new or additional programming.

The two-byte length prefix for variable strings will never contain avalue
greater than 32767, nor can it ever be set to a value greater than 32767. This
does not mean that the variable length strings are restricted to alength of
32767 bytes. They can be used to set lengths greater than 32767 (the two-byte
length prefix will contain 32767, if the actual length is greater than 32767)
and it will report the actual length even if it is greater than 32767 (the two-
byte length prefix will contain 32767, if the actual length is greater than
32767).

The actua length can never be greater than the precision for any parameter,
long or otherwise.

Long parameters must be used with parameter markers. Long literals are not
supported.

Long parameters can only be used with NEON stored procedures. They are
not supported using IBM stored procedures.

Long parameters can not be used with M DI stored procedures.

7-8

Shadow Programming Guide December 1999

ODBC CALL Host APIs

SQLBINDCOL (SDCPBC) Function

SQLBINDCOL performs abind column on behaf of an ODBC CALL RPC. This
call is used to bind a column to return sets back to the client. The caller must pro-
vide information, which is used to build an SQLDA describing the result set.

Syntax
The general form for invocation of SQLBINDCOL is:

CALL ’ SDCPBC US| NG STATEMENT- HANDLE
SQL- COLUWN- NUVBER
SQ- G DEFAULT
SQL- SMALLI NT
SQL- PRECI SI ON
SQL- SCALE
SQL- NO NULLS
| D- VALUE
SQL- COLUWN LEN
SQL- COLUWN- NAVE
SQL- COLUWN- NAVE- LEN

CALL Arguments

The SQLBINDCOL function can be called by any ODBC CALL RPC and accepts
the following arguments:

HLL Argument Type
Arg I/0 Description of Argument
C COBOL PL/I

1 LONG PIC FIXED INPUT Statement handle. Since only one host RPC can
S9(5) BIN(31) execute at atime for each host session, thisvalueis
COMP ignored and must be zero.

2 LONG PIC FIXED INPUT Column number of the result data. Columns are
S9(5) BIN(31) numbered from the left, starting with 1.
COMP

3 LONG PIC FIXED INPUT C datatype of column data. Value must be SQL-C-
S9(5) BIN(31) default at thistime. This means that C type must
COMP match SQL type.

4 LONG PIC FIXED INPUT SQL data type of column data. All DB2 SQL data
S9(5) BIN(31) types are supported except for graphic (DBCS) data.
COMP

5 LONG PIC FIXED INPUT Precision of column. Thisvalueis primarily used for
S9(5) BIN(31) decimal and character string data.
COMP

6 LONG PIC FIXED INPUT Scale of column. Thisvalueis primarily used for
S9(5) BIN(31) decimal data.
COMP

December 1999

Shadow Programming Guide 7-9

Host Application APl Function Calls

HLL Argument Type
Arg I/O Description of Argument
C COBOL PL/I
7 LONG PIC FIXED INPUT Indicatesif column can have null values. Possible
S9(5) BIN(31) values are SQL-NO-NULLSand SQL-NULLABLE.
COMP
8 LONG PIC FIXED INPUT Pointer to storage for data. Actual datamust be at this
S9(5) BIN(31) location when SQLTHROW function is called to
COMP send arow.
9 LONG PIC FIXED INPUT Pointer to a fullword which serves as anull indicator
S9(5) BIN(31) for subsequent SQLTHROW call. Before
COMP SQLTHROW function is called to send arow, this
fullword should be set to “-1” if the data for the
column is NULL. Otherwise, it should be set to “0”.
Notice that NULL data is only applicable for DB2. If
you write rpc that accesses non-DB2 data, simply
initialize this fullword to “0”".
10 CHAR* PIC CHAR(X) INPUT Pointer to storage containing column name. Column
X)X name must be a valid DB2 column name.
11 LONG PIC FIXED INPUT Length of column name string. This must be a valid
S9(5) BIN(31) DB2 column name length.
COMP

Return Values

SQLBINDCOL aways sets a signed numeric return code value. Possible values
are:

Return Value

Description

SQL_SUCCESS

The operation succeeded. The specified operation was performed.

SQL_SUCCESS WITH_INFO

The operation succeeded, but a warning was issued. Call
SQLERROR to get warning message.

SQL_NO_DATA_FOUND

Error condition. No data returned.

SQL_ERROR

A parameter validation error was found. The error will be logged to
the wrap-around trace, and is available using the SQLERROR
function.

SQL_INVALID_HANDLE

The connection handle argument is invalid. No error information can
be returned using SQLERROR.

SQL_STILL_EXECUTING

Error condition. Another function is still executing.

SQL_NEED_DATA

Error Condition. The application needs to send parameter data
values.

7-10

Shadow Programming Guide December 1999

ODBC CALL Host APIs

Diagnostics

When SQLBINDCOL returns SQL_ERROR or SQL_SUCCESS WITH_INFO,
an associated SQL STATE value can be obtained by calling SQLERROR. The fol-
lowing table lists the SQL STATE values commonly returned by SQLBINDCOL
and explains each one in the context of this function. The return code associated
with each SQLSTATE value is SQL_ERROR, unless noted otherwise.

SQLSTATE Error Description
SS1000 General error Invalid parameter list detected.
S1002 Invalid column number Column number is zero.
S1002 Invalid column number Column number exceeds maximum value.
S1010 Function sequence error Result set has already been started.
PL/I Example
% NCLUDE SPCPHD
DAL ST PTIR [* STATEMENT HANDLE */
DAL ID FIXED BIN(15); /* 1D VALUE */
DAL CBI D FI XED BI N(31); /* LENGTH CF THE I D */
DAL FBOO FI XED BIN(31) INT(0); /* LI TERAL VALUE */
DAL FBO1 FI XED BIN(31) INT(1); /* LI TERAL VALUE */
CALL SQ.BI NDOOL(ST, [* PASS THE STATEMENT HANDLE */
FBO1, /* COLUW NUMBER */
SQ@_C DEFAULT, /* REQU RED C DATA TYPE */
SQ_SMALLI NT, /[* USE A TWO BYTE | NTEGER */
FBOO, /* PREC SI ON DCESN T MATTER */
FBOO, /* SCALE DCESN T MATTER */
SQL_NO NULLS, /* DATA | S NEVER NULL */
I D, /* 1D FIl ELD ADDRESS */
CBl D, /* 1 D LENGTH ADDRESS */
1D, /* COLUW NAME STR NG */
FB02) ; /* COLUW NAME LENGTH */
RC = PLIRETV(); /[* GET THE RETURN CCDE */

December 1999 Shadow Programming Guide 7-11

Host Application APl Function Calls

C Example
SDWIRD chpanm /* length of the parameter nunber*/
RC=SQ.BI NDOOL(&st /* pass the statenment handl e */
1, /* col umm nunber */
SQ@_C DEFAULT, /* required C data type */
SQ@_SMALLINT, /* use a two-byte integer */
0, /* precision doesn't natter */
0, /* scal e doesn't matter */
SQ@L_NO NULLS, /* data is never NUL */
&panm /* paraneter nunber address */
&bpanm /* paraneter nunber | ength address*/
“Number”, f* column name string *
SQL_NTS); [* string is null-terminated */
if (rc = SQL_SUCCESS && /* not successful execution? */

rc'=SQL_SUCCESS_ WITH_INFO)/* not success with info? *

COBOL Example

77 SQL-COLUMN-NUMBER PIC S9(5) COMP VALUE 1.
77 SQL-C-DEFAULT PIC S9(5) COMP VALUE IS 99.
77 SQL-SMALLINT PIC S9(5) COMP VALUE IS 5.
77 SQL-PRECISION PIC S9(5) COMP VALUE 0.

77 SQL-SCALE PIC S9(5) COMP VALUE 0.

77 SQL-NO- NULLS PIC S9(5) COMP VALUE IS 0.
77 SQL-COLUMN- LEN PIC S9(5) COMP VALUE 1.

77 COLUMN-NULL-INDICATOR PIC S9(5) COMP VALUE 0.

77 SQL-COLUMN-NAME PIC X(10) VALUE 'ID..

77 SQL-COLUMN-NAME-LEN PIC S9(5) COMP VALUE 2.

CALL 'SDCPBC' USING STATEMENT-HANDLE
SQL-COLUMN-NUMBER
SQL-C-DEFAULT

SQL-SMALLINT

SQL-PRECISION

SQL-SCALE

SQL-NO-NULLS

ID-VALUE

COLUMN-NULL-INDICATOR
SQL-COLUMN-NAME
SQL-COLUMN-NAME-LEN.

7-12

Shadow Programming Guide December 1999

ODBC CALL Host APIs

SQLDESCRIBEPARAM (SDCPDP) Function

SQLDESCRIBEPARAM isused to obtain information about a parameter passed
from the client to the host.

I> Note:

The client can pass parameters to the host using both parameter
markers (?) and parameter literals. Both types of client parameters
are treated the same way on the host.

Syntax
The general form for invocation of SQLDESCRIBEPARAM is:

CALL ’* SDCPDP US| NG STATEMENT- HANDLE
SQL- PARAM NUVBER
SQL- DATA- TYPE
SQL- PRECI SI ON
SQL- SCALE
SQL- NULLABLE- TYPE
SQL- PARAM TYPE
SQL- PARAM ADDRESS
SQL- PARAM LENGTH

CALL Arguments

The SQLDESCRIBEPARAM function can be called by any ODBC CALL RPC
and accepts the following arguments:

HLL Argument Type
Arg I/O Description of Argument
C COBOL PL/I

1 LONG PIC FIXED INPUT Statement handle. Since only one host RPC can
S9(5) BIN(31) execute at atime for each host session, thisvalueis
ComMP ignored and must be zero.

2 LONG PIC FIXED INPUT Parameter number. All parametersincluding literals
S9(5) BIN(31) are numbered from the left starting at 1.00
COMP

3 LONG PIC FIXED OUTPUT SQL datatype of parameter data. All DB2 SQL data
S9(5) BIN(31) types are supported except for graphic (DBCS) data.
COMP

4 LONG PIC FIXED OUTPUT Precision of parameter. Thisvalueis primarily used
S9(5) BIN(31) for decimal and character string data.
COMP

5 LONG PIC FIXED OUTPUT Scale of parameter. Thisvalueis primarily used for
S9(5) BIN(31) decimal data.
COMP

6 LONG PICSO(5) FIXED OUTPUT Indicates whether or not parameter alows null
COMP BIN(31) values.

December 1999

Shadow Programming Guide 7-13

Host Application APl Function Calls

HLL Argument Type
Arg I/O Description of Argument
C COBOL PL/I
7 LONG PIC FIXED OUTPUT Indicates input/output type of parameter. Parameters
S9(5) BIN(31) can be used to send data to host (input), receive data
COMP from host (output), or both (input/output).
8 LONG PIC FIXED OUTPUT Pointer to storage for parameter. Parameter can be
S9(5) BIN(31) accessed and updated at this storage location.
COMP
9 LONG PIC FIXED OUTPUT Actua length of column. Length will be same as
S9(5) BIN(31) precision except for variable length fields (character
COMP and binary). For variable length fields, length will be
current length. For all types, thisfield can contain
SQL-NULL-DATA.
Return Values
SQLDESCRIBEPARAM aways sets a signed numeric return code value. Possi-
ble values are:
Return Value Description
SQL_SUCCESS The operation succeeded. The specified operation was performed.
SQL_SUCCESS WITH_INFO The operation partially succeeded. This return code value is set
when the returned error message text has been truncated.
SQL_NO _DATA_FOUND Indicates that the DDNAME, DSNAME or PDS member nameis
not valid because the dataset or member does not exist, or because
the dataset is being held exclusively by some other address space.
SQL_ERROR Indicates that the DDNAME, DSNAME or PDS member nameis
not valid because the dataset or member does not exist, or because
the dataset is being held exclusively by some other address space.
SQL_INVALID_HANDLE The connection handle argument isinvalid. No error information can
be returned using SQLERROR.
SQL_STILL_EXECUTING Error condition. Another function is still executing.
SQL_NEED_DATA Error Condition. The application needs to send parameter data
values.
Diagnostics
When SQLDESCRIBEPARAM returns SQL_ERROR or
SQL_SUCCESS WITH_INFO, an associated SQLSTATE value can be obtained
by calling SQLERROR. The following table lists the SQL STATE values com-
monly returned by SQL DESCRIibeparam and explains each one in the context of
7-14 Shadow Programming Guide December 1999

ODBC CALL Host APIs

this function. The return code associated with each SQLSTATE valueis
SQL_ERROR, unless noted otherwise.

SQLSTATE Error Description
SS1000 Genera error Invalid parameter list detected.
S1000 Genera error No room in buffer for column description.
S1004S1002 SQL data type out of range SQL datatypeisinvalid.
S1009 Invalid argument value Column name address not set.
S1009 Invalid argument value Column data length address not set.
S1009 Invalid argument value Column data address is not set.
S1090 Invalid string or buffer length Column name length isinvalid.
S1090 Invalid string or buffer length Column name length is not valid.
S1094 Invalid scale value Decimal scalevaueisinvalid.
S1099 Nullable type out of range Nullable status value isinvalid.
S1104S1002 Invalid precision value Decimal precision valueisinvalid.
S1104S1002 Invalid precision value String or binary precision valueisinvalid.
S1C00S Driver not capable Datatypeisnot SQL_C DEFAULT.
PL/I Example
DL FBO1 FIXED BIN(31) INT(1);/* LITERAL VALUE */
DAL SQPATY FI XED BI N(31); /* SQ_DATA TYPE */
DAL SQ@PRSN FI XED Bl N(31); /* SQ_PREA SI QN */
DAL SQNUTY FI XED Bl N(31); /* SQL_NJULLABLE TYPE */
DAL SEBCAL FI XED BI N 31); /* SQ_SCALE */
DAL SQPATY FI XED BI N(31); /* SQ_PARAM TYPE */
DAL SQPAAD PTR /* SQ_PARAM ADDRESS */
DAL SQPALN FI XED BI N 31); /* SQ_PARAM LENGTH */
CALL SQ DESCR BEPARAM ST, /* PASS THE STATEMENT HANDLE */
FBO1, /* PARAMETER NUMVBER */
SCDATY, /* REQU RED C DATA TYPE */
SQPRSN, /* USE A TWD BYTE | NTECER */
SCBCAL,
SQNUTY,
SCPATY,
SCPAAD,
SQPALN) ;
RC = PLIRET\(); /* GET THE RETURN CCDE */
December 1999 Shadow Programming Guide 7-15

Host Application APl Function Calls

C Example

SDWIRD pasq; /* paraneter SQ type */
UDWCRD papr ; /* paraneter precision */
SDWORD pasc; /* paraneter scale */
SDWORD panl ; /* paraneter nullabl e status */
SDWIRD paty; /* paraneter type val ue */
PTR paad; /* paraneter address */
SDWORD pal n; /* paraneter |ength */
rc = SQ@Descri bePar an{ &st, /* pass the statenent handl e */

i +1, /* paraneter nunber */

&pasq, /* address of the SQ type field */

&papr, /* address of the precision field/

&pasc, /* address of the scale field */

&danl, /* address of the nullabl e status*/

&paty, /* address of the parameter type */

&paad, /* address of the paramneter */

&pal n); /* address of paraneter length */

if (rc != SQ_SUCCESS & /* not successful execution? */
rc !'= SQ@ SUCCESS WTH INFO /* not success with info? */

COBOL Example

77 STATEMENT- HANDLE USACGE IS PO NTER

77 SQ.- PARAM NUMBER Pl C S9(5) OCOWP VALLE 1.
77 SQ.- DATA- TYPE Pl C S9(5) CGOWP VALLE 0.
77 SQ.- PREA SI ON Pl C S9(5) OGOWP VALLE 0.
77 SQ.- SCALE Pl C S9(5) OGOWP VALLE 0.
77 SQ- NULLABLE- TYPE Pl C S9(5) OGOWP VALLE 0.
77 SQ.- PARAM TYPE Pl C S9(5) OCOWP VALLE 0.
77 SQ.- PARAM ADDRESS USACGE | S PO NTER

77 SQ.- PARAM LENGTH Pl C S9(5) OGOWP VALLE 0.

CALL ’* SDCPDP US| NG STATEMENT- HANDLE
SQL- PARAM NUMBER

SQL- DATA- TYPE

SQL- PRECI SI ON

SQL- SCALE

SQL- NULLABLE- TYPE

SQL- PARAM TYPE

SQL- PARAM ADDRESS

SQL- PARAM LENGTH

7-16 Shadow Programming Guide December 1999

ODBC CALL Host APIs

SQLNUMPARAMS (SDCPNP) Function

SQLNUMPARAMS is used to obtain the number of parameters passed from the
client to the host. This value will be zero or greater.

I> Note:

The client can pass parameters to the host using both parameter
markers (?) and parameter literals. Both types of client parameters
are treated the same way on the host.

Syntax
The general form for invocation of SQLNUMPARAMS is:

CALL * SDCPNP USI NG STATEMENT- HANDLE SQL- PARAM COUNT

CALL Arguments

The SQLNUMPARAMS function can be called by any ODBC CALL RPC and
accepts the following arguments:

HLL Argument Type
Arg I/O Description of Argument
C COBOL PL/I
1 LONG PIC FIXED INPUT Statement handle. Since only one host RPC can
S9(5) BIN(31) execute at atime for each host session, thisvalueis
COMP ignored and must be zero.
2 LONG PIC FIXED OUTPUT Number of RPC parameters passed to host from
S9(5) BIN(31) client. Thisargument is a pointer to a signed four-
COMP byte integer.

Return Values

SQLNUMPARAMS aways sets a signed numeric return code value. Possible val-
ues are:

Return Value

Description

SQL_SUCCESS

The operation succeeded. The specified operation was performed.

SQL_SUCCESS WITH_INFO

The operation partially succeeded. This return code
valueis set when the returned error message text has
been truncated.

SQL_NO_DATA_FOUND

Indicates that the DDNAME, DSNAME or PDS
member nameis not valid because the dataset or
member does not exist, or because the dataset is being
held exclusively by some other address space.

December 1999

Shadow Programming Guide 7-17

Host Application APl Function Calls

Return Value Description

SQL_ERROR A parameter validation error was found. The error will
be logged to the wrap-around trace, and is available
using the SQLERROR function.

SQL_INVALID HANDLE The connection handle argument isinvalid. No error information can
be returned using SQLERROR.

SQL_STILL_EXECUTING Error condition. Another function is still executing.

SQL_NEED_DATA Error Condition. The application needs to send parameter data
values.

Diagnostics

When SQLNUMPARAMS returns SQL_ERROR or

SQL_SUCCESS WITH_INFO, an associated SQL STATE value can be obtained
by calling SQLERROR. The following table lists the SQL STATE values com-
monly returned by SQLNUMPARAMS and explains each one in the context of
this function. The return code associated with each SQLSTATE valueis
SQL_ERROR, unless nhoted otherwise.

SQLSTATE Error Description
SS1000 Genera error Invalid parameter list detected.
S1009S Invalid argument value Parameter count address not set.
PLI/I Example
DCL ST PTR, /* STATEMENT HANDLE */
DCL SQPACN FI XED BI N(31); /* SQL_PARAMATER _CCOUNT */
CALL SQNUMPARANMS(ST, /* PASS THE STATEMENT HANDLE */
SQPACN) ; /* PARAMETER COUNT */
RC = PLIRETW() ; /* CGET THE RETURN CCDE */
C Example
rc = S@LNunPar ans(&st, &pacn); /* get the nunber of paraneters*/
if (rc != SQ_SUCCESS & /* not successful execution? */
rc !'= SQ@ SUCCESS WTH INFO /* not success with info? */
COBOL Example
77 STATEMENT- HANDLE USAGE | S PO NTER
77 SQ- PARAM COUNT Pl C S9(5) OOWP VALLE 0.
CALL ' SDCPNP' USI NG STATEMENT- HANDLE SQ._- PARAM COUNT.
7-18 Shadow Programming Guide December 1999

ODBC CALL Host APIs

SQLRESETPARAM (SDCPRP) Function

SQLRESETPARAM isused to reset the length of a parameter passed from the cli-
ent to the host.

I> Note:

The client can pass parameters to the host using both parameter
markers (?) and parameter literals. This routine can only be used
with parameter markers.

In practice, thisroutine is really only used to change null parameters to non-null
parameters and vice versa.

Syntax
The general form for invocation of SQLRESETPARAM is.
RETOCDE SQLRESETPARAM (hstnt, rgbMsgText, cbMsgText, fQotion)

CALL Arguments

The SQLRESETPARAM function can be called by any ODBC CALL RPC and
accepts the following arguments:

HLL Argument Type
Arg I/O Description of Argument
C COBOL PL/I
1 LONG PIC FIXED INPUT Statement handle. Since only one host RPC can
S9(5) BIN(31) execute at atime for each host session, thisvalueis
COMP ignored and must be zero.
2 LONG PIC FIXED INPUT Parameter number. All parametersincluding literals
S9(5) BIN(31) are numbered from the left starting at 1.
COMP
3 LONG PIC FIXED INPUT New parameter length value. Parameter becomes null
S9(5) BIN(31) if new valueis SQL-NULL-DATA. Parameter
COMP becomes NON-NULL if new value is not SQL-
NULL-DATA.

December 1999

Shadow Programming Guide 7-19

Host Application APl Function Calls

Return Values

SQLRESETPARAM aways sets a signed numeric return code value. Possible
values are:

Return Value

Description

*SQL_SUCCESS

The operation succeeded. The specified operation was performed.

SQL_SUCCESS WITH_INFO

The operation partially succeeded. This return code
valueis set when the returned error message text has
been truncated.

SQL_NO_DATA_FOUND

Indicates that the DDNAME, DSNAME or PDS
member nameis not valid because the dataset or
member does not exist, or because the dataset is being
held exclusively by some other address space.

SQL_ERROR

A parameter validation error was found. The error will
be logged to the wrap-around trace, and is available
using the SQLERROR function.

SQL_INVALID_HANDLE

The connection handle argument isinvalid. No error information can
be returned using SQLERROR.

SQL_STILL_EXECUTING

Error condition. Another function is still executing.

SQL_NEED_DATA

values.

Error Condition. The application needs to send parameter data

Diagnostics

When SQLRESETPARAM returns SQL_ERROR or

SQL_SUCCESS WITH_INFO, an associated SQLSTATE value can be obtained
by calling SQLERROR. The following table lists the SQL STATE values com-
monly returned by SQLRESETPARAM and explains each one in the context of
this function. The return code associated with each SQLSTATE valueis
SQL_ERROR, unless noted otherwise.

SQLSTATE Error Description
SS1000 General error Invalid parameter list detected.
S1000 General error Trace message construction failed.
S1000 General error Invalid option value detected.
S1009S Invalid argument value M essage area address not set.
S1009 Invalid argument value Trace message insertion failed.
S1090S1002 Invalid string or buffer length Message arealengthisinvalid.
S1090 Invalid string or buffer length Message text length is not valid.
7-20 Shadow Programming Guide December 1999

ODBC CALL Host APIs

SQLRETURNSTATUS (SDCPRS) Function

SQLRETURNSTATUS is used to return status information to the client from an
ODBC CALL RPC. The status data determines the return code from the SQLEX-
ECDIRECT, SQLPREPARE, or SQLEXECUTE function that started the RPC.
The client application can retrieve the status data (message and native code) by
calling SQLERROR.

The actual return code returned to the ODBC application will be SQL-SUCCESS-
WITH-INFO if this routine provides a positive return code and SQL-ERROR if
this routine provides a negative return code. The return code provided by this rou-
tineis returned to the client application as the native error code (see the SQLER-

ROR function description in the ODBC programmer’s reference manual, not the

SQLERROR function description here).

Syntax

The general form for invocation of SQLRETURNSTATUS is:

CALL ' SDCPAS CONNECTI ON- HANDLE MESSAGE LENGIH ERRCR- OCDE

CALL Arguments

The SQLRETURNSTATUS function can be called by any ODBC CALL RPC and
accepts the following arguments:

HLL Argument Type
Arg I/0 Description of Argument
C COBOL PL/I
1 LONG PIC FIXED INPUT Statement handle. Since only one host RPC can
S9(5) BIN(31) execute at atime for each host session, thisvalueis
COMP ignored and must be zero.
2 CHAR* PICX(X) CHAR(X) INPUT Address of message text to be returned. Text must be
set before function is called.
3 LONG PIC FIXED OUTPUT Length of message text to be returned. Vaue can be
S9(5) BIN(31) an actual length or can be specified as SQL-NTS if
COMP the message text is NULL-TERMINATED.
4 LONG PIC FIXED OUTPUT Native error code. If value is negative, client return
S9(5) BIN(31) codewill be SQL-ERROR. If valueis positive, client
COMP return code will be SQL-SUCCESS-WITH-INFO.
Thisfield must not be zero.

December 1999

Shadow Programming Guide 7-21

Host Application APl Function Calls

Return Values
SQLRETURNSTATUS always sets a signed numeric return code value. Possible

values are:

Return Value Description

SQL_SUCCESS The operation succeeded. The specified operation was performed.

SQL_SUCCESS WITH_INFO The operation partially succeeded. This return code
valueis set when the returned error message text has
been truncated.

SQL_NO_DATA_FOUND Indicates that the DDNAME, DSNAME or PDS
member name is not valid because the dataset or
member does not exist, or because the dataset is being
held exclusively by some other address space.

SQL_ERROR A parameter validation error was found. The error will
be logged to the wrap-around trace, and is available
using the SQLERROR function.

SQL_INVALID HANDLE The connection handle argument isinvalid. No error information can
be returned using SQLERROR.

SQL_STILL_EXECUTING Error condition. Another function is still executing.

SQL_NEED_DATA Error Condition. The application needs to send parameter data
values.

Diagnostics

When SQLRETURNSTATUS returns SQL_ERROR or

SQL_SUCCESS WITH_INFO, an associated SQL STATE value can be obtained
by calling SQLERROR. The following table lists the SQL STATE values com-
monly returned by SQL ReturnStatus and explains each one in the context of this
function. The return code associated with each SQLSTATE valueis
SQL_ERROR, unless noted otherwise.

SQLSTATE Error Description

SS1000 Genera error Invalid parameter list detected.
S1000 Genera error Invalid native error code detected.
S1009S Invalid argument value M essage area address not set.
S1090S1002 Invalid string or buffer length | Message arealength isinvalid.
S1090 Invalid argument value Message text length is not valid.

7-22 Shadow Programming Guide December 1999

ODBC CALL Host APIs

PL/I Example

DAL ON PTR
DOL TRVG CHAR(256);
DOL NAER FI XED BI N(31);

CALL SQRETURNSTATUS(N
TRM3
SQ_NTS,
NAER) ;
RC = PLIRETV();

C Example

SDWORD naer;

rc = SQReturnStatus(é&en,
trng,
SQ_NTS,

naer) ;

COBOL Example

77 CONNECTI ON- HANDLE

77 TRACE- MESSAGE- AREA

77 SQL-NTS

77 NATI VE- ERRCR- OCDE- AREA

/*
/*
/*

/*
/*
/*
/*
/*

/*

/*
/*
/*
/*

CONNECTI ON HANDLE */
TRACE MESSAGE AREA */
NATI VE ERRCR CCDE AREA */
CET SOVE | NFCRVATI ON */
TRACE MESSAGE AREA */

STRING | S NULL- TERM NATED */
PASS THE NATI VE ERRCR OCDE*/

GET THE RETURN QCDE */
native error code area */
get some information */
trace nessage area */

string is null-ternmnated */
pass the native error code*/

USAGE | S PQ NTER

Pl C X(256) VALUE |'S SPACES.
Pl C S9(5) COWP VALLE IS - 3.
Pl C S9(5) COWP VALUE O.

December 1999

Shadow Programming Guide

7-23

Host Application APl Function Calls

SQLTHROW (SDCPTH) Function

SQLTHROW is used to send arow from the host ODBC call RPC back to the cli-
ent.

Note:
One or more columns must be bound before this routineis called.

SQLTHROW is called for each row in the result set. When populating the result
set, SQLTHROW is called with a parameter of SQL-THROW-ROW. Once the
result set is populated and you wish to send the result to the client, SQLTHROW
is called once again with a parameter of SQL-THROW-DONE.

Syntax
The general form for invocation of SQLTRHOW is:
CALL * SDCPTH STATEMENT- HANDLE MESSACGE LENGTH THROW CPTI ON

CALL Arguments

The SQLTHROW function can be called by any ODBC CALL RPC and accepts
the following arguments:

HLL Argument Type
Arg I/O Description of Argument
C COBOL PL/I
1 LONG PIC FIXED INPUT Statement handle. Since only one host RPC can
S9(5) BIN(31) execute at atime for each host session, thisvalueis
ComMP ignored and must be zero.
2 LONG PIC FIXED INPUT Top of operation needed. Thisvalueis used to
S9(5) BIN(31) indicatethat row is being provided or that result set is
COMP complete.

Return Values

SQLTHROW aways sets a signed numeric return code value. Possible values are:

Return Value

Description

SQL_SUCCESS

The operation succeeded. The specified operation was performed.

SQL_SUCCESS WITH_INFO

The operation partially succeeded. This return code
valueis set when the returned error message text has

been truncated.

SQL_NO_DATA_FOUND

Indicates that the DDNAME, DSNAME or PDS
member nameis not valid because the dataset or
member does not exist, or because the dataset is being
held exclusively by some other address space.

7-24

Shadow Programming Guide

December 1999

ODBC CALL Host APIs

Return Value

Description

SQL_ERROR A parameter validation error was found. The error will
be logged to the wrap-around trace, and is available
using the SQLERROR function.

SQL_INVALID HANDLE The connection handle argument isinvalid. No error information can

be returned using SQLERROR.

SQL_STILL_EXECUTING

Error condition. Another function is still executing.

SQL_NEED_DATA

values.

Error Condition. The application needs to send parameter data

Diagnostics

When SQLTHROW returns SQL_ERROR or SQL_SUCCESS WITH_INFO, an
associated SQL STATE value can be obtained by calling SQLERROR. The fol-
lowing table lists the SQL STATE values commonly returned by SQLThrow and
explains each one in the context of this function. The return code associated with
each SQLSTATE value is SQL_ERROR, unless noted otherwise.

SQLSTATE Error Description

SS1000 Genera error Invalid parameter list detected.

S1000S Genera error Invalid option value detected.

S1000 Genera error Null data specified for a non-null column.
S1000 Generd error Maximum row count limit has been reached.
S1001 Memory allocation failure Buffer space alocation failed.

S1010S1002 Function sequence error Result set has already been completed.
24000 Invalid cursor state No columns have been bound so far.

December 1999

Shadow Programming Guide 7-25

Host Application APl Function Calls

PL/I Example

DCL ST PTR [* STATEMENT HANDLE */

CALL SQ.THRON ST, /* PASS THE STATEMENT HANDLE*/
SQ_THRON ROW; /* CPTION VALUE */

RC = PLIRETV() ; /* GET THE RETURN CCDE */

C Example

rc = SQThrow &st, [* pass the statement handl e*/
SQA_THRON ROW ; /* option val ue */

if (rc !'= SQ@Q_SUCCESS &X /* not successful execution?*/

rc !'=SQ@Q SUCCESS WTH INFO /* not success with info? */

COBOL Sample

77 STATEMENT- HANDLE USACE | S PO NTER
77 SQ- THRON DONE PIC S9(5) OOMP VALLE IS 2.

CALL ' SDCPTH USI NG STATEMENT- HANDLE SQL- THROW DONE.

7-26 Shadow Programming Guide December 1999

IMS/APPC APIs

IMS/APPC APIs

Note:
In order to use these APIs, you need the IMS Transaction Server.

If you want to write an RPC to invoke atransaction, a sampleis provided in the
NEON SV040100. SAVP dataset, member SDCOIMAP. ThissampleisaODBC
CALL RPC and is executed in the same fashion as the SHADOW _IMS RPC.
(Please see the Shadow Direct User’'s Guide regarding ODBC CALL RPCs.)

A sample Visual Basic 4.0 program that demonstrates the use of the IMS Transac-
tion Server for ODBC is shipped on the CD-ROM in the Shadowcd/samples/vb4/
imsappc directory. This sample demonstrates the use of the Parts application that
is shipped with IMS. It also allows for other transactions to be executed. Depend-
ing on your site, the callsto SHADOW _IMS may need to be modified.

The following API call functions, implemented by Shadow OS/390 Web Server
and ShadowDirect Server, include those for APPC connections between Transac-
tion Server for IMSand IMS, V4.1 and above, as well as APPC connections via
REXX-language interfaces.

This section covers the following IMS/APPC APIs:

API Description DIRECT WEB SEF WEB/RX
IMS/APPC APIs

To connect to APPC SQLAPPCCONNECT SWSAPPCCONNECT SDBAPCON SWSAPCON
for IMS: or SDCPAC or SWCPAC

To disconnect from

SQLAPPCDISCONNECT | SWSAPPCDISCONNECT or | SDBAPDIS SWSAPDIS

APPC for IMS: or SDCPAD SWCPAD

Toreceive and wait SQLAPPCRECEIVE SWSAPPCRECEIVE SDBAPRCV SWSAPRCV
from APPC for IMS: or SDCPAR or SWCPAR

Toperformasendto | SQLAPPCSEND SWSAPPCSEND SDBAPSND SWSAPSND
APPC for IMS: or SDCPAS or SWCPAS

December 1999

Shadow Programming Guide 7-27

Host Application APl Function Calls

High-

Level Language Interface

SQOLAPPCCONNECT (SDCPAC) or
SWSAPPCCONNECT (SWCPAC) Function

Can be used in Shadow/REXX.

Can be used from other REXX interpreters.

HLL entry point name is SDCPAC/SWCPAC.

This APl function call:

s Connectsto IMS.
m Sendsatransaction for IMS to execute and receive data from the transaction.

Syntax
The general form for invocation of SDCPAC/SWCPAC is:

set sql-appc-type-ins to true.

set atb-security-none to true.

CALL ' SDCPAC/ SWIPAC US| NG STATEMENT- HANDLE
SQ.- APPG- TYPE
TP- NAMVE
TP- NAMVE- LENGTH
PARTNER- LU NAME
ATB- SEQR TY
OCONVERSATI ON- 1 D
SEND- LENGTH
SEND- BUFFER
REQUESTED- LENGTH
RECE! VE- BUFFER
ATB- RETCCDE
LOCAL LUNAME
MODE NAME
SYMBCLI C DESTI NATI ON NAME
USER D
PASSWORD
PRCFI LE
ATB- DATA- REC\VD
ATB- SEND- TYPE
ATB- SYNG LEVEL
CONVERSATI ON TYPE

CALL Arguments

The SQLAPPCCONNECT/SWSAPPCONNECT (SWCPAC/SDCPAC) function
arguments are described in the following table. All parameters are required.

7-28

Shadow Programming Guide December 1999

IMS/APPC APIs

HLL Argument Type

Arg I/0 Description of Argument
C COBOL PL/I
1 LONG PIC FIXED INPUT Statement Handle. Currently ignored however, it
S9(9) BIN(31) must contain zeros.
COMP
2 LONG PIC FIXED INPUT IMS Call type:
S9(9) BIN(31) + SWSAPPC-TYPE-IMS for non-conversa-
COMP tional IMS transactions.
e SWSAPPC-TYPE-IMSCONYV for conversa-
tional IMS transactions.
3 CHAR* PIC CHAR(64) | INPUT IMS Transaction Name. A field containing the name
X(64) of an IMS Transaction Code.
4 LONG PIC FIXED INPUT IMS Transaction Name length.
S9(9) BIN(31)
COMP
5 CHAR* PIC CHAR(17) | INPUT Partner LU Name. The APPC LU Name of the IMS
X(17) System.
6 LONG PIC FIXED INPUT Security Type:
S9(9) BIN(31) . CM_SECURITY_NONE to omit access secu-
COMP rity information
¢ CM_SECURITY_SAME to use the UserlD
and security profile of the user that initiated the
request.
¢ CM_SECURITY_PROGRAM to use the Use-
rID and security profile supplied by the pro-
gram.
7 CHAR* PIC CHAR(8) OUTPUT Conversation ID of the APPC Call.
X(8)
8 LONG PIC FIXED INPUT Length of data to be sent.
S9(5) BIN(31)
COMP
9 CHAR* PIC CHAR INPUT Input buffer. The input buffer is comprised of a 2-
X(2-32704) | (2-32704) byte prefix containing the binary length of the buffer
data followed by the IMS Message Input Descriptor
(MID) data.
10 LONG PIC FIXED OUTPUT Output buffer length.
S9(9) BIN(31)
COMP
11 CHAR* PIC CHAR OUTPUT Output buffer. The output buffer is comprised of a 2-
X(2-32704) | (2-32704) byte prefix containing the binary length of the buffer
data followed by the IMS Message Output Descriptor
(MOD) data.
12 LONG PIC FIXED OUTPUT Return Code.
S9(9) BIN(31)
COMP

December 1999

Shadow Programming Guide

7-29

Host Application APl Function Calls

HLL Argument Type
Arg I/O Description of Argument
C COBOL PL/I

13 CHAR* PIC X(8) CHAR(8) INPUT Local LU Name. Specifies the name of alocal LU
from which the caller’s allocate request is to
originate. Thisis provides the ability to associate a
transaction request with a particular LU name.

Note: Optional parameter. If used, it requires the use
of Mode Name, Symbolic Partner LU Name, User
ID, Password and Security Profile be coded.

14 CHAR* PIC X(8) CHAR(8) INPUT Mode Name. Specifies the Mode name designating
the network properties for thelocal LU Name.

Note: Optional parameter. If used, it requires the use
of Local LU Name, Symbolic Partner LU Name,
User ID, Password and Security Profile be coded.

15 CHAR* PIC X(8) CHAR(8) INPUT Symbolic Name. Specifies the symbolic name
representing the IMS APPC LU Name, Mode Name,
Transaction Name. The symbolic destination name
must match that of an entry in the side information
dataset. If you specify any pass any of the parameters
(Local LU Name, Mode Name or Transaction
Name), these will override the information retrieved
and used to initialize the characteristics of the
conversation.

Note: Optional parameter. If used, it requires the use
of Local LU Name, Mode Name, User 1D, Password
and Security Profile.

16 CHAR* PIC X(10) CHAR(10) | INPUT User ID. The Partner LU uses this value and the
Password to validate the identity of the end-user that
initiated the request.

Note: Optional parameter. If used, it requires the use
of Local LU Name, Mode Name, Symbolic Partner
LU Name, Password and Security Profile.

17 CHAR* PIC X(10) CHAR(10) | INPUT Password. The Partner LU uses this value and the
User ID to validate the identity of the end-user that
initiated the request.

Note: Optional parameter. If used, it requires the use
of Local LU Name, Mode Name, Symbolic Partner
LU Name, User ID and Security Profile.

18 CHAR* PIC X(10) CHAR(10) | INPUT Security Profile. Specifies additional security
information that can be used to determine what
partner programs the local program can access.

Note: Optional parameter. If used, it requires the use
of Local LU Name, Mode Name, Symbolic Partner
LU Name, User ID and Password.

7-30 Shadow Programming Guide December 1999

IMS/APPC APIs

HLL Argument Type

Arg I/O Description of Argument
C COBOL PL/I
19 LONG PIC FIXED OUTPUT Data Type Received. Specifies the action taken to

S9(9) BIN(31) receive the output data.

ComP « CM_NO_DATA_RECEIVED specifies that no
additional data is to be sent to the Partner LU,
and the data can be buffered until a sufficient
quantity is accumulated.

¢ CM_DATA_RECEIVED specifies that no
additional data is to be sent to the Partner LU,
and the data is to be sent immediately.

¢« CM_COMPLETE_DATA_RECIEVED spec-
ifies that the data is to be sent immediately along
with a request for confirmation.

e CM_INCOMPLETE_DATA_RECEIVED
specifies that the data is to be sent immediately
along with send control of the conversation.

Note: Optional parameter. If used, it requires that

placeholders be specified for Local LU Name, Mode

Name, Symbolic Partner LU Name, User ID,

Password and Security Profile.

20 LONG PIC FIXED INPUT Data Type Sent. Specifies the action to take once the

S9(9) BIN(31) APPC Conversation is established.

COMP

¢ CM_BUFFER_DATA specifies that no addi-
tional data is to be sent to the Partner LU, and
the data can be buffered until a sufficient quan-
tity is accumulated.

¢ CM_SEND_AND_FLUSH specifies that no
additional data is to be sent to the Partner LU,
and the data is to be sent immediately.

e CM_SEND_AND_CONFIRM specifies that
the data is to be sent immediately along with a
request for confirmation.

¢ CM_SEND_PREP_TO_RECEIVE specifies
that the data is to be sent immediately along
with send control of the conversation.

¢ CM_SEND_AND_DEALLOCATE specifies
that the data is to be sent immediately along
with a deallocation notification.

Note: Optional parameter. If used, it requires that
placeholders be specified for Local LU Name, Mode
Name, Symbolic Partner LU Name, User ID,
Password and Security Profile.

December 1999

Shadow Programming Guide 7-31

Host Application APl Function Calls

HLL Argument Type
Arg I/O Description of Argument
C COBOL PL/I
21 LONG PIC FIXED INPUT Synchronization Level. Specifies whether or not
S9(9) BIN(31) confirmation processing will be performed on this
COMP conversation.
¢ CM_NONE— no confirmation processing is
required for this conversation.
¢ CM_CONFIRM — confirmation processing is
required for this conversation.
Note: Optional parameter. If used, it requires that
placeholders be specified for Local LU Name, Mode
Name, Symbolic Partner LU Name, User ID,
Password, Security Profile and Data Type Sent.
22 LONG PIC S9(9) | FIXED INPUT Conversation Type.
COMP BIN (31)

Return Values

SQLAPPCCONNECT/SWSAPPCCONNECT always sets a signed numeric
return code value. Possible values are;

Return Value Description

SWS SUCCESS, The operation succeeded. The specified operation was performed.
SQL_SUCCESS

SWS ERROR, A parameter validation or runtime error was encountered. Error
SQL_ERROR information is available using the SWSERROR/SQLERROR

function.

SWS _ENVIRONMENT_ERROR

The request could not be processed because of a runtime
environmental error, for example, you invoked the API service
outside of a web transaction procedure, or from outside the Server's
address space. The Serm@y provide diagnostic information in the
wrap-around trace.

Any other value

The operation failed. By using the SQLERROR/SWSERROR
interface, you can obtain the error message pertinent to the error.

7-32

Shadow Programming Guide

December 1999

IMS/APPC APIs

PL/I Example

DAL STMIHDL FI XED BI N(31); /* Statement Handl e */
DOL RC FI XED BI N(31); /* RETURN OCDE */
DOL SENDLEN FI XED BIN(31); /* SEND LENGTH x|
DOL RECVLEN FI XED BIN(31); /* RECEIVE LENGTH */
DOL SENDBUF CHAR(82); /* SEND BUFFER x|
DOL RECVBUF CHAR(82); /* RECEl VED BUFFER */
DOL LOCAL LUNAME CHAR(8) INT(’ ’);: /* LOCAL LUNAME */
DOL MXDE_ NAME CHAR(8) INT(’ '); /* MODE NAME *|
DOL SYMBOLIC_
DESTI NATI ON_ NAVE CHAR(8) INT (* ’); /* SYMBQLIC NAME */

DOL USER D CHAR(10) INT(’); /* USER D *]
DOL PASSWRD CHAR(10) INT(’ '); /* PASSWRD *|
DOL PRCFILE CHAR(10) INT(" ’); /* SEQUR TY PRCFILE */
DOL CONVERSATI ON TYPE CHAR(10) INT(’ ’);/* CONVERSATI ON TYPE*/
DO ATB DATA RECVD FlI XED BI N(31); / * RECEl VE DATA TYPE*/
DOL ATB SEND TYPE FI XED BI N(31); /* SEND DATA TYPE */
DOL ATB SYNC LEVEL FI XED BI N(31); /* SYNC LEVEL x|
CALL SWBAPPCOCNNECT(STMIHDL, /| * STATEMENT HANDLE x|

SWS APPC TYPE | M5,

TP_NAME,

TP_NAMVE LENGTH,

PARTNER LU _NAME,

ATB_SECQLR TY_NONE,

CCNVERSATI ON | D,

SENDLEN,

SENDBUF,

RECVLEN

RECVBUF,

RC,

LOCAL_LUNAME,

MODE_NAVE,

SYMBOLI C_DESTI NATI ON_NAME,

USERI D,

PASSWCRD,

PRCFI LE,

RECVTYPE,

SENDTYPE,

SYNCTYPE

CONVERSATI ON_TYPE,

CM SEND AND FLUSH,

CM NONE.
RC = PLIRETV(); /* GET RETURN OCDE x|
| F RC A= SW& SUQCESS THEN /* EXIT PROGRAM | F BAD RC */

EXIT;

December 1999 Shadow Programming Guide 7-33

Host Application APl Function Calls

C Example

#i ncl ude "sccphd. h" /* Neon headers */
#i ncl ude "atbcnc. h" /* CPl Communi cati ons */
#i ncl ude "at bpbc. h" /* LUB. 2 */
| ong RC /* return code */
| ong stnt HOL; /* statement handl e */
| ong recvtype; /* data type received */
| ong sendt ype; /* data type sent */
| ong synctype; /* syncroni zation | evel */
| ong sendl en; /* input buffer length */
| ong recvl en; /* output buffer length */
| ong tp_name_| engt h; /* tp name | ength */
char sendbuf [82] /* input buffer area */
char recvbuf[82] /* output buffer */
char tp_nane[64] /* tp name */
char local |unane[8]=" ' /* local |unane */
char node_narre[8] ="' ' /* nmode nane */
char synbolic_

destination_nane[8]=" ' /* synbol i ¢ nane */
char userid[10] ="' ' /* user id */
char password[10] = /* password */
char profil e[10] = /* security profile */
char conversation_type[10] /* conversation type */
char conversation_id[8] /* conversation id */
char partner_| u_name[17] /* partner |u name */
CALL SWAAPPOOONNECT(stntHDL, /* statenent handl e */

SWs_APPC TYPE | MB
t p_nant

tp_nane_l ength
partner | u_nane
ATB SECUR TY_NONE
conversation_id
sendl en
sendbuf
recvl en
r ecvbuf
RC
| ocal _| unarre
node_nane
synbol i c_desti nati on_nane
userid
passwor d
profile
recvtype
sendt ype
synct ype
connection_type
OM SEND AND FLUSH
OM NONE.

if (rc = SW5_SUCCESS)
return rc;

7-34 Shadow Programming Guide December 1999

IMS/APPC APIs

COBOL Example

QCPY SBCPHD.
QCPY ATBOMOCB.
QCPY ATBPBCOCB.

77 STATEMENT- HANDLE
77 LOCAL- LUNAME
77 MODE- NAVE
77 SYMBQLI G DESTI NATI ON- NAME
77 USER D
77 PASSWIRD
77 PRCFI LE
77 CONVERSATI ON- TYPE
01 SEND- BUFFER
05 SEND- BUFFER- LENGTH
05 SEND- BUFFER- CONTENTS
05 SEND- EXTRA- AREA
05 SEND- DATA- TYPE
05 SEND- LEVEL- SYNC
01 RECEl VE- BUFFER
05 RECHl VE- BUFFER LENGTH
05 RECEOVE- BUFFER- CONTENTS
05 RECHl VE- EXTRA- AREA
05 RECHl VE- DATA- TYPE

SET OM NONE TO TRE
SET ATB- SEQRI TY-NONE TO TRUE
SET SWs- APPG TYPE-| M5 TO TRUE
MOVE ' PART

MOVE 4

MOVE '’ P390. P392AI M5

TO TP- NAME
TO TP- NAME- LENGTH
TO PARTNER LU- NAME.

Neon Copybook

CPl COMMUN CATI ONS COPYBOXK

LUe. 2 COPYBAXK

USAGE | S PA NTER

PIC X(8) VALUE | S SPACES.
PIC X(8) VALUE | S SPACES.
PIC X(8) VALUE | S SPACES.
Pl C X(10) VALUE | S SPACES.
Pl C X(10) VALUE |'S SPACES.
Pl C X(10) VALUE |'S SPACES.
PI C X(10) VALUE |'S SPACES.

PIC 9(4) COWP-4.
Pl C X(100) VALUE | S SPACES.
Pl C X(10) COWP-4.
PIC 9(9) COWP-4.
PIC 9(9) COWP-4.

PIC 9(4) COWP-4.

Pl C X(100) VALUE | S SPACES.
Pl C X(10).

PIC 9(9) COWP-4.

CALL ' SDCPAC USI NG STATEMENT- HANDLE

SWS- APPG- TYPE

TP- NAVE

TP- NAMVE- LENGTH
PARTNER- LU- NAVE

ATB- SEOR TY
OONVERSATI ON-1 D
SEND- LENGTH
SEND- BUFFER
REQUESTED- LENGTH
RECEl VE- BUFFER
ATB- RETCCDE
LOCAL- LUNAVE
MODE- NAVE

SYMBCLI G- DESTI NATI O\ NAVE
USER D

PASSWORD

PROFI LE

ATB- DATA- REOVD

December 1999

Shadow Programming Guide

7-35

Host Application APl Function Calls

ATB- SEND- TYPE
ATB- SYNG- LEVEL.
CONVERSATI ON- TYPE

MOVE RETURN CCDE TO W5- SWAAPI - RETURN- CCDE.

I F NOT SW&- SUCCESS
GCBACK.

7-36

Shadow Programming Guide

December 1999

IMS/APPC APIs

SDBAPCON/SWSAPCON Function

/ Can be used in Shadow/REXX.
/ Can be used from other REXX interpreter.
/ High-level language interface.

The REX X-language SDBAPCON/ SWSAPCON built-in function can be used
for APPC connections between Shadow OS/390 Web Server and Shadow Direct
for IMS and IMSv4.1 and above. A call to this function

s Connectsto IMS.
m Sendsatransaction for IMS to execute and receive the data from the executed
transaction.

The datareceived isin the format of the M essage Output Descriptor (MOD) used
by the application program that processed the transaction.

Upon return from the call, the following REXX variables are popul ated with data:

REXX Variable Description

APPC.STMTHDL The statement handle for the interface call.

APPC.CONVID The Conversation ID for the IMS APPC conversation.

APPC.OUTBUFF.0 The length of the data contained within the APPC.OUTBUFF.1
REXX variable.

APPC.OUTBUFF.1 The returned Message Output Descriptor data. The output message

contains the MOD data as well as atwo byte length prefix. This
variable contains the data, including any supplied trailing blanks.

APPC.RETCODE The APPC Interface return code.

APPC.DATATYPE The returned datatype.
Syntax
The general form for a REXX-language invocation of SDBAPCON/SWSAPCON
is:

December 1999 Shadow Programming Guide 7-37

Host Application APl Function Calls

rc = SDBAPCON/SWSAPCON(“Connection Type”, ,
“Transaction Name”, ,
“Transaction Name Length”, ,
“Partner LU Name”, ,

“Security Type”, ,
“Transaction Data”, ,
“Local LU Name”, ,
“Mode Name”, ,
“Symbolic Partner LU Name”, ,
“Userid”, ,

“Password”, ,

“Security Profile”,

“Data Type Sent”’, ,
“Message Length Sent”, ,
“Synchronization Level’

Valid Arguments

Connection Type Specifies the type of IMS transaction to execute:

. IM S for IMS Non-conversational transaction.
. IMS CONV for IMS Conversational transaction.

Note: Required parameter.

Transaction Name Specifies the IMS Transaction Code
Note: Required parameter.

Transaction Name Length | Specifies the length of the IMS Transaction Code
Note: Required parameter.

Partner LU Name Specifies the APPC LU Name for the IMS system
Note: Required parameter.

Security Type Specifies the type of security in use.

*« NONE specifies that no access security information is to be passed on the APPC
Allocation request.

« SAME specifies to use the userid and security profile (if present) from the allocation
request that initiated the local program. The password (if present) is not used; instead,
the userid is indicated as “already been validated”. If the allocation request that initi-
ated the local program contained no access security information, then access security
information is omitted on this allocation request.

« PROGRAM specifies to use the security information, provided by the local program,
on the API call. The local program provides the information by means of the Userid,
Password and Security Profile parameters. These values are passed exactly as speci-
fied (without folding the characters to upper case).

Note: Required parameter.

Transaction Data Specifies any data required by the application program in order to process the transaction.
This would be data in the format of the Message Input Descriptor (without the LLZZ
prefix).

Note: Required parameter.

7-38 Shadow Programming Guide December 1999

IMS/APPC APIs

Local LU Name Specifies the name of alocal LU from which the caller’s allocate request is to originate.
Thisis providesthe ability to associate a transaction request with a particular LU name.

Note: Optional parameter. If used, it requiresthe use of Mode Name, Symboalic Partner LU
Name, User ID, Password and Security Profile be coded.

Mode Name Specifies the Mode name designating the network properties for the local LU Name.

Note: Optional parameter. If used, it requiresthe use of Local LU Name, Symbolic Partner
LU Name, User 1D, Password and Security Profile be coded.

Symbolic Partner LU Name | Specifies the symbolic name representing the IMS APPC LU Name, Mode Name,
Transaction Name. The symbolic destination name must match that of an entry in the side
information dataset. If you specify any pass any of the parameters (Local LU Name, Mode
Name or Transaction Name), these will override the information retrieved and used to
initialize the characteristics of the conversation.

Note: Optional parameter. If used, it requires the use of Local LU Name, Mode Name,
User ID, Password and Security Profile.

User ID The Partner LU uses this value and the Password to validate the identity of the end-user
that initiated the request.

Note: Optional parameter. If used, it requires the use of Local LU Name, Mode Name,
Symbolic Partner LU Name, Password and Security Profile.

Password The Partner LU usesthis value and the User ID to validate the identity of the end-user that
initiated the request.

Note: Optional parameter. If used, it requires the use of Local LU Name, Mode Name,
Symbolic Partner LU Name, User ID and Security Profile.

Security Profile Specifies additional security information that can be used to determine what partner
programs the local program can access.

Note: Optional parameter. If used, it requires the use of Local LU Name, Mode Name,
Symboalic Partner LU Name, User ID and Password.

Data Type Sent Specifies the action to take once the APPC Conversation is established.

. BUFFER specifies that no additional data is to be sent to the Partner LU, and the data
can be buffered until a sufficient quantity is accumulated.

« SENDFL SH specifies that no additional data is to be sent to the Partner LU, and the
data is to be sent immediately.

« SENDCONF specifies that the data is to be sent immediately along with a request for
confirmation.

« SENDPREP specifies that the data is to be sent immediately along with send control
of the conversation.

« SENDDEAL specifies that the data is to be sent immediately along with a dealloca-
tion notification.

Note: Optional parameter. If used, it requires that placeholders be specified for Local LU
Name, Mode Name, Symbolic Partner LU Name, User ID, Password and Security Profile.

Synchronization Level Specifies whether or not confirmation processing will be performed on this conversation.
« NONE — no confirmation processing is required for this conversation.
¢ CONFIRM — confirmation processing is required for this conversation.

Note: Optional parameter. If used, it requires that placeholders be specified for Local LU
Name, Mode Name, Symbolic Partner LU Name, User ID, Password, Security Profile and
Data Type Sent.

December 1999 Shadow Programming Guide 7-39

Host Application APl Function Calls

SDBAPCON/SWSAPCON Examples

[o e e e oo
/* initialize some systemval ues
e
address SWSSEND

i nsappc = ' P390. P392Al M5

imstran = ' NECN\DI SP

parns ="'

| * o iiaiioo..

rc = sdbapcon/ swsapcon
("ims',instran, | ength(inmstran),insappc,’ NONE
, par ns)

______ */

*/

______ */

______ */

*/

______ */

e
/* parse the output into usable variables
e
pars. nsg = substr (APPC. QUTBUFF. 1, 1, 79)
pars. page = subst r (APPC. QUTBUFF. 1, 80, 2)
pars. i ndex = subst r (APPC. QUTBUFF. 1, 82, 2)
pars. scrol | = subst r (APPC. QUTBUFF. 1, 84, 150)
pars. area = subst r (APPC. QUTBUFF. 1, 234, 380)
pars.len = 380
pars. dat a ="
doi =1to 10
pars.part.i = substr(pars.area, 4, 15)
pars.desc.i = substr(pars.area, 19, 20)
pars.len = pars.len - 38
pars.area = substr(pars.area, 39, pars.|en)
pars.data = pars.data||’ '||pars.part.i]|]|pars.desc.
end

7-40

Shadow Programming Guide

December 1999

IMS/APPC APIs

High-Level Language Interface
SQLAPPCDISCONNECT (SDCPAD) or
SWSAPPCDISCONNECT (SWCPAD) Function

v

Can be used in Shadow/REXX.

v

Can be used from other REXX interpreters.

v

HLL entry point name is SDCPAD/SWCPAD.

This call disconnects from IMS.

Syntax
The general form for invocation of SDCPAD/SWCPAD is

CALL ’ SDCPADY SWCPAD US| NG STATEMENT- HANDLE
SQL- APPG TYPE
CONVERSATI ON-1 D
ATB- RETOCDE

CALL Arguments

The SQLAPPCDISCONNECT/SWSAPPCDISCONNECT (SDCPAC/SWS-
PAC) function arguments are described in the table which follows. All parameters
are required.

HLL Argument Type
Arg I/0 Description of Argument
C COBOL PL/I
1 LONG PIC S9(9) FIXED INPUT Statement Handle. Currently ignored however, it
COMP BIN(31) must contain zeros.
2 LONG PICS9(9) | FIXED INPUT IMS Call type:
comp BIN(31) « SWSAPPC-TYPE-IMS for non-conversa-
tional IMS transactions.
e SWSAPPC-TYPE-IMSCONYV for conversa-
tional IMS transactions.
3 CHAR* PIC X(8) CHAR(8) OUTPUT Conversation ID of the APPC Call.
4 LONG PIC S9(9) | FIXED OUTPUT Return Code.
COMP BIN(31)

December 1999

Shadow Programming Guide 7-41

Host Application APl Function Calls

Return Values
SWSAPPCDISCONNECT always sets a signed numeric return code value. Possi-

ble values are:
Return Value Description
SWS SUCCESS, The operation succeeded. The specified operation was performed.
SQL_SUCCESS
SWS ERROR, A parameter validation or runtime error was encountered. Error
SQL_ERROR information is avail able using the SWSERROR/SQL ERROR

function.

SWS ENVIRONMENT_ERROR The request could not be processed because of a runtime
environmental error, for example, you invoked the API service
outside of aweb transaction procedure, or from outside the Server's
address space. The Server may provide diagnostic information in the
wrap-around trace.

Any other value The operation failed. By using the SQLERROR/SWSERROR
interface, you can obtain the error message pertinent to the error.

PL/I Example

% NCLUDE SPCPHD
% NCLUDE ATBQWPLI
% NCLUDE ATBPBPLI

STMIHDL FI XED BI N(31); /* Statement Handl e */

DCL
DL RC FI XED Bl N(31); /* RETURN CCDE */
DCL SENDLEN FI XED Bl N(31); /* SEND LENGTH */
DCL RECVLEN FI XED Bl N(31); /* RECHE VE LENGTH */
DCL SENDBUF CHAR(82) /* SEND BUFFER */
DCL RECVBUF CHAR(82) /* RECHE VED BUFFER */
DCL (FILL_1 initial (’ ")
FILL_2 initial (’ ")
FLL 3 initial (’ ")) char(8);
DCL (FILL_4 initial (’ ")
FILL_5 initial (’ ")
FILL_6 initial (’ ")) char(10);
CALL SWBAPPCDI SCONNECT(STMIHDL, /* STATEMENT HANDLE */
SWS_APPC TYPE | M5,
CONVERSATI ON I D,
RC
RC = PLIRETV() ; /* CGET RETURN CCDE */
IF RC "= SW5 SUCCESS THEN /* EXT PROGRAM | F BAD RC */
EXIT,

7-42 Shadow Programming Guide December 1999

IMS/APPC APIs

C Example
include "sccphd. h" /* Neon headers */
include "atbcne. h" /* CPl Communi cati ons */
include "atbpbc. h" /* LUB. 2 */
| ong RC /* return code */
| ong stnt HOL; /* statement handl e */
| ong recvtype; /* data received type */
| ong sendl en; /* input buffer length */
| ong recvl en; /* output buffer length */
| ong tp_name_| engt h; /* tp name | ength */
char sendbuf [82] /* input buffer area */
char recvbuf[82] /* output buffer */
char tp_nane[64] /* tp name */
char fill_1[] = /* eight byte filler field */
char fill _2[] = /* eight byte filler field */
char fill _3[] = /* eight byte filler field */
char fill_4[] = /* ten byte filler field */
char fill _5[] = /* ten byte filler field */
char fill _6[] = /* ten byte filler field */
char conversation_id[8] /* conversation id */
char partner_| u_name[17] /* partner |u name */
CALL SWAAPPCDI SOONNECT(stnmt HDL, /* statenent handl e */

SWS_APPC TYPE | M5

conversation_id

RC
if (rc = SWS_SUCCESS)

return rc;

December 1999 Shadow Programming Guide 7-43

Host Application APl Function Calls

COBOL Example

CCPY SBCPHD. Neon Copybook
QCPY ATBOMOCB. CPl COMMUN CATI ONS COPYBOXK
QCPY ATBPBCCB. LU6. 2 QOPYBOXK
77 STATEMENT- HANDLE USACGE | S PO NTER
77 FI LLER PARM.I ST-01 PIC X(8) VALUE IS SPACES.
77 FI LLER PARM.I ST-02 PIC X(8) VALUE IS SPACES.
77 FI LLER PARM.I ST-03 PIC X(8) VALUE IS SPACES.
77 FI LLER PARM.I ST- 04 Pl C X(10) VALUE | S SPACES.
77 FI LLER PARM.I ST- 05 Pl C X(10) VALUE | S SPACES.
77 FI LLER PARM.I ST- 06 Pl C X(10) VALUE | S SPACES.
01 SEND BUFFER
05 SEND BUFFER LENGTH PIC 9(4) Caw-4.
05 SEND BUFFER CONTENTS Pl C X(100) VALUE | S SPACES.
05 SEND- EXTRA- AREA Pl C X(10).

01 RECEl VE- BUFFER

05 RECEl VE-BUFFER LENGTH PI C 9(4) COMWP- 4.
05 RECE! VE- BUFFER CONTENTS PI C X(80) .

05 RECE| VE- EXTRA- AREA Pl C X(10).

SET OV NONE TO TRE

SET ATB- SEQRI TY-NONE TO TRUE

SET SW5- APPG TYPE-| M5 TO TRUE

MOVE ' PART TO TP- NAME

MOVE 4 TO TP- NAME- LENGTH

MOVE ’ P390. P392AI VB TO PARTNER- LU- NAME.

CALL ' SDCPAD USI NG STATEMENT- HANDLE
SWS- APPG- TYPE
CONVERSATI ON-1 D
ATB- RETCCDE

MOVE RETURN CCDE TO W5- SWBAPI - RETURN- CCDE.
I F NOT' SW5- SUCCESS
QABACK.

7-44 Shadow Programming Guide December 1999

IMS/APPC APIs

SDBAPDIS/SWSAPDIS Function

Can be used in Shadow/REXX.

Can be used from other REXX interpreters.

High-level language interface available.

The REXX-language SDBAPDIS/SWSAPDIS built-in function can be used to
drop APPC connections between the Shadow OS/390 Web Server for IMS and
IMSv4.1 and above. A call to this function disconnects IMS.

Upon return from the call, the following REXX variables are used:

REXX Variable Description

APPC.STMTHDL The statement handle for the interface call.

APPC.RETCODE The APPC Interface return code.
Syntax

The general form for a REX X-language invocation of SDBAPDIS/SWSAPDIS
is:

rc = SDBAPDIS/SWSAPDIS(“Connection Type”)

SDBAPDIS/SWSAPDIS Example

/* *
/* disconnect the ims transaction */
/* *

rc = sdbapdis/swsapdis(ims')
end

or
I* */

[* disconnect the ims transaction */
g */

rc = sdbapdis/swsapdis(imsconv’)
end

December 1999

Shadow Programming Guide 7-45

Host Application APl Function Calls

High-Level Language Interface
SQLAPPCRECEIVE (SDCPAR) or
SWSAPPCRECEIVE (SWCPAR) Function

/ Can be used in Shadow/REXX.
/ Can be used from other REXX interpreters.
/ HLL entry point name is SDCPAR/SWCPAR.

Usethiscall to do areceive and wait from APPC for IMS information.

Syntax
The general form for invocation of SDCPAR/SWCPAR is

CALL ’ SDCPAR SWPAR US| NG STATEMENT- HANDLE
SQL- APPG TYPE
OONVERSATI ON-1 D
REQUESTED- LENGTH
RECEl VE- BUFFER
ATB- RETOCDE
PARTNER: LU- NAVE
ATB- DATA- RECVD
TPNAME- FCR- TESTI M5
TPNAME- LENGTH FCR- TESTI M5
CONVERSATI ON- TYPE

CALL Arguments

The SQLAPPCRECEIVE/SWSAPPCRECEIVE (SWCPAR/SDCPAR) function
arguments are described in the table which follows. All parameters are required.

HLL Argument Type

Arg I/O Description of Argument
C COBOL PL/I
1 LONG PIC S9(9) FIXED INPUT Statement Handle. Currently ignored however, it
COMP BIN(31) must contain zeros.
2 LONG PIC S9(9) FIXED INPUT IMS Call type:
COMP BIN(31) * SWSAPPC-TYPE-IMS for non-conversa-

tional IMS transactions.
. SWS-APPC-TYPE-IMSCONYV for conversa-
tional IMS transactions.

3 CHAR* PIC CHAR(8) OUTPUT Conversation ID of the APPC Call.
X(8)

7-46 Shadow Programming Guide December 1999

IMS/APPC APIs

HLL Argument Type
Arg I/O Description of Argument
C COBOL PL/I
4 LONG PIC S9(9) FIXED INPUT/ Output buffer length.
COMP BIN(31) OUTPUT
5 CHAR* PIC CHAR OUTPUT Output buffer. The output buffer is comprised of a2
X(2- (2-32704) byte prefix containing the binary length of the buffer
32704) datafollowed by the IMS Message Output Descriptor
(MOD) data.
6 LONG PIC S9(9) FIXED OUTPUT Return Code.
COMP BIN(31)
7 CHAR* PIC CHAR(17) | INPUT Partner LU Name. The APPC LU Name of the IMS
X(17) System.
8 LONG PIC S9(9) FIXED OUTPUT Data Type Received. Specifies the action taken to
COMP BIN(31) receive the output data:

e CM_NO_DATA_RECEIVED specifies that no
additional data is to be sent to the Partner LU,
and the data can be buffered until a sufficient
quantity is accumulated.

e CM_DATA_RECEIVED specifies that no
additional data is to be sent to the Partner LU,
and the data is to be sent immediately.

¢« CM_COMPLETE_DATA_RECIEVED spec-
ifies that the data is to be sent immediately along
with a request for confirmation.

¢ CM_INCOMPLETE_DATA_RECEIVED
specifies that the data is to be sent immediately
along with send control of the conversation.

Note: Optional parameter. If used, it requires that

placeholders be specified for Local LU Name, Mode

Name, Symbolic Partner LU Name, User ID,

Password and Security Profile.

9 CHAR* PIC CHAR(8) INPUT TPNAME for TESTIMS.
X(8)

10 LONG PIC S9(9) | FIXED OUTPUT TPNAME length for TESTIMS.
COMP BIN (31)

11 LONG S9 (4) FIXED INPUT Conversation type.
COMP BIN (31)

Return Values

SQLAPPCRECEIVE/SWSAPPCRECEIVE always sets a signed numeric return
code value. Possible values are:

Return Value

Description

SWS SUCCESS,
SQL_SUCCESS

The operation succeeded. The specified operation was performed.

December 1999

Shadow Programming Guide

7-47

Host Application APl Function Calls

Return Value

Description

SWS ERROR,
SQL_ERROR

A parameter validation or runtime error was encountered. Error
information is avail able using the SWSERROR/SQLERROR
function.

SWS ENVIRONMENT_ERROR

The request could not be processed because of a runtime
environmental error, for example, you invoked the API service
outside of aweb transaction procedure, or from outside the Server's
address space. The Server may provide diagnostic information in the
wrap-around trace.

Any other value

The operation failed. By using the SQLERROR/SWSERROR
interface, you can obtain the error message pertinent to the error.

7-48

Shadow Programming Guide December 1999

IMS/APPC APIs

PL/I Example

% NCLUDE SPCPHD
% NCLUDE ATBOWPLI
% NCLUDE ATBPBPLI

STMIHDL FI XED BI N(31);

DAL /* Statenent Handl e */
DOL RC FI XED BI N(31); /* RETURN OCDE *|
DOL SENDLEN FI XED BIN(31); /* SEND LENGTH x|
DOL RECVLEN FI XED BIN(31); /* RECEIVE LENGTH */
DOL SENDBUF CHAR(82) /* SEND BUFFER *|
DOL RECVBUF CHAR(82) / * RECEl VED BUFFER */
DOL LOCAL LUNAME CHAR(8) INT(' ’);: /* LOCAL LUNAME */
DOL MDE_NAME CHAR(8) INT(’ '); /* MODE NAME *|
DOL SYMBOLIC_
DESTI NATI ON_ NAVE CHAR(8) INT (* ’); /* SYMBCLIC NAME */

DOL USER D CHAR(10) INT(’); /* USER D *|
DOL PASSWRD CHAR(10) INT(’ '); /* PASSWORD *|
DOL PRCFILE CHAR(10) INT(" ’); /* SEQUR TY PRCFILE */
DOL TPNAME FCR TESTI MB
DOL TPNAME LENGTH FCR TESTI M8
DOL CONVERSATI ON TYPE CHAR(10) INT(’ ’);/* CONVERSATI ON TYPEY/
CALL SWBAPPCRECE! VE(STMIHDL, /| * STATEMENT HANDLE x|

SWS APPC TYPE | M5,

PARTNER LU NAME,

COCNVERSATI ON I D,

RECVLEN

RECVBUF,

RC,

RECVTYPE,

TPNAMVE_FCR TESTI M5,

TPNAMVE_LENGTH _FOR TESTI M5,

CONVERSATI ON_TYPE.
RC = PLIRETV(); /* GET RETURN OCDE *|
| F RC A= SWS_SUCCESS THEN /* EXI'T PROGRAM | F BAD RC */

EXIT;

December 1999

Shadow Programming Guide

7-49

Host Application APl Function Calls

C Example
#i ncl ude "sccphd. h" /* Neon headers */
#i ncl ude "atbcnc. h" /* CPl Communi cati ons */
#i ncl ude "at bpbc. h" /* LUB. 2 */
| ong RC /* return code */
| ong stnt HOL; /* statement handl e */
| ong recvtype; /* data received type */
| ong sendl en; /* input buffer length */
| ong recvl en; /* output buffer length */
| ong tp_name_| engt h; /* tp name | ength */
char sendbuf [82] /* input buffer area */
char recvbuf[82] /* output buffer */
char tp_nane[64] /* tp name */
char local |unane[8]=" ' /* local |unane */
char node_narre[8] ="' ' /* nmode nane */
char synbolic_
destination_nane[8]=" ' /* synbol i ¢ nane */
char userid[10] ="' ' /* user id */
char password[10] = /* password */
char profil e[10] = /* security profile */
char tpnane for_testins /* ten byte filler field */
char tpnane_length for testins /* ten byte filler field */
char conversation_type[10] /* ten byte filler field */
char conversation_id[8] /* conversation id/
char partner_| u_name[17] /* partner |u nane */
CALL SWRAPPCRECEI VE(stntHDL, /* statenent handl e */

SWs_APPC TYPE | MB
partner | u_nane
conversation_id
recvl en
r ecvbuf
tpnane_for _testins
tpnane_length for _testins
conversati on_type
RC

if (rc A= SWs SUCCESS)
return rc;

7-50 Shadow Programming Guide December 1999

IMS/APPC APIs

COBOL Example

CCPY SBCPHD. Neon Copybook
QCPY ATBOMOCB. CPl COMMUN CATI ONS COPYBOXK
QCPY ATBPBCCB. LUS. 2 QOPYBAK
77 STATEMENT- HANDLE USACE | S PO NTER
77 LOCAL- LUNAME PIC X(8) VALUE | S SPACES.
77 MCDE- NAMVE PIC X(8) VALUE | S SPACES.
77 SYMBCOLI G DESTI NATI ON- NAME PIC X(8) VALUE | S SPACES.
77 USER D Pl C X(10) VALUE | S SPACES.
77 PASSWORD Pl C X(10) VALUE | S SPACES.
77 PRCFILE Pl C X(10) VALUE | S SPACES.
77 TPNAME- FOR- TESTI MB Pl C X(10) VALUE | S SPACES.
77 TPNAME- LENGTH FOR- TESTI M5 Pl C X(10) VALUE | S SPACES.
77 OCONVERSATI ON- TYPE Pl C X(10) VALUE | S SPACES.
01 SEND BUFFER
05 SEND- BUFFER- LENGTH Pl C 9(4) COw-4.
05 SEND- BUFFER CONTENTS Pl C X(100) VALUE | S SPACES.
05 SEND- EXTRA- AREA Pl C X(10).
01 RECHEl VE- BUFFER
05 RECEl VE- BUFFER LENGTH Pl C 9(4) COw-4.
05 RECEl VE- BUFFER- CONTENTS Pl C X(80).
05 RECEl VE- EXTRA- AREA Pl C X(10).
SET M NONE TO TRE

SET ATB- SECLR TY- NONE TO TRUE.

SET SW5- APPG- TYPE- | M5 TO TRUE.

MOVE ’ PART’ TO TP- NAME

MOVE 4 TO TP- NAME- LENGTH

MOVE ' P390. P392AI VS TO PARTNER: LU- NAME.

CALL ' SDOPAR US| NG STATEMENT- HANDLE
SV&- APPC- TYPE
PARTNER- LU- NAMVE
OONVERSATI ON-1 D
REQUESTED- LENGTH
RECEl VE- BUFFER
ATB- RETCCDE
TPNAME- FOR TESTI M5
TPNAME- LENGTH FOR- TESTI M5
OONNECTI O\ TYPE.

MOVE RETURN CCDE TO W5- SWBAPI - RETURN- CCDE.
I F NOT' SW5- SUCCESS
QBACK.

December 1999 Shadow Programming Guide 7-51

Host Application APl Function Calls

SDBAPRCV/ SWSAPRCYV Function

/ Can be used in Shadow/REXX.
/ Can be used from Other REXX interpreters.
/ HLL entry point name is SDCPAR/SWCPAR.

The REXX-language SDBAPRCV/SWSAPRCYV built-in function can be used to
continue receiving message output from an IM S transaction (i.e. multisegment
output messages). Once you receive anon-zero return code, the IM S conversation
is deallocated and the transaction is compl ete.

In the case of conversational |MS transactions, the non-zero return code will indi-
cate that their is no more data to receive.

Upon return from the call, the following REXX variables are popul ated with data:

REXX Variable Description

APPC.STMTHDL The statement handle for the interface call.

APPC.CONVID The Conversation ID for the IMS APPC conversation.

APPC.OUTBUFF.0 The length of the data contained within the APPC.OUTBUFF.1
REXX variable.

APPC.OUTBUFF.1 The returned Message Output Descriptor data. The output message

contains the MOD data as well as atwo byte length prefix. This
variable contains the data, including any supplied trailing blanks.

APPC.RETCODE The APPC Interface return code.

APPC.DATATYPE The returned datatype.
Syntax
The general form for a REXX-language invocation of SDBAPRCV/SWSAPRCV
is:

rc = SDBAPRCV/SWSAPRCV(“Connection Type”, ,
“Conversation ID”, ,
“Partner LU Name”)

7-52 Shadow Programming Guide December 1999

IMS/APPC APIs

Valid Arguments

Connection Type

Specifies the type of IMS transaction to execute:

. IM S for IMS Non-conversational transaction.
¢ |IMSCONYV for IMS Conversational transaction.

Note: Required parameter.

Conversation 1D

Specifies the IMS Conversation ID.
Note: Required parameter.

Partner LU Name

Specifies the APPC LU Name for the IMS system
Note: Optional parameter.

SDBAPRCV/SWSAPRCV Example

/* ___ */
/* initialize some system val ues */
U */
addr ess SWESEND
i msappc = ' P390. P392AI M5
imstran = ' NEONDI SP
parns ="’
/* ___ */
/* Retrieve nore data fromthe | M5 transaction */
/* ___ */
rc = SDBAPRCV/ SWEAPRCV(’ i ns’ , APPC. CONMI D, i nsappc)
/* ___ */
/* parse the output into usable variables */
/* ___ */
pars. msg = subst r (APPC. QUTBUFF. 1, 1, 79)
pars. page = subst r (APPC. QUTBUFF. 1, 80, 2)
pars. i ndex = subst r (APPC. QUTBUFF. 1, 82, 2)
pars. scrol | = subst r (APPC. QUTBUFF. 1, 84, 150)
pars. area = subst r (APPC. QUTBUFF. 1, 234, 380)
pars.|en = 380
pars. dat a ="’
do i =1to 10

pars.part.i= substr(pars.area, 4, 15)

pars. desc.i= substr(pars. area, 19, 20)

pars.len = pars.len - 38

pars.area = substr(pars.area, 39, pars.|en)

pars.data = pars.datal|’ '||pars.part.i]|]|pars.desc.i
end

December 1999

Shadow Programming Guide

7-53

Host Application APl Function Calls

High-Level Language Interface
SQLAPPCSEND (SDCPAS) or
SWSAPPCSEND (SWCPAS) Function

Can be used in Shadow/REXX.

Can be used from Other REXX interpreters.

HLL entry point name is SDCPAS/SWCPAS.

This call performs a send to APPC for IMS.

Syntax

The general form for invocation of SDCPAS/SWCPAS s

CALL ’ SDCPAS US| NG STATEMENT- HANDLE
SQL- APPG TYPE
OONVERSATI ON-1 D
SEND- LENGTH
SEND- BUFFER
PARTNER: LU- NAVE
ATB- SEND- TYPE
ATB- RETOCDE.

CALL Arguments

The SQLAPPCSEND/SWSAPPCSEND (SWCPAS/SDCPAS) function argu-
ments are described in the table which follows. All parameters are required.

HLL Argument Type

Arg I/O Description of Argument
C COBOL PL/I
1 LONG PIC FIXED INPUT Statement Handle. Currently ignored however, it
S9(9) BIN(31) must contain zeros.
COMP
2 LONG PIC FIXED INPUT IMS Call type:
S9(9) BIN(31) e SWSAPPC-TYPE-IMS for non-conversa-
CcomP tional IMS transactions.
e SWSAPPC-TYPE-IMSCONYV for conversa-
tional IMS transactions.
3 CHAR* PIC CHAR(8) OUTPUT Conversation ID of the APPC Call.
X(8)
7-54 Shadow Programming Guide December 1999

IMS/APPC APIs

HLL Argument Type
Arg I/O Description of Argument
C COBOL PL/I
4 LONG PIC FIXED INPUT Length of the data to be sent.
S9(9) BIN(31)
COMP
5 LONG PIC FIXED INPUT Input buffer. Theinput buffer iscomprised of a2 byte

S9(9) BIN(31) prefix containing the binary length of the buffer data

COMP followed by the IMS Message | nput Descriptor

(MID) data.

6 CHAR* PIC CHAR(17) | INPUT Partner LU Name. The APPC LU Name of the IMS

X(17) System.

7 LONG PIC FIXED INPUT Data Type Sent. Specifies the action to take once the

S9(9) BIN(31) APPC Conversation is established.

COMP « CM_BUFFER_DATA specifies that no addi-
tional data is to be sent to the Partner LU, and
the data can be buffered until a sufficient quan-
tity is accumulated.

e CM_SEND_AND_FLUSH specifies that no
additional data is to be sent to the Partner LU,
and the data is to be sent immediately.

¢« CM_SEND_AND_CONFIRM specifies that
the data is to be sent immediately along with a
request for confirmation.

¢ CM_SEND_PREP_TO_RECEIVE specifies
that the data is to be sent immediately along
with send control of the conversation.

e CM_SEND_AND_DEALLOCATE specifies
that the data is to be sent immediately along
with a deallocation notification.

Note: Optional parameter. If used, it requires that

placeholders be specified for Local LU Name, Mode

Name, Symbolic Partner LU Name, User ID,

Password and Security Profile.

8 LONG PIC FIXED INPUT/ Return Code.

S9(9) BIN(31) OUTPUT

COMP

Return Values

SQLAPPCSEND/SWSAPPCSEND always sets a signed numeric return code
value. Possible values are:

Return Value

Description

SWS_SUCCESS,
SQL_SUCCESS

The operation succeeded. The specified operation was performed.

December 1999

Shadow Programming Guide 7-55

Host Application APl Function Calls

Return Value Description

SWS ERROR, A parameter validation or runtime error was encountered. Error

SQL_ERROR information is avail able using the SWSERROR/SQL ERROR
function.

SWS ENVIRONMENT_ERROR The request could not be processed because of a runtime
environmental error, for example, you invoked the API service
outside of aweb transaction procedure, or from outside the Server's
address space. The Server may provide diagnostic information in the
wrap-around trace.

Any other value The operation failed. By using the SQLERROR/SWSERROR
interface, you can obtain the error message pertinent to the error.

PL/I Example

STMIHDL FI XED BI N(31); /* Statement Handl e */

DCL
DL RC FI XED Bl N(31); /* RETURN CCDE */
DCL SENDLEN FI XED Bl N(31); /* SEND LENGTH */
DCL RECVLEN FI XED Bl N(31); /* RECHE VE LENGTH */
DCL SENDBUF CHAR(82) /* SEND BUFFER */
DCL RECVBUF CHAR(82) /* RECHE VED BUFFER */
DCL (FILL_1 initial (’ ")
FILL_2 initial (’ ")
FLL 3 initial(’ ")) char(8);
DCL (FILL_4 initial (’ ")
FILL_5 initial (’ ")
FILL_6 initial(’ ")) char(10);
CALL SWSAPPCSEND(STMIHDL, [* STATEMENT HANDLE */
SWS_APPC TYPE_| M5,
PARTNER LU _NAME,
CONVERSATI ON I b,
SENDLEN
SENDBUF,
RC
RECVTYPE
RC = PLIRETW(); /* CGET RETURN CCDE */
I F RC "= SW5 SUCCESS THEN /* EXT PROGRAM | F BAD RC */
EXIT,

7-56 Shadow Programming Guide December 1999

IMS/APPC APIs

C Example
#i ncl ude "sccphd. h" /* Neon headers */
#i ncl ude "at bcnc. h" /* CPl Communi cati ons */
#i ncl ude "at bpbc. h" /* LUB. 2 */
| ong RC /* return code */
| ong stnt HOL; /* statement handl e */
| ong recvtype; /* data received type */
| ong sendl en; /* input buffer length */
| ong recvl en; /* output buffer length */
| ong tp_name_| engt h; /* tp name | ength */
char sendbuf [82] /* input buffer area */
char recvbuf[82] /* output buffer */
char tp_nane[64] /* tp name */
char fill_1[] = /* eight byte filler field */
char fill _2[] = /* eight byte filler field */
char fill _3[] = /* eight byte filler field */
char fill_4[] = /* ten byte filler field */
char fill _5[] = /* ten byte filler field */
char fill _6[] = /* ten byte filler field */
char conversation_id[8] /* conversation id */
char partner_| u_name[17] /* partner |u name */
CALL SWAAPPCSENID(st nt HDL, /* statement handl e */
SW5_APPC TYPE_ | M5
partner | u_nane
conversation_id
sendl en
sendbuf
RC
sendt ype.
if (rc = SW5_SUCCESS)
return rc;
December 1999 Shadow Programming Guide 7-57

Host Application APl Function Calls

COBOL Example

QCPY SBCPHD.
QCPY ATBOMOCB.
QCPY ATBPBCOCB.

77 STATEMENT- HANDLE
77 Fl LLER PARM.I ST-01
77 Fl LLER PARM.I ST- 02
77 Fl LLER PARM.I ST- 03
77 FI LLER PARM.I ST- 04
77 Fl LLER PARM.I ST- 05
77 Fl LLER PARM.I ST- 06
01 SEND- BUFFER

05 SEND- BUFFER- LENGTH
05 SEND- BUFFER- CONTENTS
05 SEND- EXTRA- AREA

01 RECEl VE- BUFFER

05 RECEl VE- BUFFER LENGTH
05 RECEl VE- BUFFER CONTENTS

05 RECEl VE- EXTRA- AREA

Neon Copybook

CPl COMMUN CATI ONS COPYBOXK

L. 2 COPYBAXK

USAGE | S PO NTER

PIC X(8) VALUE |'S SPACES.
PIC X(8) VALUE |'S SPACES.
PIC X(8) VALUE |'S SPACES.

PIC X(10) VALUE |'S SPACES.
PI C X(10) VALUE | S SPACES.
Pl C X(10) VALUE | S SPACES.

Pl C 9(4) COWP-4.

Pl C X(100) VALUE | S SPACES.

Pl C X(10).

Pl C 9(4) COWP-4.
Pl C X(80).
Pl C X(10).

SET OV NONE TO TRE
SET ATB- SEQRI TY-NONE TO TRUE
SET SW5- APPG TYPE-| M5 TO TRUE
MOVE ' PART TO TP- NAME
MOVE 4 TO TP- NAME- LENGTH
MOVE ’ P390. P392AI VB TO PARTNER- LU- NAME.
CALL ' SDCPAS USI NG STATEMENT- HANDLE
SWS- APPG- TYPE
CONVERSATI ON-1 D
SEND- LENGTH
SEND- BUFFER
PARTNER- LU- NAME
ATB- SEND- TYPE
ATB- RETCCDE
MOVE RETURN CCDE TO W5- SWBAPI - RETURN- CCDE.

I F NOT' SW5- SUCCESS
QABACK.

7-58 Shadow Programming Guide

December 1999

IMS/APPC APIs

SDBAPSND/SWSAPSND Function

/ Can be used in Shadow/REXX.
/ Can be used from Other REXX interpreters.
/ HLL entry point name is SDCPAS/SWCPAS.

The REXX-language SDBAPSND/SWSAPSND built-in function can be used to
send datato an IM S transaction. This function requires that an active connection
aready be established to IMS.

Upon return from the call, the following REX X variables are popul ated with data:

REXX Variable Description

APPC.STMTHDL The statement handle for the interface call.

APPC.CONVID The Conversation ID for the IMS APPC conversation.

APPC.OUTBUFF.0 The length of the data contained within the APPC.OUTBUFF.1
REXX variable.

APPC.OUTBUFF.1 The returned Message Output Descriptor data. The output message

contains the MOD data as well as atwo byte length prefix. This
variable contains the data, including any supplied trailing blanks.

APPC.RETCODE The APPC Interface return code.

APPC.DATATYPE The returned datatype.
Syntax
The genera form for a REXX-language invocation of SDBAPSND/SWSAPSND
is:

rc = SDBAPSND/SWSAPSND(“Connection Type”, ,
“Conversation ID”, ,
“Transaction Data”, ,
“Partner LU Name”)

December 1999 Shadow Programming Guide 7-59

Host Application APl Function Calls

Valid Arguments

Connection Type

Specifies the type of IMS transaction to execute:

. IM Sfor IMS Non-conversational transaction.
¢ |IMSCONYV for IMS Conversational transaction.

Note: Required parameter.

Conversation I1D

Specifies the IMS Conversation ID.
Note: Required parameter.

Transaction Data

Specifies any data required by the application program in order to process the transaction.
This would be data in the format of the Message Input Descriptor (without the LLZZ prefix).

Note: Required parameter.

Partner LU Name

Specifies the APPC LU Name for the IMS system
Note: Optional parameter.

Synchronization Level Specifies whether or not confirmation processing will be performed on this conversation.

« NONE — no confirmation processing is required for this conversation.
¢ CONFIRM — confirmation processing is required for this conversation.

Note: Optional parameter. If used, it requires that placeholders be specified for the Partner
LU Name.

SDBAPSND/SWSAPSND Example

/* __ */
/* initialize some system val ues */
/* __ */
addr ess

SVWESEND i nsappc = ' P390. P392AI M5
i nstran = ' NEONDI SP

parns =
/* ___ */
/* Send data into | M5 */
/* ___ */

7-60

Shadow Programming Guide December 1999

CICS APIs

CICS APlIs

Note:
In order to use these APIs, you need the CICS Transaction Server.

Two copy members supplied by IBM must beincluded before using the EXCI
interface for CICS. The following tables represent the language, member names,
and libraries where these members can be found.

Copybook Name Language Library
DFHXCPLD Assembler CIC+410 SDFHMAC
DFHXCPLH C CIC$410.SDFHC370
DFHXCPLO COBOL CICS$410.SDFHCOB
DFHXCPLL PL/I CICS410.SDFHPL1
Copybook Name Language Library
DFHXCRCD Assembler CICS410 SDFHMAC
DFHXCRCH C CIC$410.SDFHC370
DFHXCRCO COBOL CIC$410.SDFHCOB
DFHXCRCL PL/I CICS410.SDFHPL1

Thefollowing API call functions, implemented by Shadow Web Server and
Shadow Direct, include those for APPC connections between Transaction Server
for CICS and CICS, V4.1 and above, aswell as APPC connections via REX X -
language interfaces.

API Description DIRECT WEB SEF WEB/RX
CICS APIs

To establish EXCI SQLEXCICONNECT SWSEXCICONNECT SDBEXCON SWSEXCON
connect: or SDCPEC or SWCPEC

To perform DPL SQLEXCIDPLREQ SWSEXCIDPLREQ SDBEXDPL SWSEXDPL
request using EXCI: or SDCPED or SWCPED

To perform EXCI SQLEXCIINITUSR SWSEXCIINITUSR SDBEXINI SWSEXINI
initusr: or SDCPEI or SWCPEI

To perform EXCI SQLEXCIDISCONN SWSEXCIDISCONN SDBEXDIS SWSEXDIS

disconnect:

or SDCPEL

or SWCPEL

December 1999

Shadow Programming Guide

7-61

Host Application APl Function Calls

High-Level Language Interface
SQLEXCICONNECT (SDCPEC) or
SWSEXCICONNECT (SWCPEC) Function

Can be used in Shadow/REXX.

Can be used from other REXX interpreters.

HLL entry point nameis SDCPEC/SWCPEC.

This call establishes an EXCI connect on behalf of an ODBC CALL RPCto a
CICSregion. It can be called by any host ODBC call RPC, and returns standard
ODBC return codes.

In order to execute a CICS Transaction using thisinterface, you will need to exe-
cute the following API callsin the sequence listed below.

Service Name Service Description
SWSEXCIINITUSR To initialize the CICS EXCI connection.
SWSEXCICONNECT To connect to CICS through the EXCI interface.
SWSEXCIDPLREQ To issue a DPL request to CICS. This API can be called repetitively
in order to complete the processing required for the transaction.
SWSEXCIDISCONN To disconnect a CICS EXCI connection.
Syntax

The general form for invocation of SDCPEC/SWCPEC is:

CALL SQLEXO GONNECT US| NG STATEMENT- HANDLE
SQL- A CS TYPE
CONNECTI ON- NAME
EXQ - RETURN GCDE
USER TCKEN
Pl PE- TOKEN

CALL Arguments

The SQLEXCICONNECT/SWSEXCICONNECT (SDCPEC/SWCPEC) function
arguments are described in the table which follows. All parameters are required.

7-62

Shadow Programming Guide December 1999

CICS APIs

HLL Argument Type
Arg I/O Description of Argument
C COBOL PL/I
1 LONG PIC S9(5) FIXED INPUT Statement Handle. Currently ignored however, it
COMP BIN(31) must contain zeros.
2 LONG PIC S9(5) FIXED INPUT CICS Connection Type. Must be set to SWS-CICS-
COMP BIN(31) TYPE-EXCI or SWS-CICS-TYPE-NEON. The
“NEON" type is currently not supported.
3 CHAR* PIC CHAR(4) INPUT CICS Connection Name. A field containing the name
X(4) of a Defined Connection. The Connection Name
must be defined (using the “DEFINE
CONNECTION” command) in the Shadow Web
Server startup exec (SWS_INOO).
4 exci_return_| EXCI- EXCI_ OUTPUT The CICS EXCI Return Code Copybook layout for
code* RETURN- | RETURN_ the output return code area.
CODE CODE
5 LONG PIC S9(5) | FIXED INPUT User Token.
COMP BIN(31)
6 LONG PIC S9(5) | FIXED OUTPUT Pipe Token.
COMP BIN(31)

Return Values

SQLEXCICONNECT/SWSEXCICONNECT always setsasigned numeric return
code value. Possible values are:

Return Value

Description

SWS SUCCESS, The operation succeeded. The specified operation was performed.
SQL_SUCCESS

SWS ERROR, A parameter validation or runtime error was encountered. Error
SQL_ERROR information is available using the SWSERROR/SQLERROR

function.

SWS ENVIRONMENT_ERROR

The request could not be processed because of a runtime
environmental error, for example, you invoked the API service
outside of a web transaction procedure, or from outside the Server's
address space. The Serm@&y provide diagnostic information in the
wrap-around trace.

Any other value

The operation failed. By using the SQLERROR/SWSERROR
interface, you can obtain the error message pertinent to the error.

December 1999

Shadow Programming Guide

7-63

Host Application APl Function Calls

PL/I Example

% NCLUDE DFHXCPLL
% NCLUDE DFHXCRCL
% NCLUDE SPCPHD

DAL STMIHDL FI XED BI N(31); /* Staterment Handl e */
DAL USER TCKEN FI XED BI N(31); /* User Token */
DCL PIPE TOKEN FI XED Bl N(31); /* User Token */
DAL OONNECTI ON_NAME CHAR(4) ; /* Connection Nane */
DL RC FI XED Bl N(31); /* RETURN CCDE */
CONNECTI ON_NAME = ' BEWBT /* SET name */
CALL SWBEXC CONNECT(STMIHDL /* STATEMENT HANDLE */
SWs A CS TYPE EXA, /* connection type */
CONNECTI ON_NAME, /* connection nane */
EXA _RETURN QOCDE, [* cics exci return area*/
USER TCKEN, /* user token */
Pl PE TCKEN /* pipe token */
RC = PLIRETV() ; /* CGET RETURN CCDE */
| F RC A= SW5_SUCCESS THEN /* EXIT PROGRAM | F BAD RC*/
EXT,

7-64 Shadow Programming Guide December 1999

CICS APIs

C Example

Note:

The Neon Header file must be included after the CICS EXCI

headers.
#i ncl ude "df hxcpl h. h" /* ACS Return Area header */
#i ncl ude "df hxcrch. h" /* O CS Response Codes */
#i ncl ude "sccphd. h" /* Neon headers */
exci _return_code exci RET; /* cics exci return area */
| ong RG /* return code */
| ong stnt HOL; /* statement handl e */
| ong user TCKEN, /* user token */
| ong pi peTCKEN, /* user token */
char connection_name[] = "BEWST"; /* Connection Name */
CALL SWBEXO GONNECT(st nt HOL, /* statement handl e */

SWs A CS TYPE EXA, /* connection type */

connecti on_nane, /* connection name */

exci RET, /* cics exci return area */

user TOKEN, /* user token */

pi pe TCKEN /* pipe token */

if (rc A= SWs_SUCCESS)
return rc;

December 1999 Shadow Programming Guide 7-65

Host Application APl Function Calls

COBOL Example

OCPY DFHXCPLQ
OCPY DFHXCRCQ
QCPY SBCPHD.

77 CONNECTI ON- NAME
77 STATEMENT- HANDLE
77 USER TOKEN

77 Pl PE- TOKEN

A CS EXAO Return Areas
Ca CS EXA Response Codes
Neon Copybook

PIC X(4) VALUE IS’ EVST .
USAGE | S PA NTER

Pl C S9(5) COWP VALLE |'S ZERQ
Pl C S9(5) COWP VALLE |'S ZERQ

SET SW5- A CS-TYPE-EXA TO TRUE

CALL ' SDCPEC USI NG STATEMENT- HANDLE
SW5- A CS- TYPE
CONNECTI ON- NAMVE
EXQ - RETURN- GCDE
USER- TCKEN
Pl PE- TOCKEN

MOVE RETURN CCDE TO W5- SWEAPI - RETURN- CCDE.

I F NOT SW&- SUCCESS
GCBACK.

7-66

Shadow Programming Guide December 1999

CICS APIs

SDBEXCON/SWSEXCON Function

v

Can be used in Shadow/REX X.

v

Can be used from other REXX interpreters.

v

High-level Language Interface available.

The REXX-language SDBEX CON/SWSEXCON built-in function is used to
establish a CICS EXCI connect on behalf of the user.

Upon return from the call, the following REX X variables are popul ated with data:

REXX Variable Description

EXCI.STMTHDL The statement handle for the interface call.

EXCI.RETCODE The EXCI Return Code Area as mapped by the CICS Copybooks.

EXCI.PIPETOKN The Pipe Token required as input to subsequent API calls.
Syntax

The general form for aREX X -language invocation of SDBEX CON/SWSEXCON
is:

rc = swsexcon(CGonnection Type, |,

Connecti on Nane, ,
User Token)

Valid Arguments

Connection Type

Specifies the type of connection:

¢ EXCI — use CICS EXCl interface.
¢ NEON — currently not supported.

Note: Required parameter.

Connection Name

the Shadow Initialization exec member (SWS_INOO)
Note: Required parameter.

User Token

variable name.

Note: Required parameter.

December 1999

Shadow Programming Guide 7-67

Logical name of the connection as specified on the “DEFINE CONNECTION" statement in

Token created as a result of the SWSEXINI API Call. Use the EXCI.USERTOKN REXX

Host Application APl Function Calls

SDBEXCON/SWSEXCON Examples

contype ='EXA’ /* Connection Type */
connane = ' BEWBT' /* Connection Nanme from DEFI NE */
cicstran = 'EXA’ /* dCS Transaction Code */
ci cspgm = ' DFHBAXCS /* A CS Program Nare */

addr ess swssend

/* __ */

/* Initialize the user */

/* __ */
rc = swsexini (cont ype, connane)

/* __ */

/* Allocate a pipe */

/* __ */
rc = swsexcon(contype, connane, EXC . USERTCKN)

/* __ */

/* lssue DPL Request */

/* __ */

parm = '00000001" x| |’ FILEA 000001’
rc = swsexdpl (cont ype, connang, ci cstran, ci cspgm ,
par m EXCl . USERTCKN, EXA . Pl PETCKN)

pgnrc = substr(EXA . COMWAREA 1, 1, 4)

pgnrc = c2x(pgnrc)

parm = substr(EXA.COWAREA 1, 5, 14)

parm = '00000002" x| | parm

data = substr(EXA.COWAREA 1, 19, 80)
/* __ */
/* Disconnect the pipe */
/* __ */

rc =

swsexdi s(cont ype, connane, EXA . USERTCKN, EXA . Pl PETCKN)

7-68 Shadow Programming Guide December 1999

CICS APIs

High-Level Language Interface
SQLEXCIDPLREQ (SDCPED) or
SWSEXCIDPLREQ (SWCPED) Function

/ Can be used in Shadow/REXX.
/ Can be used from other REXX interpreters.
/ HLL entry point name is SDCPED/SWCPED.

Thisfunction is used to disconnect a CICS EXCI Connection. In order to execute
a CICS Transaction using thisinterface, you will need to execute the following
API calsin the sequence listed below:

Service Name

Service Description

SWSEXCIINITUSR

Toinitialize the CICS EXCI connection.

SWSEXCICONNECT

To connect to CICS through the EXCI interface.

SWSEXCIDPLREQ

ToissueaDPL request to CICS. This API can be called repetitively in order to
complete the processing required for the transaction.

SWSEXCIDISCONN

To disconnect a CICS EXCI connection.

Syntax

The genera form for invocation of SDCPED/SWCPED is.

CALL SQLEXA DPLREQ USI NG STATEMENT- HANDLE

SQL-d CS- TYPE

CONNECTI ON- NAMVE

TRANS- | D

EXQ - RETURN GCDE
PROGRAM NAVE

A CS- BUFFER- COMVAREA

O CS- BUFFER- COMVAREA- LENGTH
O CS- BUFFER: | NPUT- LENGTH
UON D

USER | D

USER TCKEN

Pl PE- TCKEN

EXQ - DPL- RETAREA

December 1999

Shadow Programming Guide 7-69

Host Application APl Function Calls

CALL Arguments

The SQLEXCIDPLREQ/SWSEXCIDPLREQ (SDCPED/SWCPED) function
arguments are described in the table which follows. All parameters are required.

HLL Argument Type

Arg I/0 Description of Argument
C COBOL PL/I
1 LONG PIC S9(5) FIXED INPUT Statement Handle. Currently ignored however, it
ComP BIN(31) must contain zeros.
2 LONG PIC S9(5) FIXED INPUT CICS Connection Type. Must be set to SWS-CICS-
COMP BIN(31) TYPE-EXCI or SWS-CICS-TYPE-NEON. The
“NEON" type is currently not supported.
3 CHAR* PIC CHAR(4) INPUT CICS Connection Name. A field containing the name
X(4) of a Defined Connection. The Connection Name
must be defined (using the “DEFINE
CONNECTION” command) in the Shadow Web
Server startup exec (SWS_INOO).
4 CHAR* PIC CHAR(4) INPUT CICS Transaction Name. The name of the mirror
X(4) transaction with which the target program is to run.
5 exci_return_| EXCI- EXCI_ OUTPUT The CICS EXCI Return Code Copybook layout for
code* RETURN- | RETURN_ the output return code area.
CODE CODE
6 CHAR* PIC S9(5) | FIXED INPUT CICS Program Name. The program to run and
COMP BIN(31) interact with the DPL request.
7 CHAR* PIC CHAR INPUT/ CICS COMMAREA.
X(1-32704)| (1-32704) | OUTPUT
8 LONG PIC FIXED INPUT CICS COMMAREA Length. The total length of the
S9(5) BIN(31) COMMAREA.
COMP
9 LONG PIC FIXED INPUT Input data length. The total length of the data within
S9(5) BIN(31) the COMMAREA.
COMP
10 CHAR* PIC CHAR(8) INPUT User ID. This is used as a work field and should be
X(8) spaces upon entry to the API call.
11 LONG PIC FIXED INPUT User Token.
S9(5) BIN(31)
COMP
12 LONG PIC FIXED INPUT Pipe Token.
S9(5) BIN(31)
COMP
13 exci-dpl- EXCI-DPL- | EXCI_DPL_| OUTPUT The CICS EXCI DPL Return area Copybook layout
retarea * RETAREA | RETAREA for the output return area.
7-70 Shadow Programming Guide December 1999

CICS APIs

Return Values

SQLEXCIDPLREQ/SWSEXCIDPLREQ aways sets a signed numeric return
code value. Possible values are:

Return Value

Description

SWS SUCCESS, The operation succeeded. The specified operation was performed.
SQL_SUCCESS

SWS ERROR, A parameter validation or runtime error was encountered. Error
SQL_ERROR information is avail able using the SWSERROR/SQL ERROR

function.

SWS _ENVIRONMENT_ERROR

The request could not be processed because of a runtime
environmental error, for example, you invoked the API service
outside of aweb transaction procedure, or from outside the Server's
address space. The Server may provide diagnostic information in the
wrap-around trace.

Any other value

The operation failed. By using the SQLERROR/SWSERROR
interface, you can obtain the error message pertinent to the error.

December 1999

Shadow Programming Guide 7-71

Host Application APl Function Calls

PL/I Example

% NCLUDE DFHXCPLL
% NCLUDE DFHXCRCL
% NCLUDE SPCPHD

DAL STMIHDL FI XED BI N(31); /* Statement Handl e */
DAL USER TCKEN FI XED BI N 31); /* User Token */
DCL PIPE TOKEN F XED BI N(31); /* User Token */
DAL OONNECTI ON NAME CHAR(4); /* Connection Name */
DL RC FI XED Bl N(31); /* RETURN OCCDE */
CONNECTI ON_NAME = ' BEWBT /* SET name */
CALL SWBEXA DPLREQ STMIHDL /* STATEMENT HANDLE */
SWs A CS_TYPE EXJ, /* CONNECTI ON TYPE */
CONNECTI ON_NAMVE, /* CONNECTI ON NAME */
TRANS | D, /* TRANSACTICN I D */
EXC _RETURN_CCDE, /* ACS EXAd RETURN AREA */
PROGRAM NAME, /* PROGRAM NAME */
COWAREA, /* COWAREA */
S| ZECF(COMWAREA) , /* COWAREA LENGTH */
STRLEN(COMMAREA) , /* COWAREA LENGTH */
NULL, /* UNT OF WRK | D AREA */
USER | D, /* USER ID */
USERTCKEN, /* USER TCKEN */
Pl PETCKEN, /* PIPE TOKEN */
EXCl _DPL_RETAREA) /* DPL RETURN CCDE AREA */
RC = PLIRETV(); /* GET RETURN QCDE *|
| F RC "= SWs_SUCCESS THEN /* EXXT PROGRAM | F BAD RC */
EXIT;

7-72 Shadow Programming Guide December 1999

CICS APIs

C Example
Note:
The Neon Header file must be included after the CICS EXCI
headers.
#i ncl ude "df hxcpl h. h" /[* ACS Return Area header */
#i ncl ude "df hxcrch. h" /* O CS Response Codes */
#i ncl ude "sccphd. h" /* Neon headers */
exci _return_code exci RET; /* cics exci return area */
exci _dpl _retarea exci DPL; [* cics exci DPL return area*/
| ong RG /* return code */
| ong stnt HOL; /* staterment handl e */
| ong user TCKEN, [* user token */
| ong pi peTCKEN, [* user token */
char commar ea] 32704] ; /* Connection Nane */
char connection_name[] = "BEWST'; /* Connection Nane */
char trans_id[] = "EXA"; /* Transaction id */
char user _id[] =" " /* userid */
CALL SWBEXA DPLREQ st nt HOL, /* statement handl e */
SWs A CS TYPE EXA, /* connection type */
connecti on_nane, /* connection nane */
trans_id, /* transaction id */
exci RET, /* cics exci return area */
pr ogr am harre, [* program nare */
comar ea, /* commar ea */
si zeof (comar ea) , /* commarea | ength */
strl en(comarea), /* commarea | ength */
NULL, /* unit of work id area */
user _id, /[* user id */
user TCKEN, /* user token */
pi pe TCKEN, /* pipe token */
exci DPL) /* DPL Return Code Area */

if (rc ~= SW5 SUCCESS)
return rc;

December 1999 Shadow Programming Guide 7-73

Host Application APl Function Calls

COBOL Example

OCPY DFHXCPLQ
OCPY DFHXCRCQ
QCPY SBCPHD.

77
77
77
77
77
77
77
77
77
01
01
05
10
10
10
10

CONNECTI ON- NAME

TRANS- I D

PROGRAM NAME

FILL-8

STATEMENT- HANDLE

USER TOKEN

Pl PE- TOKEN

G CS BUFFER- | NPUT- LENGTH
A CS- BUFFER- COWAREA- LENGTH
UON D

G CSBUFFER

G CS- BUFFER- COWAREA

A CS EXAO Return Areas
Ca CS EXA Response Codes
Neon Copybook

PIC X(4) VALUE IS’ EWST .
PIC X(4) VALUE IS’ EXO".
PIC X(8) VALUE IS ' DFHBAXCS .
PIC X(8) VALUE | S SPACES.
USAGE | S PO NTER

Pl C S9(5) COWP VALLE | S ZERO
Pl C S9(5) COWP VALUE | S ZERO
Pl C S9(5) COWP VALUE | S ZERO
Pl C S9(5) COWP VALLE | S ZERO
USAGE | S PO NTER

G CS- BUFFER- COMVAREA- RETURNCD
G CS- BUFFER- COWAREA- FI LENAME
G CS- BUFFER- COMVAREA- R DFI ELD
A CS- BUFFER- COWAREA- RECCRD

Pl C S9(5) COWP.
PIC X(8).

Pl C X(6).

Pl C X(512).

SET SW5- A CS-TYPE-EXA TO TRUE
CALL ' SDCPED USI NG STATEMENT- HANDLE

SW5- A CS- TYPE

CONNECTI ON- NAMVE

TRANS- | D

EXQ - RETURN- GCDE
PROGRAM NAME

G CS- BUFFER- COWAREA

G CS- BUFFER- COWAREA- LENGTH
G CS- BUFFER- | NPUT- LENGTH
UoON D

FILL-8

USER- TCKEN

Pl PE- TOKEN

EXQ - DPL- RETAREA

MOVE RETURN CCDE TO W5- SWAAPI - RETURN- CCDE.

IF

NOT SWE- SUCCESS
GCBACK.

7-74

Shadow Programming Guide

December 1999

CICS APIs

SDBEXDPL/SWSEXDPL Function

Can be used in Shadow/REX X.

Can be used from other REXX interpreters.

High-level Language Interface available.

The REXX-language SDBEXDPL/SWSEXDPL built-in function is used to estab-
lish a CICS EXCI connect on behalf of the user.

Upon return from the call, the following REX X variables are popul ated with data:

REXX Variable Description

EXCI.STMTHDL The statement handle for the interface call.

EXCI.RETCODE The EXCI Return Code Area as mapped by the CICS Copybooks.

EXCI.COMMAREA.1 The output COMMAREA from the CICS Transaction.

EXCI.DPLCODE The DPL Return Code Area as mapped by the CICS Copybooks.
Syntax

The general form for a REX X-language invocation of SDBEXDPL/SWSEXDPL
is:

rc = swsexdpl (Gonnection Type, |,
Connecti on Nare,
A CS Transaction Nane, ,
A CS Program Nane,
A CS Transaction | nput, |,
User Token, ,
Pi pe Token)

Valid Arguments

Connection Type

Specifies the type of connection:

¢ EXCI — use CICS EXCI interface.
¢ NEON — currently not supported.

Note: Required parameter.

Connection Name

the Shadow Initialization exec member (SWS_INOO).
Note: Required parameter.

CICS Transaction Name The Trans-ID of the mirror transaction with which the target program is to run under.

Note: Required parameter.

December 1999

Shadow Programming Guide 7-75

Logical name of the connection as specified on the “DEFINE CONNECTION" statement in

Host Application APl Function Calls

CICS Program Name The program to run and interact with via DPL requests.
Note: Required parameter.

CICS Transaction Input The input to the executing transaction passed through the COMMAREA. A COMMAREA
will of 32,704 bytes will be allocated, the transaction input will be copied into this area and
passed to the transaction.

Note: Required parameter.

User Token The token created as aresult of the SWSEXINI API Call. Use the EXCI.USERTOKN
REXX variable name.

Note: Required parameter.

Pipe Token The token created as aresult of the SWSEXCON API Call. Use the EXCI.PIPETOKN
REXX variable name.

Note: Required parameter.

7-76 Shadow Programming Guide December 1999

CICS APIs

SDBEXDPL/SWSEXDPL Examples

contype ='EXA’ /* Connection Type */
connane = 'BEWBT' /* Connection Nane from DEFI NE */
cicstran = "'EXA’ /* dCS Transaction Code */
ci cspgm = ' DFHBAXCS /* A CS Program Nare */

addr ess swssend

/* __ */

/* Initialize the user */

/* __ */
rc = swsexini (cont ype, connane)

/* __ */

/* Allocate a pipe */

/* __ */
rc = swsexcon(contype, connane, EXC . USERTCKN)

/* __ */

/* 1ssue DPL Request */

/* __ */

parm = '00000001" x| |’ FILEA 000001’
rc = swsexdpl (cont ype, connang, ci cstran, ci cspgm ,
par m EXCl . USERTCKN, EXA . Pl PETCKN)

pgnrc = substr(EXA . COMWAREA 1, 1, 4)

pgnrc = c2x(pgnrc)

parm = substr(EXA.COWAREA 1, 5, 14)

parm = '00000002" x| | parm

data = substr(EXA.COWAREA 1, 19, 80)
/* __ */
/* Disconnect the pipe */
/* __ */

rc =

swsexdi s(cont ype, connane, EXA . USERTCKN, EXA . Pl PETCKN)

December 1999 Shadow Programming Guide 7-77

Host Application APl Function Calls

High-Level Language Interface
SQLEXCIINITUSR (SDCPEI) or
SWSEXCIINITUSR (SWCPEI) Function

Can be used in Shadow/REXX.

Can be used from other REXX interpreters.

HLL entry point name is SDCPEI/SWCPEI.

Thiscall isused to initialize a user for accessto CICS using EXCI. Standard

ODBC return codes are returned. In order to execute a CICS Transaction using
thisinterface, you will need to execute the following API calls in the sequence
listed below.

Service Name

Service Description

SWSEXCIINITUSR

Toinitialize the CICS EXCI connection .

SWSEXCICONNECT

To connect to CICS through the EXCI interface.

SWSEXCIDPLR

EQ

ToissueaDPL request to CICS. This API can be called repetitively in order to
complete the processing required for the transaction.

SWSEXCIDISCONN

To disconnect a CICS EXCI connection.

Syntax
The general form for invocation of SDCPEI/SWCPEI is:

CALL SQLEXQ I N TUSR USI NG STATEMENT- HANDLE

SQ@.-A CS- TYPE
CONNECTI ON- NAME

EXQ - RETURN- CCDE

USER-

TCKEN

CALL Arguments

The SQLEXCIINITUSR/SWSEXCIINITUSR (SDCPEI/SWCPEI) function argu-
ments are described in the table which follows. All parameters are required.

HLL Argument Type

Arg I/0 Description of Argument
C COBOL PL/I
1 LONG PIC FIXED INPUT Statement Handle. Currently ignored however, it
S9(5) COMP | BIN(31) must contain zeros.
7-78 Shadow Programming Guide December 1999

CICS APIs

HLL Argument Type
Arg I/O Description of Argument
C COBOL PL/I
2 LONG PIC FIXED INPUT CICS Connection Type. Must be set to SWS-CICS-
S9(5) COMP| BIN(31) TYPE-EXCI or SWS-CICS-TYPE-NEON. The
“NEON" type is currently not supported.
3 CHAR* PIC CHAR(4) INPUT CICS Connection Name. A field containing the name
X(4) of a Defined Connection. The Connection Name
must be defined (using the “DEFINE
CONNECTION” command) in the Shadow Web
Server startup exec (SWS_INOO).
4 exci_return_| EXCI- EXCI_ OUTPUT The CICS EXCI Return Code Copybook layout for
code* RETURN- | RETURN_ the output return code area.
CODE CODE
5 LONG PIC S9(5) | FIXED OUTPUT User Token.
COMP BIN(31)

Return Values

SQLEXCIINITUSR/SWSEXCIINITUSR aways sets a signed numeric return
code value. Possible values are:

Return Value

Description

SWS SUCCESS, The operation succeeded. The specified operation was performed.
SQL_SUCCESS

SWS ERROR, A parameter validation or runtime error was encountered. Error
SQL_ERROR information is available using the SWSERROR/SQLERROR

function.

SWS _ENVIRONMENT_ERROR

The request could not be processed because of a runtime
environmental error, for example, you invoked the API service
outside of a web transaction procedure, or from outside the Server's
address space. The Serm@y provide diagnostic information in the
wrap-around trace.

Any other value

The operation failed. By using the SQLERROR/SWSERROR
interface, you can obtain the error message pertinent to the error.

December 1999

Shadow Programming Guide

7-79

Host Application APl Function Calls

PL/I Example

% NCLUDE DFHXCPLL
% NCLUDE DFHXCRCL
% NCLUDE SPCPHD

DAL STMIHDL FIXED BIN(31); /* Statement Handl e */
DL USER TOKEN FI XED BIN(31); /* User Token */
DAL OONNECTI ON_NAME CHAR(4); /* Connection Nare */
DL RC FI XED BIN(31); /* RETURN CCDE */
CONNECTI ON_NAME = ' BEWBT /* SET name */
CALL SWBEXA | N TUSR(STMIHDL, /* STATEMENT HANDLE */
SWs A CS TYPE EXA, /* connection type */
CONNECTI ON_NAME, /* connection nane */
EXA _RETURN QOCDE, /* cics exci return area */
USER TCKEN) /* user token */
RC = PLIRETV() ; /* CGET RETURN CCDE */
| F RC "= SW5_SUCCESS THEN /* EXT PROGRAM | F BAD RC */
EXT;
C Example
Note:
The Neon Header file must be included after the CICS EXCI
headers.
#i ncl ude "df hxcpl h. h" /* ACS Return Area header */
#i ncl ude "df hxcrch. h" /* O CS Response Codes */
#i ncl ude "sccphd. h" /* Neon headers */
exci _return_code exci RET; /* cics exci return area */
| ong RC /* return code */
| ong st HOL; /* statement handl e */
| ong user TCKEN, /* user token */
char connection_name[] = "BEWST'; /* Connection Nane */
CALL SWBEXA | N TUSR(st nt HOL, [* statement handl e */
SWs A CS TYPE BEXA, /* connection type */
connect i on_nane, /* connection name */
exci RET, /* cics exci return area */
user TCKEN) /* user token */

if (rc A= SWs_SUCCESS)
return rc;

7-80 Shadow Programming Guide December 1999

CICS APIs

COBOL Example

QCPY DFHXCPLQ
QCPY DFHXCROQ
QCPY SBCPHD.

77 CONNECTI ON- NAME
77 STATEMENT- HANDLE
77 USER TOKEN

A CS EXAO Return Areas
A CS EXAd Response Codes
Neon Copybook

PIC X(4) VALUE IS’ EVST .
USAGE | S PO NTER
Pl C S9(5) COWP VALLE |'S ZERQ

SET SW&- A CS- TYPE-EXA TO TRUE

CALL ' SDCPEl" USI NG

STATEMENT- HANDLE
SW5- A CS- TYPE
CONNECTI ON- NAME
EXQ - RETURN- CCDE
USER- TCKEN

MOVE RETURN CCDE TO W5- SWAAPI - RETURN- CCDE.

I F NOT SW&- SUCCESS
GCBACK.

December 1999

Shadow Programming Guide 7-81

Host Application APl Function Calls

SDBEXINI/SWSEXINI Function

v

Can be used in Shadow/REXX.

v

Can be used from other REXX interpreters.

v

High-level Language Interface available.

The REXX-language SDBEXINI/SWSEXINI built-in function is used to initial-
ize a CICS EXCI interface between Shadow for CICS and CICS v4.1 and above.

Upon return from the call, the following REX X variables are popul ated with data:

REXX Variable Description

EXCI.STMTHDL The statement handle for the interface call.

EXCI.RETCODE The EXCI Return Code Area as mapped by the CICS Copybooks.

EXCI.USERTOKN The User Token required as input to subsequent API calls.
Syntax

The general form for a REX X-language invocation of SDBEXINI/SWSEXINI is:

rc = swsexi ni (Connection Type, |,
Connecti on Nane)

Valid Arguments

Connection Type

Specifies the type of connection:

e EXCI — use CICS EXCl interface.
¢ NEON — currently not supported.

Note: Required parameter.

Connection Name

Logical name of the connection as specified on the “DEFINE CONNECTION” statement in
the Shadow Initialization exec member (SWS_INOO)

Note: Required parameter.

7-82

Shadow Programming Guide December 1999

CICS APIs

SDBEXINI/SWSEXINI Examples

contype ='EXA’ /* Connection Type */
connane = ' BEWAT /* Connection Narme from DEFINE */
cicstran = "EXA’ /* dCS Transaction Code */
ci cspgm = ' DFHBAXCS /* A CS Program Name */

addr ess swssend

/* __ */

/* Initialize the user */

/* __ */
rc = swsexini (contype, connane)

/* __ */

/* Allocate a pipe */

/* __ */
rc = swsexcon(contype, connane, EXA . USERTCKN)

/* __ */

/* lssue DPL Request */

/* __ */

parm = '00000001' x| |’ FILEA 000001’
rc = swsexdpl (contype, connang, ci cstran, ci cspgm ,
par m EXA . USERTCKN, EXA . Pl PETCKN)

pgnrc = substr (EXA . COMVAREA 1, 1, 4)

pgnrc = c2x(pgnrc)

parm = substr(EXQ . COMWAREA 1, 5, 14)

parm = '00000002" x| | parm

data = substr(EXA.COMVAREA 1, 19, 80)
/* __ */
/* Disconnect the pipe */
/* __ */

rc = swsexdi s(contype, connane, EXA . USERTCKN, EXA . Pl PETCKN)

December 1999 Shadow Programming Guide 7-83

Host Application APl Function Calls

High-Level Language Interface
SQLEXCIDISCONN (SDCPEL) or
SWSEXCIDISCONN (SWCPEL) Function

v

Can be used in Shadow/REXX.

v

Can be used from other REXX interpreters.

v

HLL entry point nameis SDCPEL/SWCPEL.

SQLEXCIDISCONN/SWSEXCIDISCONN isthe Web Server API function used
to disconnect a CICS EXCI Connection. In order to execute a CICS Transaction
using thisinterface, you will need to execute the following API callsin the

sequence listed below.

Service Name

Service Description

SWSEXCIINITUSR

Toinitialize the CICS EXCI connection.

SWSEXCICONNECT

To connect to CICS through the EXCI interface.

SWSEXCIDPLREQ

ToissueaDPL request to CICS. This API can be called repetitively in order to
complete the processing required for the transaction.

SWSEXCIDISCONN

To disconnect a CICS EXCI connection.

Call Arguments

The SQLEXCIDISCONN/SWSEXCIDISCONN (SDCPEL/SWCPEL) function
arguments are described in the table which follows. All parameters are required.

HLL Argument Type

Arg I/0 Description of Argument
C COBOL PL/I
1 LONG PIC S9(5) FIXED INPUT Statement Handle. Currently ignored however, it
COMP BIN(31) must contain zeros.
2 LONG PIC S9(5) FIXED INPUT CICS Connection Type. Must be set to SWS-CICS-
COMP BIN(31) TYPE-EXCI or SWS-CICS-TYPE-NEON. The
“NEON?” type is currently not supported.

3 CHAR* PIC X(4) CHAR(4) INPUT CICS Connection Name. A field containing the name
of a Defined Connection. The Connection Name
must be defined (using the “DEFINE
CONNECTION” command) in the Shadow Web
Server startup exec (SWS_INQO).

7-84 Shadow Programming Guide December 1999

CICS APIs

HLL Argument Type
Arg I/O Description of Argument
C COBOL PL/I
4 exci_return_ | EXCI- EXCI_ OUTPUT The CICS EXCI Return. Code Copybook layout for
code* RETURN- | RETURN_ the output return code area.
CODE CODE
5 LONG PIC S9(5) FIXED INPUT User Token.
COMP BIN(31)
6 LONG PIC S9(5) FIXED OUTPUT Pipe Token.
COMP BIN(31)

Return Values

SQLEXCIDISCONN/SWSEXCIDISCONN aways sets a signed numeric return
code value. Possible values are;

Return Value

Description

SWS SUCCESS, The operation succeeded. The specified operation was performed.
SQL_SUCCESS

SWS ERROR, A parameter validation or runtime error was encountered. Error
SQL_ERROR information is avail able using the SWSERROR/SQL ERROR

function.

SWS _ENVIRONMENT_ERROR

The request could not be processed because of a runtime
environmental error, for example, you invoked the API service
outside of aweb transaction procedure, or from outside the Server's
address space. The Server may provide diagnostic information in the
wrap-around trace.

Any other value

The operation failed. By using the SQLERROR/SWSERROR
interface, you can obtain the error message pertinent to the error.

December 1999

Shadow Programming Guide 7-85

Host Application APl Function Calls

PL/I Example

% NCLUDE DFHXCPLL
% NCLUDE DFHXCRCL
% NCLUDE SPCPHD

DOL STMIHDL FIXED BIN(31);
DOL USER TOKEN FI XED BI N(31);
DOL PIPE TOKEN FI XED BI N(31);
DOL CONNECTI ON NAVE CHAR(4) ;
DAL RC FI XED BI N(31);

CONNECTI ON_NAME = ' BEWBT

CALL SWBEXC DI SOONN(STMIHDL
SV O CS_TYPE_EX
CONNECTI ON_NAMVE
EXO_RETURN_OCDE,
USER_TOKEN,

Pl PE_TOKEN)

RC = PLIRETV();
| F RC A= SWS_SUCCESS THEN
EXIT;

/*
/*
/*
/*
/*

/*

/*
/*
/*
/*
/*
/*

/*
/*

Statenent Handl e
User Token

User Token
Connect i on Nane
RETURN CCDE

SET nane

STATEMENT HANDLE
connection type
connecti on name

cics exci return area
user token

pi pe token

CET RETURN CCDE

*/
*/
*/
*/
*/

*/

*/
*/
*/
*/
*/
*/

*/

EXIT PROGRAM | F BAD RC */

7-86

Shadow Programming Guide

December 1999

CICS APIs

C Example
Note:
The Neon Header file must be included after the CICS EXCI
headers.
#i ncl ude "df hxcpl h. h" /* ACS Return Area header */
#i ncl ude "df hxcrch. h" /* O CS Response Codes */
#i ncl ude "sccphd. h" /* Neon headers */
exci _return_code exci RET; /* cics exci return area */
| ong RG /* return code */
| ong stnt HOL; /* statement handl e */
| ong user TOKEN, /* user token */
| ong pi peTCKEN, /* user token */
char connection_name[] = "BEWST'; /* Connection Name */
CALL SWsExci O sconn(st nt HOL, /* statement handl e */
SWs A CS TYPE EXA, /* connection type */
connecti on_nane, /* connection name */
exci RET, /* cics exci return area */
user TOKEN, /* user token */
pi peTCKEN) /* pipe token */
if (rc ~= SW5s SUCCESS)
return rc;
COBOL Example
QPY DFHXCPLQO A CS EXAd Return Areas
CCPY DFHXCROO G CS EXAd Response Codes
QOPY SBCPHD. Neon Copybook
77 CONNECTI ON- NAME PIC X(4) VALLE | S’ BEWsT .
77 STATEMENT- HANDLE USAGE | S PA NTER
77 USER- TOKEN PI C S9(5) COWP VALLE | S ZERQ
77 Pl PE- TOKEN Pl C S9(5) COWP VALLE | S ZERQ
SET SW5-d CS-TYPE-EXA TO TRUE
CALL ' SDCPEL’ USI NG STATEMENT- HANDLE
SW5- A CS- TYPE
CONNECTI ON- NAME
EXA - RETURN- CCDE
USER- TCKEN
Pl PE- TCKEN
MOVE RETURN CCDE TO WB- SWBAPI - RETURN CCDE.
I F NOT' SW&- SUCCESS
ABACK.
December 1999 Shadow Programming Guide 7-87

Host Application APl Function Calls

SDBEXDIS/SWSEXDIS Function

v

Can be used in Shadow/REXX.

v

Can be used from other REXX interpreter.s

v

High-level Language Interface available.

The REXX-language SDBEXDIS/SWSEXDIS built-in function is used to estab-
lish a CICS EXCI connect on behalf of the user.

Upon return from the call, the following REX X variables are popul ated with data:

REXX Variable Description

EXCI.STMTHDL The statement handle for the interface call.

EXCI.RETCODE The EXCI Return Code Area as mapped by the CICS Copybooks.
Syntax

The general form for a REXX-language invocation of SDBEXDIS/SWSEXDIS
is.

rc = swsexdi s(Connection Type, |,
Connecti on Narre,
User Token, ,
Pi pe Token)

Valid Arguments

Connection Type

Specifies the type of connection.

¢ EXCI — use CICS EXCl interface.
¢ NEON — currently not supported.

Note: Required parameter.

Connection Name

Logical name of the connection as specified on the “DEFINE CONNECTION" statement in
the Shadow Initialization exec member (SWS_INOO)

Note: Required parameter.

User Token

The token created as a result of the SWSEXINI API Call. Use the EXCI.USERTOKN
REXX variable name.

Note: Required parameter.

Pipe Token

The token created as a result of the SWSEXCON API Call. Use the EXCI.PIPETOKN
REXX variable name.

Note: Required parameter.

7-88

Shadow Programming Guide December 1999

CICS APIs

SDBEXDIS/SWSEXDIS Examples

contype ='EXA’ /* Connection Type */
connane = 'BEWBT /* Connection Nane fromDEFINE */
cicstran = 'EXA’ /* dACS Transaction Code */
ci cspgm = ' DFHBAXCS /* A CS Program Name */
address swssend
/* __ */
/* Initialize the user */
/* __ */

rc = swsexini (contype, connane)
/* __ */
/* Allocate a pipe */
/* __ */

rc = swsexcon(contype, connane, EXA . USERTCKN)
/* __ */
/* lssue DPL Request */
/* __ */

parm = '00000001' x| |’ FILEA 000001’

rc = swsexdpl (contype, connang, ci cstran, ci cspgm ,

par m EXA . USERTCKN, EXCl . Pl PETCKN)

pgntc = substr(EXQ . COMAREA 1, 1, 4)

pgnmrc = c2x(pgnrc)

parm = substr(EXA . COMWAREA 1, 5, 14)

parm = '00000002" x| | parm

data = substr(EXA.COMVAREA 1, 19, 80)
/* __ */
/* Disconnect the pipe */
/* __ */

rc = swsexdi s(contype, connane, EXA . USERTCKN, EXA . Pl PETCKN)

December 1999 Shadow Programming Guide 7-89

Host Application APl Function Calls

Web Server Specific APlIs

API| Description DIRECT WEB SEF WEB/RX
Web Server Specific APIs

To transmit data to Web Server ® SWCPSN ® SWSSEND
clients:

To buffer outbound HT TP response ® SWCPRE ® SWSRESP
headers:

To transmit data directly to web SWCPFI SWSFILE
client: ® ®

To provide new URL value: ® SWCPSO ® SWSSET
To provideameanstoissue an ® SWCPWT ® SWSWTO

MVSwriteto operator:

7-90

Shadow Programming Guide

December 1999

Web Server Specific APIs

High-Level Language Interface
SWSSEND (SWCPSN) Function

Can be used in Shadow/REXX.

Can be used from other REXX interpreters.

HLL entry point name is SWCPSN.

SWSSEND is the Web Server API function used to transmit out-bound data to
web server clients, flush buffered datato the client, or to purge bufferswhich have

not been transmitted.

CALL Arguments

The SWSSEND function takes four arguments. All four arguments must be speci-
fied on the call.

HLL Argument Type

Arg /0 Description of Argument
C COBOL PL/I
1 HDBC Usage PTR Input The connection handle. The connection handleis an
pointer opague, four-byte address pointer. The connection
handleis currently not used, and must be set to zero
(NULL).
2 UDWORD | PIC S9(5) FIXED Input A four-byte flag-word indicating the type of
COMP BIN(31) operation to be performed. One of the following

manifest constants should be used to indicate the
desired operation. The values are mutually exclusive;
only one can be used.

SWS SEND_BINARY indicates that the third
argument contains binary-format data which
should be transmitted to the web client, as is.

SWS SEND_TEXT indicates that the third
argument contains text-format data which is
processed by the web server to remove trailing
blanks, is translated from EBCDIC to ASCII,
and a CR character appended to the end.

SWS SEND_FLUSH indicates that any un-
sent data within Web Server buffers should be
immediately transmitted to the client program.

SWS SEND_PURGE indicates that any un-
sent data within the Web Servers transmission
buffers should be discarded without being trans-
mitted to the client.

December 1999

Shadow Programming Guide

7-91

Host Application APl Function Calls

HLL Argument Type

Arg I/O Description of Argument
C COBOL PL/I
3 PTR PIC X(nnn) | CHAR Input The buffer area containing the data to be transmitted
(nnn) to the web client. The data value can be no longer

than 8K inlength. This argument must be specified,
even if the second argument specifiesaflush or purge
operation. The length of the data value within the
buffer areais specified by the forth argument.

4 SDWORD | PIC S9(5) FIXED Input The size of the data value given by the third

COMP BIN(31)

argument. This can be an integer fullword valuein
the range 0 to 8K. You can also use the manifest
congtant, SWS_NTS, to specify that datais anull-
terminated string. This value should be zero for flush
Or purge operations.

Return Values

SWSSEND always sets a signed numeric return code value. Possible values are:

Return Value

Description

SWS SUCCESS, The operation succeeded. The output data has been buffered, or for
SQL_SUCCESS flush and purge operations, the buffer operation has been compl eted.
SWS ERROR, A parameter validation or runtime error was encountered. Error
SQL_ERROR information is avail able using the SWSERROR/SQL ERROR

function.

SWS ENVIRONMENT_ERROR

The request could not be processed because of a runtime
environmental error, for example, you invoked the API service
outside of aweb transaction procedure, or from outside the Server's
address space. The Server may provide diagnostic information in the
wrap-around trace.

SWS INVALID_HANDLE,
SQL_INVALID_HANDLE

The connection handle argument isinvalid. No error information can
be returned using SQLERROR/SWSERROR.

4 The operation failed due to loss of the communications session.
Further out-bound transmissions will not be possible.
8 The requested operation was invalid within the overall context of the

transaction process. When this return code is set, the cause for the
reguest rejection can normally be found in the wrap-around trace.

Possible reasons for return code 8 being set are:

« An additional transmission buffer was needed, but could not be
obtained. Transmission of data cannot be performed in cross-

memory mode.

¢ Anoutput request (TEXT or BINARY) is being made, but is
invalid at the current time. This occurs if you attempt to trans-
mit data after having issued an SWSFILE(SEND) request.

7-92

Shadow Programming Guide

December 1999

Web Server Specific APIs

The SWSSEND operation is not logged to the Server's wrap-around trace file
unlessan error occurs. If you need to trace information sent using SWSSEND, use
the SENDTRACE keyword of the / * WANrule header.

PL/I Example
DAL SCON PTR /* Connection Handl e */
DAL SDATA CHAR(256); /* Text output area */
DAL SSIZE FIXED BIN(31); /* Text length area */
DAL RC FI XED BI N(31); /* return code */
DAL DVHX FI XED Bl N(31) BASED, /* Dumny Handl e field */
ADDR(SOO\N) - >DVHX = 0; /* dear Connection Handl e*/
SDATA ="Hello Wrld"’; /* Set output area */
SSI ZE = 12; /* set |engt */
CALL SWBSEND(SCONN /* send the text data */

SWS_SEND TEXT,

SDATA,

SSIZE) ;
RC = PLIRET\(); /* get return code */
| F RC "= SWs_SUCCESS THEN /* exit programif bad RC */
EXT,
C Example
HDBC sConn = NULL; /* Connection Handl e */
char sData[] = "Null-termnated!"; /* Text string definition */
| ong RC /* return code */
rc = SWsSend(&sConn, /* send the text data */

SWS_SEND TEXT,

sDat a,

SWE NTS);
if (rc "= SW5 SUCCESS) return; /* exit programif bad RC */

COBOL Example

77 SOONN SAGE |'S PO NTER
77 SDATA Pl C X(80).
77 SSIZE Pl C S9(5) COWP.
MOVE * HELLO WORLD!’ TO SDATA
MOVE 12 TO SSI ZE.
CALL ' SACPSN US| NG SCONN,

SV SEND- TEXT,

SDATA,

Ssl ZE

MOVE RETURN CCDE TO WS- SWEAP! - RETURN- OCDE.
I F NOT SW&- SUCCESS GOBACK

December 1999 Shadow Programming Guide 7-93

Host Application APl Function Calls

SWSSEND Function

Can be used in Shadow/REXX.

Can be used from other REXX interpreters.

High-level language interface available.

A NIA NI IR R

Also see SWSSEND Host Command Environment.

SWSSEND is abuilt-in function used to transmit out-bound data to web server
clients from REXX-Language event procedures. SWSSEND can only be used
from within WWW event procedures and will return an error if invoked from
other event procedure types.

Syntax

The general form for invocation of SWSSEND is:

z = SWESEND(argl {, arg2 })

Valid Arguments

The SWSSEND function takes one or two arguments.

The first argument always specifies the data to be transmitted to the web server
client. A NULL string can be passed as the first argument, or the argument can be
omitted entirely by coding a single commain its place.

The second argument can be one of the following string constants:

TEXT

Indicates that the data specified by the first argument istext data. The string is converted
from EBCDIC to ASCII before transmission and atrailing CRLF is added. Trailing blanks,
if any, are also removed from the string. Text format data is assumed, if the second argument
is omitted.

BINARY

Indicates that the data specified by the first argument is binary data. The string is transmitted
to the Web Client, asis, without additional processing.

FLUSH

Indicates any data already in the out-bound buffers should be written to the client
immediately. The first argument isignored.

PURGE

Indicates that all data currently un-transmitted within buffers should be discarded. Thefirst
argument isignored.

7-94

Shadow Programming Guide December 1999

Web Server Specific APIs

Return Values

SWSSEND always returns a numeric value. If the value is zero the operation has
completed successfully. A non-zero return value indicates that the communica-
tions session has been lost.

The SWSSEND operation is not logged to the Server’s wrap-around trace file
unless an error occurs. If you need to trace information sent using SWSSEND, use
the SENDTRACE keyword of the /*WWW rule header.

Examples

Thefollowing call will buffer the HTML datafor out-bound transmission. A Line-
Feed character will be added following the data and the data will be translated to
ASCII before transmission:

htmldata = “<h1>This is a Header</h1>"
z=SWSSEND(htmidata)

Thefollowing call will place the datainto the out-bound buffer with no additional
processing:

z=SWSSEND(gifdata , “BINARY")
Thefollowing call will cause all buffered data to be sent to the client immediately.
z=SWSSEND(, “FLUSH")

Thefollowing call will purge all previously buffered data. Datawhich was flushed
prior to this call, will have already been sent to the web client.

z=SWSSEND(, “PURGE")

December 1999

Shadow Programming Guide 7-95

Host Application APl Function Calls

High-Level Language Interface
SWSRESP (SWCPRE) Function

Can be used in Shadow/REXX.

Can be used from other REXX interpreters.

HLL entry point name is SWCPRE.

SWSRESP (entry point SWCPRE) is a high level function used to buffer custom-
ized out-bound HT TP response headers for subsequent transmission to web client
browsers.

SWSRESP can be used to buffer an HTTP response header at any time during the
life of aweb transaction. Using SWSRESP to buffer HTTP response headers dif-
fers from merely writing these headers using SWSSEND:

m When using SWSSEND, HTTP headers must be written before any message
body data (e.g. an HTML page or binary GIF image) has been output.

m SWSRESP can be used before, during or after output of the message body.

The Server merges the HTTP response headers which have been buffered using
SWSRESP with any other data generated by the web transaction. This merge pro-
cessing takes place when the web transaction ends and causes the compl ete output
stream to be assembled and transmitted to the client.

SWSRESP is only valid when aweb transaction procedure is operating in server-
parsed header mode since the merging/assembly, described above, is disabled in
non-parsed-header mode. A call to SWSRESP will return an error if the web
transaction is not operating in server-parsed header mode.

CALL Arguments

The SWSRESP (entry point SWCPRE) function takes six arguments. All six argu-
ments must be specified on the call.

HLL Argument Type
Arg I/O Description of Argument
C COBOL PL/I
1 HDBC Usage PTR Input The connection handle. The connection handleis an
pointer opague, four byte address pointer. The connection
handleis currently not used, and must be set to zero
(NULL).
7-96 Shadow Programming Guide December 1999

Web Server Specific APIs

HLL Argument Type

Arg I/O Description of Argument
C COBOL PL/I
2 UDWORD | PIC S9(5) FIXED Input A four-byte flag-word indicating the type of
COMP BIN(31) operation to be performed. The only value currently
supported is:
SWS _RESPONSE _ADD
3 PTR PIC X(nnn) | CHAR Input The buffer area containing the header to be
(nnn) transmitted to the web client. The data value can be
no longer than 8K in length. The length of the header
is specified by the 4th argument. The colon after the
response/general header is added by the SWSRESP
function; thereforeit is not necessary to includeitin
the third argument of the SWSRESP call.
4 SDWORD | PIC S9(5) FIXED Input The length of the data value given by the third
COMP BIN(31) argument. This can be an integer fullword valuein
the range of 0 to 8K. You can a so use the manifest
constant SWS_NTS to specify that the datais anull
terminated string.
5 PTR PIC X(nnn) | CHAR Input The buffer area containing the entity body text to be
(nnn) transmitted to the web client. The data value can be
no longer than 8K in length. The length of the entity
body text is specified by the 5 argument.
6 SDWORD | PIC S9(5) FIXED Input The length of the data value given by the fourth

COMP BIN(31)

argument. This can be an integer fullword valuein
the range of 0 to 8K. You can aso use the manifest
constant SWS_NTS to specify that the datais anull
terminated string.

Return Values

SWSRESP aways sets a signed numeric return code value. Possible values are:

Return Value

Description

SWS SUCCESS The operation succeeded. The specified header has been placed in
the output buffer.
SWS ERROR A parameter validation or runtime error was encountered. Error

information is available using the SWSERROR function.

SWS _ENVIRONMENT_ERROR

The request could not be processed because of a runtime
environmental error, for example, you invoked the API service
outside of aweb transaction procedure, or from outside the Server's
address space. The Server may provide diagnostic information in the
wrap-around trace.

SWS INVALID_HANDLE

The connection handle argument isinvalid. No error information can
be returned using SWSERROR.

Any other value

The operation failed.

December 1999

Shadow Programming Guide 7-97

Host Application APl Function Calls

The SWSRESP operation is not logged to the Server’s warp-around trace file
unless an error occurs. If you need to trace information sent using SWSRESP, use
the SENDTRACE keyword of the/ * WWV rule header.

PL/I Example
DAL SCOWN PTR /* Connection Handl e */
DAL HDATA CHAR(256) ; /* Header area */
DAL HSlZE FI XED BI N(31); /* Header |ength */
DAL BDATA CHAR(256) ; /* Body area */
DAL BSIZE FI XED BI N(31); /* Body | ength */
DAL DwvHX FI XED BI N(31) BASED,/* Dummy Handl e field */
ADDR(SCONN) - >DIVHX=0; /* Zero connection handle */
HDATA="Pragma’”; [* Set header data *
HSIZE=6; f* Set header length *
BDATA="no-cache”; * Set body data *
BSIZE=8; [* Set body length *
CALL SWSRESP(SCONN * Send the response *
SWS_RESPONSE_ADD,
HDATA,
HSIZE,
BDATA,
BSIZE);
RC=PLIRETV(); * Get return code *
IF RC ~=SWS_SUCCESS THEN * exit if bad RC *
EXIT;
C Example
HDBC sConn =NULL; * Connection Handle *
char hData]] =“Pragma”; [* Header text */
char bData]] =“no-cache”; * body text *
long RC; * return code *
rc = SWSResp(&sConn, * send the response *
SWS_RESPONSE_ADD,
hData,
SWS_NTS,
bData,
SWS_NTS);
If(rc ~=SWS_SUCCESS) return; [* exit if bad rc */

7-98 Shadow Programming Guide December 1999

Web Server Specific APIs

COBOL Example

77 SOONN USAGE | S PA NTER
77 HDATA Pl C X(80).

77 HSlI ZE Pl C S9(5) QQw,.
77 BDATA Pl C X(80).

77 BSI ZE Pl C S9(5) QOw,.
MOVE ' Pragna’ TO HDATA

MOVE 6 TO HSI ZE.

MOVE ' no-cache’ TO BDATA

MOVE 8 TO BSI ZE.

CALL ' SWIPRE USI NG SCONN,

SWS- RESPONSE- ADD,

HDATA,

HSl ZE,

BDATA,

BSl ZE.
MOVE RETURN CCDE TO W5- SWAAPI - RETURN- CCDE.
I F NOTI' SW5- SUCCESS GOBACK.

December 1999 Shadow Programming Guide 7-99

Host Application APl Function Calls

SWSRESP Function

Can be used in Shadow/REXX.

Can be used from other REXX interpreters.

High Level language available.

SWSRESP is ahigh level function used to buffer customized out-bound HTTP
response headers for subsequent transmission to web client browsers.

SWSRESP can be used to buffer an HTTP response header at any time during the
life of aweb transaction. Using SWSRESP to buffer HTTP response headers dif-
fers from merely writing these headers using SWSSEND:

m When using SWSSEND, HTTP headers must be written before any message
body data (e.g. an HTML page or binary GIF image) has been output.

m SWSRESP can be used before, during or after output of the message body.

The Server merges the HTTP response headers which have been buffered using
SWSRESP with any other data generated by the web transaction. This merge pro-
cessing takes place when the web transaction ends and causes the compl ete output
stream to be assembled and transmitted to the client.

SWSRESP is only valid when aweb transaction procedure is operating in server-
parsed header mode since the merging/assembly, described above, is disabled in
non-parsed-header mode. A call to SWSRESP will return an error if the web
transaction is not operating in server-parsed header mode.

Syntax
The general form for invocation of SWSRESP is:

Z = SVWERESP(func, hnane, hval ue)

Valid Arguments
The SWSRESP takes three arguments:;

func

Specifies the function to be performed. At thistime the only supported function value isADD.
Any other argument value will return an error.

hname

Specifies the name of the HT TP response/general header to be transmitted to the web server client.
The HTTP response header name should be one which is universally recognized as defined in the
Hypertext Transfer Protocol - HTTP/1.1(RFC2068) specification. However, any string can be
coded.

The colon which ends each HTTP response header name must be omitted from the string, since
SWSRESP aways inserts atrailing colon (e.g. Code "Content-type”, not " Content-type:").

7-100

Shadow Programming Guide December 1999

Web Server Specific APIs

hvalue

The third argument, hvalue, specifiesthe value for the corresponding HTTP response header. The
content of the third argument will, of course, vary depending on the response/general header
specified in the second argument. The entity body text is converted to ASCII and then transmitted
exactly as provided by this argument.

Return Values

SWSRESP aways returns a numeric value. A zero return value indicates success-
ful buffering (though not actual transmission) of the HTTP response header. A
non-zero return value indicates that an error has occurred.

The SWSRESP operation is not logged to the Server’'s wrap-around trace file
unless an error occurs. If you need to trace information actually sent as aresult of
an SWSRESP request, use the SENDTRACE keyword of the /* VWYV rule header.

Example

Thefollowing call will cause two HT TP response headersto be merged with other
headers generated by SWSFILE. A "Pragma: no- cache" and "Expi r es:

Mon, 14 APR 1998 12:02: 03 GV HTTP response header will be included
in the final output transmission stream.

/*WW /testswsresp sendtrace(yes)

1 * REXX

Z = SWBRESP(’ ADD ,’ Pragn®’,’ no-cache’)

Z = FILE(’ SEND ,’' DDN ,’ SAWMPDATA' ,' IO NFO , "inmage/ gi f’,’ Bl NARY)
Z=SWSRESP (‘ADD’, ‘Expires’, ‘Mon, 14 APR 1998 12:02:03 GHT")

December 1999

Shadow Programming Guide 7-101

Host Application APl Function Calls

High-Level Language Interface
SWSFILE (SWCPFI) Function

Can be used in Shadow/REXX.

Can be used from Other REXX interpreters.

HLL entry point name is SDCPAR/SWCPAR.

SWSFILE isthe Web Server API function used to retrieve datafrom an MVS
dataset and transmit it to a Web Client program. The caller specifiesthe MVS
dataset from which datais to be retrieved and the MIME content type to be used
when the information is transmitted.

For text format data, the Server processes HTML Extension Statements, if any,
within the data file before the information is transmitted to the Web Client. This
facility allows the information to be specially tailored in response to run-time con-
ditions.

The SWSFILE (SWCPFI) interface supports the following operation request
types:

SWS FILE_SEND

Thisrequest typeis used to invoke out-bound transmission of aPDS dataset member (BPAM
or PDSE), or asequential dataset (QSAM). Thisrequest type contains all of the functionality
formerly incorporated into the SWS_FILE_PDSSEND request type.

We recommend that you use the SWS_FILE_SEND function for all PDS member or
sequential dataset transmission requests. This request type supercedes and obsol etes the
older SWS_FILE_PDSSEND request type.

SWS FILE_QUEUE

This request type is used to cause small data members to be read into the transaction’s
external data queue. Because the size of the external data queueis limited, thisfunction
should not be used for members containing more than 2-300 logical records. The logical
record length is limited to 752 bytesin length and any excess bytes are truncated without
notification.

Once read to the external data queue member data records can be retrieve using the
SWSGetQueue HLL API interface.

SWS FILE_PDSSEND

This request type is being retired, and should not be used for future Web transaction HLL
program development. Use the newer SWS_FILE_SEND request type for future HLL
program development, since it supercedes this PDS-only, DDNAME-only API interface.

The Shadow Web Server will continue to support this request type so that HLL programs
developed before SWS_FILE_SEND was available will continue to operate correctly
without requiring a re-write. Future enhancements will only be made to the preferred
SWS FILE_SEND type.

The SWS_FILE_PDSSEND request type is documented separately in the Deprecated High-
Level Language SWSFILE (SWCPFI) Request Types page.

7-102

Shadow Programming Guide December 1999

Web Server Specific APIs

Call Arguments

The SWSFILE (SWCPFI) function arguments are described in the table which
follows. For send requests, each of the six arguments described must be present on
the APl CALL. Omit the sixth argument for queue operation regquests.

HLL Argument Type

Arg /0 Description of Argument
C COBOL PL/I
1 HDBC USAGE PTR INPUT The Web Server connection handle. The connection
POINTER handle is an opaque, four-byte address pointer. The
connection handle is currently not used, and must be
set to zero (NULL).
2 UDWORD | PIC FIXED INPUT A four-byte flag-word indicating the request type of
S9(5) BIN(31) file-related operation to be performed. One of the
COMP following values must be specified for this argument:

e SWS FILE_SEND is used to request out-
bound transmission of PDS members or an
entire sequential datasets. This request type
should be used for all future HLL development.

e SWS FILE_QUEUE is used to request that the
file data records be read into the transactions
external data queue.

e SWS FILE_PDSSEND has been superceded
by the SWS_FILE_SEND request type, which
should be used for all future HLL program
development. This request type continues to be
supported and is documented separately.

December 1999

Shadow Programming Guide

7-103

Host Application APl Function Calls

HLL Argument Type

Arg I/O Description of Argument
C COBOL PL/I
3 UDWORD | PIC FIXED INPUT A four-byte flag-word specifying various options for
S9(5) BIN(31) the APl CALL request. The options available for
COMP specification are defined as manifest constants within

each HLL header file.

You combine the options which define your request
by adding (or logically ORing) the manifest constants
together to form a single, 32-bit flag word.

The options are broken into three groups. One option
constant can be selected from each of the groups
shown below.

Name Specification Options

One option from this group must be coded. This
option indicates whether the call refersto the MVS
fileusing aDD name or fully-qualified dataset name.

e SWS FILE_DDNAME specifies the
DDNAME of the MVS dataset.

e SWS FILE_DSNAME specifies a fully-quali-
fied MVS dataset name.

Data Contents Format Options

One option from this groumust be coded. This
option specifies the format of the data contained
within the dataset; either text or binary. The Server
transmits binary format data with no modifications,
but applies various translation and editing options to
text format data before transmission.

¢ SWS SEND_TEXT contains text format data.
Before out-bound transmission, the Server
translates the information from EBCDIC to
ASCII, strips trailing blanks, and appends a car-
riage return character to each line.

« Ifthe file contains HTML Extension Statements
the Server will process these to tailor the final
output, unless extension processing is sur-
pressed by th8WS _FILE_NOHTX option.

¢ SWS SEND_BINARY contains binary format
data. The Server transmits the data, as is, with-
out modification.

HTML Extension Processing Options

One option from this group can optionally be coded,
but none are required. No option from this group
should be coded when SWS_FILE_BINARY has
been specified.

7-104 Shadow Programming Guide December 1999

Web Server Specific APIs

Arg

HLL Argument Type

C

COBOL

PL/I

I/O

Description of Argument

This option controls how, or if, HTML Extension
Statements within atext format file are processed by
the Server before transmission.

e SWS FILE_HTX indicates the Server will pro-
cess HTML Extension Statements. This option
is the default for all text format files, so it need
not be explicitly coded except for documenta-
tion purposes.

¢ SWS FILE_NOHTX indicates HTML Exten-
sion Statement processing will be surpressed.

e SWS FILE_HTXREXXRULESindicates that
the Server will replace uninitialized variables
located during HTML Extension processing
with the upper-case variable name. If this option
is not specified, the Server replaces uninitialized
variables with a NULL string.

UCHAR *

PIC X(8)
or
PIC X(44)

CHAR(8)
or
CHAR(44)

INPUT

This argument specifies either the DDNAME or the
DSNAME of the file to be transmitted. You must
indicate which type of value is specified by coding
one of the Name Specification Options, given above.

When the SWS_FILE_DDNAME option is used, this
value must be the 8-byte, blank padded DDNAME
for the file.

When the SWS_FILE_DSNAME option is used, this
value must be the 44-byte, blank padded dataset
name for the file.

For either DDNAME or DSNAME specifications, a
null-terminated string can be specified, if desired.

UCHAR *

PIC X(8)

CHAR(8)

INPUT

When the file referenced by this call is a PDS or
PDSE (BPAM) dataset, this argumemtist contain
the 8-byte, blank padded member name within the
library which is to be transmitted. A null-terminated
string can be specified, if desired.

For operations on other file types (non-BPAM), this
is not examined by the API function. You should
specify a NULL value of a type appropriate to the
particular high-level language.

UCHAR *

PIC X(50)

CHAR(50)

INPUT

The 50-byte, blank-padded MIME content type value
to be used when the data is transmitted. A shorter
string can be specified if the string is null terminated.

Omit this argument for SWS_FILE_QUEUE
requests.

December 1999

Shadow Programming Guide

7-105

Host Application APl Function Calls

Return Val

ues

SWSFILE aways sets a signed numeric return code value. Possible values are:

Return Value

Description

SWS_SUCCESS

The operation succeeded. The specified operation was performed.

SWS ERROR

A parameter validation or runtime error was encountered. Error
information is available using the SWSERROR function.

SWS _ENVIRONMENT_ERROR

The request could not be processed because of a runtime
environmental error, for example, you invoked the API service
outside of aweb transaction procedure, or from outside the Server's
address space. The Server may provide diagnostic information in the
wrap-around trace.

SWS NO_DATA_FOUND

Indicates that the DDNAME, DSNAME or PDS member nameis
not valid because the dataset or member does not exist, or because
the dataset is being held exclusively by some other address space.

SWS INVALID_HANDLE

The connection handle argument isinvalid. No error information can
be returned using SWSERROR.

Any other value

The operation failed. Generally this indicates an unrecoverable loss
of the communications session between the Shadow Web Server and
the client’s web browser program.

7-106

Shadow Programming Guide December 1999

Web Server Specific APIs

'U
~
=
m
X
m
3

=i
®

BEBBBBBRBRERR

ADDR(SCONN) - >DMHX = 0;

PTR /* Connecti onhandl e */
CHAR(8) INIT(’ HTMFILE); /* File DDNAME */
CHAR(44) INT(’ MY. HTM.. DATA); /* File DSNAME */
CHAR(44) I N T(’ SOVE. (BAM DATA) /* Fil e DSNAME */
CHAR(8) INT(' HLLFILE); /* Menber nane */
CHAR(8) INT(' WFILE); /* Menber nane */

FI XED BIN(31) INT(0);

CHAR(50) INNT("text/htm’™);
CHAR(50) INT(image/gif’);
CHAR(50) INT(text/plain');

FI XED BI N(31);
FI XED Bl N(31) BASED,

/* NULL Argunent */
/* Content type */
/* Content type */
/* Content type */
/* return code */
/* Dummy Handl e */

/*d ear Connection Handle */

/* Send the menber HLLFILE fromthe PDS allocated to the */
/* HTMFI LE DD name using MME type text/htm. */
CALL SWEFI LE (SOONN, Connecti on handl e */
SWS FI LE SEND, Send a file */
SWS FI LE DDNAME + Arg 4 is a DD nane */
SWE SEND TEXT data is text fornat */
SDDINA, Send fromthis DDNAME */
SMENA Send this menber */
SQoTY), Fil e content */
RC = PLIRETV(); get return code */

IF RC = SW5 SUCCESS THEN

exit programif bad RC */

EX T,
/* Send binary data fromthe PDS ' MY. HTM.. DATA(MYFI LE) as */
/* MM type inage/gif. */
CALL SWBH LE (SOONN Connection handl e */
SWE_FI LE_SEND, Send a file *|
SWE FI LE DSNAME + Arg 4 is a DSNAME */
SWS FI LE Bl NARY, data in binary format */
SDSNA, Send fromthi s DSNAME */
SMENA2, Send this menber */
SQOTY2) ; Fil e content */
RC=PLI RETV() ; get return code */
| F RC "= SWs SUCCESS THEN exit programif bad RC/
EX T,
/* Send the sequential file ' SOME (BAM DATA as M ME type */
[* text/plain. */
CALL SWBFI LE (SCONN Connection handl e */
SWS FI LE_SEND, Send a file *|

SWS_FI LE_DSNAME +
SWS_FI LE_TEXT
SDSNAZ,

SDUMMY,

Arg 4 is a DSNAME */
data in text format */
Send fromthi s DSNAME */
NULL ar gurrent */

December 1999

Shadow Programming Guide

7-107

Host Application APl Function Calls

SQOTY3) ; /* File content */
RC = PLIRETV(); /* get return code */
| F RC "= SWs SUCCESS THEN /[* exit programif bad RC/
EXT,
C Example
HDBC sConn = NULL; */ Connecti on Handl e */
| ong RG /* return code */

/* Send the HLLFI LE nenber fromthe PDS allocated with the */

/* DD name HTMFI LE as M ME type text/htn. */
rc = SWeFI LE(&sConn, /* connection handl e */
SW5 FI LE SEND, /* Send a file */

SW5 FI LE DDNAME | /* Arg 4 is a DD nane */

SW5 SEND TEXT, /* data is text fornat */

"HTMFI LE', /* Send fromthis DDNAME */

"HLLFI LE", /* Send this menber */

"text/htm"); /* File content */

if (rc "= SW5 SUCCESS) return; /* exit programif bad RC */
/* Send ' MY. HTM.. DATA(MYFI LE)’ as M ME type i nage/ gi f */
rc = SWBFI LE(&sConn, /* Connection handl e */
SV FI LE_SEND, /* Send a file */
SWE_Fl LE_DSNAME | /* Arg 4 is a DSNAME */
SV Fl LE Bl NARY, /* data is binary format */

" MY. HTM.. DATA", /* Send fromthis DSNAME */
"MYFI LE', /* Send this menber */
"image/gif"); /* File content */

if (rc "= SW5 SUCCESS) return; /* exit programif bad RC */
/* Send ' SOME (BAM DATA as M ME type text/plain. */
rc = SWeFI LE(&sConn, /* connection handl e */
SWE FI LE_SEND, /* Send a file */
SWE_Fl LE_DSNAME | /* Arg 4 is a DSNAME */

SWE SEND TEXT, /* data is binary format */

" SOMVE. (BAM DATA", /* Send fromthis DSNAME */

" /* NULL ar gunent */
"text/plain" /* File content */

if (rc "= SW5 SUCCESS) return; /* exit programif bad RC */

7-108 Shadow Programming Guide December 1999

Web Server Specific APIs

COBOL Example

77 SOONN USACE | S PO NTER

77 SDDNA Pl C X(8) VALUE ' HTMFI LE .

77 SDSNA Pl C X(44) VALUE ' MY. HTM.. DATA .
77 SDSNA2 Pl C X(44) VALUE ’ SOVE. (BAM DATA
77 SMENA PIC X(8) VALUE 'HLLFILE .

77 SMENA2 PIC X(8) VALUE ' MYFI LE .

77 Soory Pl C X(50) VALUE "text/htm’.

77 SQOOIY2 Pl C X(50) VALUE "image/gif’.

77 SQOTY3 PI C X(50) VALUE 'text/plain'.

77 SDUMWY Pl C S9(5) COWP VALLE 0.

77 SCPTICN Pl C S9(5) COWP.

* SEND THE HLLFI LE MEMBER FROM THE PDS ALLQCATED TO
* THE HTMFI LE DD NAME AS M ME TYPE text/htm.

COMPUTE SCPTI ON = SW5- FI LE- DDNAME + SW5- SEND- TEXT.
CALL ' SWOPFI’ USI NG SCONN,

SWS- FI LE- SEND,

SCPTI ON,

SDDINA,

SMENA,
SQarY.

MOVE RETURN- OCDE TO W& SWEAPI - RETURN- CCDE.
I F NOT SW5- SUCCESS GCBACK

* SEND ’ MY. HTM.. DATA(MYFI LE)* AS M ME TYPE i nage/ gi f .

COMPUTE SCPTI ON = SW5- FI LE- DSNAME + SW5- SEND- Bl NARY.
CALL ' SWCOPFI® USI NG SCONN,
SWS- FI LE- SEND,
SCPTI QN
SDSNA,
SMENA2,
SQOrY2.
MOVE RETURN CCDE TO W5 SWBAPI - RETURN- CCDE.
I F NOTI' SW&- SUCCESS GOBACK.

* SEND ' SOME. (BAM DATA AS M ME TYPE text/pl ain.

COMPUTE SCPTI ON = SW5- FI LE- DSNAME + SW5- SEND- TEXT.
CALL ' SWCPFI’ USI NG SCONN,
SWS- FI LE- SEND,
SCPTI QN
SDSNA2,
SDUWVY,
SQOTY3.
MOVE RETURN CCDE TO W5- SWAAPI - RETURN- CCDE.
I F NOTI' SW&- SUCCESS GOBACK.

December 1999

Shadow Programming Guide 7-109

Host Application APl Function Calls

Deprecated SWSFILE (SWCPFI) Sub-Function:
SWS_FILE_PDSSEND

This sub-function is being retired in favor of the enhanced SWS FILE_SEND
sub-function. In future, new enhancements will only be made to the enhanced sub-
function.

We recommend that all new HLL application be written using the enhanced
SWS FILE_SEND function.

Previously written HLL programs need not be re-written; the Server will continue
to support the deprecated SWS FILE_PDSSEND interface as documented on
this page.

CALL Arguments

The SWSFILE function takes six arguments. All six arguments must be specified.

HLL Argument Type

Arg I/O Description of Argument
C COBOL PL/I
1 HDBC USAGE PTR INPUT The connection handle. The connection handleis an
POINTER opaque, four-byte address pointer. The connection
handleis currently not used, and must be set to zero

(NULL).

2 UDWORD | PIC FIXED INPUT Specify SWS_FILE_PDSSEND to invoke the
S9(5) BIN(31) deprecated interface as documented here. Refer to the
COMP current SWSFILE API for all other cases.

3 UDWORD | PIC FIXED INPUT A four-byte flag-word indicating options to be used
S9(5) BIN(31) in performing the requested sub-function. The
COMP following option flags can be specified, either singly,

or in combination:

¢ SWS SEND_TEXT indicates the data to be
sent exists in text format. It is translated by the
server, during output, to ASCII.

¢ SWS SEND_BINARY indicates the data to be
sent exists in binary format. It is transmitted by
the server, as is.

¢ SWS FILE_NOHTX indicates the value indi-
cates that HTML extension processing should
not be performed during the output operation.
This flag can be combined with the
SWS_SEND_TEXT flag.

e SWS FILE_HTX_REXXRULESindicates
the vale indicates that uninitialized variables
located during HTML extension processing are
replaced with the upper case variable name. If
SWS_FILE_HTX_REXXRULES is not speci-
fied, uninitialized variables are replaced with a
NULL string. This option can be combined with
the SWS_SEND_TEXT flag.

7-110 Shadow Programming Guide December 1999

Web Server Specific APIs

HLL Argument Type

Arg I/O Description of Argument
C COBOL PL/I
4 UCHAR* | PICX(8) CHAR(8) | INPUT The 8-byte, blank padded DD name for the file. A
shorter string can be specified if the string is null
terminated.
5 UCHAR* PIC X(8) CHAR(8) INPUT The 8-byte, blank padded member nameto be

transmitted. A shorter string can be specified if the
string is null terminated.

6 UCHAR * PIC X(50) CHAR(50) | INPUT The 50-byte, blank padded MIME content type value
to be used when the data is transmitted. A shorter
string can be specified if the string is null terminated.

Return Values

SWSFILE aways sets a signed numeric return code value. Possible values are;

Return Value Description

SWS SUCCESS The operation succeeded. The specified operation was performed.

SWS ERROR A parameter validation error was found. The error will be logged to
the wrap-around trace, and is available using the SWSERROR
function.

SWS NO DATA_FOUND Indicates that the DD name or PDS member name was invalid.

SWS ENVIRONMENT_ERROR The request could not be processed because of a runtime
environmental error, for example, you invoked the API service
outside of aweb transaction procedure, or from outside the Server's
address space. The Server may provide diagnostic information in the
wrap-around trace.

SWS INVALID_HANDLE The connection handle argument isinvalid. No error information can
be returned using SWSERROR.
Any other value The operation failed. Generally this indicates an unrecoverable loss

of the communi cations session between the Shadow Web Server and
the client’s web browser program.

December 1999 Shadow Programming Guide 7-111

Host Application APl Function Calls

PL/I Example
DCL SCON PTR /* Connection Handl e */
DOL SDDNA CHAR(8) INT('HTMFILE);/* File DD nane */
DAL SMENA CHAR(8) INT('HLLFILE);/* Menber name */
DAL SOOTY CHAR(50) INT(text/htm’);/* Content type */
DAL RC FI XED BI N(31) ; /* return code */
DOL DVHX FI XED BI N(31) BASED /* Dummy Handl e field */
ADDR(SCONN) - >DVHX = 0; /* dear Connection Handl e*/
CALL SWBFI LE(SOONN /* send the text data */

SWE_FI LE_PDSSEND,

SWE_SEND TEXT,

SDDNA,

SMENA,

SQorY) ;
RC = PLIRETV(); /* get return code */
| F RC "= SWs SUCCESS THEN /* exit programif bad RC */

EXIT,

C Example
HDBC sConn = NULL; /* Connection Handl e */
| ong RG /* return code */
rc = SWeFI LE(&sConn, /* send the text data */

SWE_FI LE_PDSSEND,

SWE_SEND TEXT,

"HTMFI LE',

"H.LFI LE',

"text/htm");
if (rc "= SW5 SUCCESS) return; /* exit programif bad RC */

COBOL Example

77 SCO\N USACGE | S PO NTER

77 SDDNA Pl C X(8) VALUE ' HTMFI LE .
77 SMENA Pl C X(8) VALLE 'HLLFI LE .

7 SAOTY Pl C X(50) VALUE "text/htm’.

CALL * SWOPFI* USI NG SCONN,
SWE- FI LE- PDSSEND,
SWE- SEND- TEXT,
SDDNA,

SMENA,
SQOTY.

MOVE RETURN CCDE TO WS- SWEAPI - RETURN- OCDE.
I F NOT SW&- SUCCESS GOBACK

7-112 Shadow Programming Guide December 1999

Web Server Specific APIs

SWSFILE Function

Can be used in Shadow/REXX.

Can be used from other REXX interpreters.

High-level Language Interface available.

When used with Other REX X -language Interpreters SWSFILE built-in function
can be used to transmit data with an external dataset directly to aweb client. It can
also be used to retrieve information about external datasets for the REXX-lan-
guage procedure.

Syntax
The general form for a REXX-language invocation of SWSFILE is:
rc = SWFI LE(opertype, argl, ... , argn)

The SWSFILE function incorporates several operation types. The first argument
to the function call must be the name of the specific operation to be performed.
The remaining arguments needed for the function call depend on which operation
is being invoked.

Valid Operation Types

One of the following operation types must be coded as the first argument to the
call (shown as opertype in the example above).

SEND Transmit file-resident data to out-bound to aweb client. Thisisageneric
function which can operate upon PDS, PDSE, or QSAM datasets.

STATS Return statistical information about a PDS member or a sequential dataset.

MBRLIST Queue alist of PDS members to the REXX externa data queue.

QUEUE Read a PDS member or sequential dataset into the REXX external data queue.
A return code value of 28 is returned if the external data queue is not
sufficiently large to contain the entire file, or PDS(E) member.

Note:
You can increase the size of the external data queue using the
QUEUESIZE() keyword).

PDSSEND Send a PDS member out-bound to the web client.

PDSSTATS Return statistical information about a PDS member.

PDSQUEUE Read a PDS member into the REXX external data queue.

December 1999

Shadow Programming Guide 7-113

Host Application APl Function Calls

The remaining arguments which must be coded for each operation typeis given
below. A table, at the end of this page, explains how to code each of the argu-
ments.

Whenever text format data is transmitted to a web client (for the SEND or PDS-
SEND operations) or is placed into the REXX externa data queue (for the
QUEUE or PDSQUEUE operations), the Server processes HTML Extension
Statements to tailor the output. Thisfacility alows the file-resident datato be cus-
tomized at run-time.

Note:

The PDS-based operations (PDSSEND, PDSSTATS, and
PDSQUEUE are legacy operations from an earlier release of the
Server. They support only operations upon PDS datasets using aDD
name specification. These legacy operations continue to be
supported, however future enhancements will not be made to these
operation types.

New REXX-language applications should use the enhanced
operation types (SEND, STATS, and QUEUE) since they support
both PDS and sequentia dataset organizations and allow dataset
names to be specified using either aDD name or fully-qualified
dataset name.

The SEND Operation

SEND is used to transmit amember of a PDS dataset or a sequential dataset to the
web client. The function will create and transmit an HTML response header, fol-
lowed by the file-resident data.

Coding SEND Requests
To code the SWSFILE function call for SEND, use the following format:

zrc = SWBFI LE(" SEND', nanet ype, fi | enane, nbr narre,
m et ype, dat af nt, ht xopt)

The arguments for the call are explained in the SWSFILE Arguments Table
below.

Run-time Operation of SEND

SEND can operate on RECFM F, FB, V, VB, or U datasets. RECFM VB is sug-
gested for binary data, and RECFM FB is suggested for text data.

When the PDS member or sequential dataset is transmitted out-bound, any record-
length fields (such as are present for VB format records) are removed and only the
raw datais transmitted.

Theinput file data can be ASCII binary data or EBCDIC text data.

7-114

Shadow Programming Guide December 1999

Web Server Specific APIs

If TEXT format dataiis specified, trailing EBCDIC blanks are removed from each
datarecord before an ending CR (carriage return) character is appended. Each line
istranslated from EBCDIC to ASCII before transmission.

Unless NOHTX was explicitly specified on the function request, HTML Exten-
sion values are processed before the member is transmitted. When HTML Exten-
sions are actually present within the input member, transmission of the Last -
Modi fi ed: HTTP response header is suppressed. Instead, an Expi r es: header
is generating giving the current time.

If ISPF-type statistics exist for the PDS member the | SPF last-modified datais
used to generate the Last - Modi fi ed: HTML response header; otherwise, the
Last - nodi fi ed: HTML response header is hot generated. The Last - nodi -
fied: response header is surpressed if HTML Extension Statements are present
and might cause the data to be tailored different for a future request.

SEND checks the HT TP transaction headers before actually transmitting the full
PDS member outbound. If the in-bound HT TP transaction method is HEAD, only
the HTML response header information is transmitted. Similarly, if the in-bound
URL contained an | f - nodi fi ed- si nce: specification, the Server may have
transmitted a"Not Modified" (304) responseinstead of sending the contents of the
file.

The out-bound transmission generated by a successful SEND operation consti-
tutes an entire and complete HTTP response. The REXX process which issuesthe
SWSFILE function should not transmit additional data to the web client unless
some error is returned by the function.

December 1999

Shadow Programming Guide 7-115

Host Application APl Function Calls

SEND Return Values

Return Value Description

0

The function was completed successfully. The out-bound data
stream was flushed from Web Server buffers.

4 The communciations link failed during out-bound transmission.

8 The specified member name does not exist within the PDS.

12 Either the specified DDNAME (the filename operand) is not
allocated to the Shadow Web Server address space or the specified
DSNAME does not exist.

16 0r 20 Aninternal processing error, or abend condition.

24 The SECURITY (USERID) isin effect for the dataset
and the effective userid does not have authority to the
dataset.

28 Thefile exceedsthe FILESATAGINGSIZELIMIT

value set for pre-staging of data files. Normally such
requests are re-driven automatically without pre-
staging, but DDNAME format requests made from
REXX procedures cannot be re-driven automatically
and are rejected with this return code.

The STATS Operation

STATS is used to check the status of a PDS member or sequential dataset and
return to the REXX procedure information about that member or sequential
dataset. Thisinformation can be useful in dynamically creating transaction
responses from within the REXX procedure.

Coding STATS Requests
zrc = SWBFI LE(" STATS', nanet ype, fi | enane, nbr nane, dat af nt)

The arguments for the STATS operation are described in the SWSFILE Argu-
ments Tabl e below.

Run-Time Operation of STATS
STATS can operate of RECFM F,FB, V, VB, or U datasets.

STATS returns a content length, record count and last modification date value
which corresponds to information which would be required to transmit the mem-
ber out-bound to aweb client.

STATS Return Values

For binary format data the member size or sequential dataset size returned will
reflect an exact count of the data bytes within each logical record of the PDS
member or sequential file.

7-116

Shadow Programming Guide December 1999

Web Server Specific APIs

For text format data the member or sequential fileistreated as EBCDIC text. In
calculating the member or sequential file size, trailing EBCDIC blanks are elimi-
nated, and 1 additional byte per logical record (for the trailing carriage return
character) isassumed. If a zero-length record is encountered within a RECFM=V
or RECFM=VB file, asingle blank is substituted for the zero-length record (zero-
length records cannot be created in text files using | SPF, however, then can be
present if the data has been uploaded to MV SviaFTP).

STATSreturnsa NULL string if the dataset does not exist, or member does not
exist within the specified PDS, or if the dataset cannot be accessed.

The STATS function returns a character string suitable for processing by REXX
using blank-delimited word type processing.

The returned string contains the following information:

Word 1
Set to the value YES or NO to indicate whether or not | SPF statistics
were present within the PDS directory for the member.

Word 2
Contains the integer value representing the length, in bytes, of the
member or sequential dataset.

Word 3
Containsthe count of logical records within the member or sequential
dataset.

Word 4& ff

The remainder of the string contains the HTTP formatted L ast-
Modified: data and time stamp and is derived from the | SPF |ast-
update time. Thisinformation is omitted if |SPF statistics are not
present for the member.

The MBRLIST Operation

MBRLIST isused to obtain alist of the PDS memberswithin alibrary. Thelist of
member names is returned in the REXX external data queue. MBRLIST only
operates on PDS or PDSE dataset types.

Coding MBRLIST
To code the SWSFILE function call for MBRLIST, use the following format:
zrc = SWBH LE("MBRLI ST, namet ype, fi | enane)

The SWSFILE arguments for the MBRLIST operation are described in the SWS-
FILE Argument Table below.

December 1999

Shadow Programming Guide 7-117

Host Application APl Function Calls

Run-Time Operation of MBRLIST

MBRLIST only operations upon PDS or PDSE datasets. The MBRLIST function
gueues the list of PDS(E) membersto the REXX external dataqueue. Thelist can
be retrieved using the PARSE PULL REXX operation.

MBRLIST Return Values

Return Value Description

0

The function was compl eted successfully. The member list isqueued.

12 Either the specified DDNAME (the filename operand) is not
allocated to the Shadow Web Server address space or the specified
DSNAME does not exist.

16 0r 20 Aninternal processing error, or abend condition.

24 The SECURITY (USERID) isin effect for the dataset
and the effective userid does not have authority to the
dataset.

28 The externa data queue is not sufficiently large to contain the entire

member list. (Note: You can increase the size of the external data
gueue using the QUEUESIZE() keyword)

If no members exist within the PDS, the function returns with an empty external
data queue and sets return code 0.

The QUEUE Operation

QUEUE isused to read a member of a PDS dataset or a sequential file into the
REXX external data queue. The QUEUE function is far more efficient than using
EXECIO for asimilar purpose, and allows you to reference asingle DD name for
all members of aPDS dataset.

The input source can be ASCII binary data or EBCDIC text data. If the input
sourceisin text format, HTML Extensionswithin the source are processed before
the source data is placed into the external queue.

Coding QUEUE
To code the SWSFILE function call for QUEUE, use the following format:
zrc = SWBFI LE(" QUELE', nanet ype, fi | enane, nbr nare, dat af nt , ht xopt)

The SWSFILE arguments for the QUEUE operation are described in the SWS-
FILE Argument Table below.

Run-Time Operation of QUEUE

When the PDS member or sequential dataset is read and copied to the external
data queue any record-length fields (such as are present for VB format records)

7-118

Shadow Programming Guide December 1999

Web Server Specific APIs

are removed and only the raw datais copied. Trailing blanks are eliminated for
TEXT format records. Additionally, for TEXT format records, if azero-length VB
record isread, asingle blank is used for the corresponding queue entry (zero-
length VB records can, and frequently are, created when members are shipped to
an MV S system using FTP).

For binary format data no editing of any kind is applied to the data before it is cop-
ied to the external data queue. The datais copied to the gueue as a continuous
string of bytes with each queue entry being exactly as long as the corresponding
source logical record.

For text format data each input record is stripped of trailing blanks before being
copied to the external data queue.

I> Note:

The maximum logical record length which can be stored in a REXX
external data queue entry is 652 bytes. Logical records longer than
623 bytes will be truncated.

After checking the return code from the QUEUE operation, you can retrieve the
records from the external data queue with REXX coding, such as:

DO WH LE QUEELED() > 0
PARSE PULL nextl ogi cal record
END

December 1999

Shadow Programming Guide 7-119

Host Application APl Function Calls

QUEUE Return Values

Return Value Description

0 The function was completed successfully. The data was copied to
the external data queue.

8 The specified member name does not exist within the PDS.

12 Either the specified DDNAME (the filename operand) is not
allocated to the Shadow Web Server address space or the specified
DSNAME does not exist.

16 or 20 Therewas aninternal processing error, or abend condition. The most

likely cause of such an error isthat the REXX external data queue
has become full. The size of the REXX external data queueisfixed,
but can be altered for Web Transaction programs by changing the
SEFMAXQUEUE start-up parameter value.

24 The SECURITY (USERID) isin effect for the dataset
and the effective userid does not have authority to the
dataset.

28 The external data queue is not sufficiently large to

contain the entire file, or PDS(E) member. (Note: You
can increase the size of the externa data queue using
the QUEUESIZE() keyword).

The PDSSEND Operation

PDSSEND is alegacy operation type from an earlier release of the Server. Equiv-
alent operations can be requested using the SEND request, which is the preferred
method for new applications.

Coding PDSSEND Requests
To code SWSFILE function calls using PDSSEND, use the following format:

zrc = SWBFI LE(" PDSSEND', fi | enane, nbr narre, m net ype, dat af nt, ht xopt)

Note:

This operation type must supply a DD name as the filename
argument. Use of afully-qualified dataset name is not supported for
thisinterface.

Also, note that the MV S dataset referred to must be either aPDS or
PDSE dataset. Access to sequential datasets is not supported.

Run-Time Operation of PDSSEND
The operation of PDSSEND is the same as for the SEND request, shown above.

7-120

Shadow Programming Guide December 1999

Web Server Specific APIs

PDSSEND Return Values

Return values set by PDSSEND are the same as for the SEND request, shown
above.

The PDSSTAT Operation

PDSSTAT is alegacy operation type from an earlier release of the Server. Equiva
lent operations can be requested using the STATS request, which isthe preferred
method for new applications.

Coding PDSSTAT Requests
To code SWSFILE function calls using PDSSTAT, use the following format:

zrc = SWBFI LE(" PDSSTAT", fi | enane, nbr nane, dat af nt)

Note:

This operation type must supply a DD name as the filename
argument. Use of afully-qualified dataset name is not supported for
thisinterface.

Also, note that the MV S dataset referred to must be either a PDS or
PDSE dataset. Access to sequential datasetsis not supported.

Run-Time Operation of PDSSTAT
The operation of PDSSTAT isthe same as for the STATS request, shown above.

PDSSTAT Return Values

Return values set by PDSSTAT are the same as for the STATS request, shown
above.

The PDSQUEUE Operation

PDSQUEUE is alegacy operation type from an earlier release of the Server.
Equivalent operations can be requested using the QUEUES request, which is the
preferred method for new applications.

Coding PDSQUEUE Requests
To code SWSFILE function calls using PDSQUEUE, use the following format:

zrc = SWBFI LE(" PDSQUEUE', fi | enane, nbr name, dat af nt, ht xopt)

December 1999 Shadow Programming Guide 7-121

Host Application APl Function Calls

Note:

This operation type must supply aDD name as the filename
argument. Use of afully-qualified dataset name is not supported for
thisinterface.

Also, note that the MV S dataset referred to must be either aPDS or
PDSE dataset. Access to sequential datasets is not supported.

Run-Time Operation of PDSQUEUE
The operation of PDSQUEUE is the same as for the QUEUE request, shown

above.

Return Values
Return values set by PDSQUEUE are the same as for the QUEUE request, shown

above.

ArgumentsTable

The table which follows describes each of the arguments which can be supplied
for an SWSFILE function call.

Argument Name
given in Syntax
Examples

Description of Argument

nametype

Indicates whether the filename argument on the function call isan MVS DD name or a
fully-qualified dataset name.

The nametype argument must be one of the following:

< DDNAME or DD indicates that the filename argument is a DD name value. The
DD name must be allocated to the Shadow Web Server address space.

< DSNAME or DSN indicates that the filename argument is a fully-qualified MVS
dataset name.

Filename

Specifies the dataset to be operated upon by the function call. The dataset specification
can be made using either an MVS DD name value or as a fully-qualified dataset name.
must be a PDS, PDSE, or sequential dataset.

« DD name values must be given as an 8-byte, blank-padded string.
« Fully-qualified dataset names must be given as a 44-byte, blank-padded string.
¢ When a DD name is used, it must be pre-allocated to the Server address space.

¢ You specify whether a DD name or dataset name is being passed on the call using
the nametype argument shown above.

e For the legacy operations (PDSSEND, PDSSTATS, and PDSQUEUE) only an 8-
byte DD name is permitted. The DD name must reference a PDS or PDSE dataset.

mbrname

The 8-byte, blank padded member name to be transmitted from a PDS or PDSE dataset.
This argument must be specified when the SWSFILE operation refers to a PDS or PDSE
dataset. It should be omitted when a sequential dataset is referred to (code a single
comma in place of the argument).

7-122

Shadow Programming Guide December 1999

Web Server Specific APIs

Argument Name
given in Syntax
Examples

Description of Argument

mimetype

The 50-byte, blank padded MIME content type value to be used when the dataiis
transmitted.

The value coded hereis used to generate the Content-type: out-bound HTML response
header. It can be set to any value, but would normally be set to image/gif’, Text/HTML’
or some other widely known value. The server does not perform avalidity test upon this
argument.

If this argument is omitted, the Server assumes a default value of 'text/plain’.

datafmt

The format of the data contained within the file to be transmitted. Valid values are:

e TEXT indicates that the data to be sent exists in text format. It is translated by the
server, during output, to ASCII, trailing blanks are stripped, and a carriage return
character is appended to each line. HTML Extension Statements, if any, within the
data are processed by the Server.

« BINARY indicates that the data to be sent exists in binary format. It is transmitted
by the server, as is.

If this argument is omitted, the Server uses BINARY as the default value.

htxopt

Indicate how (or if) HTML Extension Statements within the file data are processed by
the Server before output. This argument should be omitted for binary format files, and is
optional when text format data is processed.

Valid values are:

« HTX indicates that HTML extension processing should be performed during the
output operation.

« NOHTX indicates that HTML extension processing should not be performed dur-
ing the output operation.

« HTXREXXRULES indicates that un-initialized variables located during HTML
extension processing are replaced with the upper-case variable name. Normal
extension processing replaces un-initialized variables with a NULL string.

If this argument is omitted, the Server assumes a value of HTX for all text format files.

December 1999

Shadow Programming Guide 7-123

Host Application APl Function Calls

The SWSFILE Function with Other REXX-
language Interpreters

Can be used in Shadow/REXX.

Can be used from other REXX interpreters.

HLL entry point name is SWCPFI.

When used with Other REX X -language I nterpreters SWSFILE built-in function
can be used to transmit data with an external dataset directly to aweb client. It can
also be used to retrieve information about external datasets for the REXX-lan-
guage procedure.

SWSFILE Syntax
The general form for a REXX-language invocation of SWSFILE is;
rc = SWFI LE(opertype, argl, ... , argn)

The SWSFILE function incorporates several operation types. The first argument
to the function call must be the name of the specific operation to be performed.
The remaining arguments needed for the function call depend on which operation
is being invoked.

Valid Operation Types

One of the following operation types must be coded as the first argument to the
call (shown asopert ype inthe example above).

SEND Transmit file-resident data to out-bound to aweb client. Thisisageneric
function which can operate upon PDS, PDSE, or QSAM datasets.
STATS Return statistical information about a PDS member or a sequential dataset.

The remaining arguments which must be coded for each operation typeis given
below. A table, at the end of this page, explains how to code each of the argu-
ments.

Whenever text format data is transmitted to a web client (for the SEND or PDS-
SEND operations) or is placed into the REXX external data queue (for the
QUEUE or PDSQUEUE operations), the Server processes HTML Extension

7-124

Shadow Programming Guide December 1999

Web Server Specific APIs

Statements to tailor the output. Thisfacility allows the file-resident data to be cus-
tomized at run-time.

Note:

The PDS-based operations (PDSSEND, PDSSTATS, and
PDSQUEUE are legacy operations from an earlier release of the
Server. They support only operations upon PDS datasets using aDD
name specification. These legacy operations continue to be
supported, however future enhancements will not be made to these
operation types.

New REXX-language applications should use the enhanced
operation types (SEND, STATS, and QUEUE) since they support
both PDS and sequentia dataset organizations and allow dataset
names to be specified using either a DD name or fully-qualified
dataset name.

The SEND Operation

SEND is used to transmit amember of a PDS dataset or a sequential dataset to the
web client. The function will create and transmit an HTML response header, fol-
lowed by the file-resident data.

Coding SEND Requests
To code the SWSFILE function call for SEND, use the following format:

zrc = SWBH LE(" SEND', nanet ype, fi | enane, nbr narre, m net ype,
dat af it , ht xopt)

The arguments for the call are explained in the SWSFILE Arguments Table
below.

Run-time Operation of SEND

SEND can operate on RECFM F, FB, V, VB, or U datasets. RECFM VB is sug-
gested for binary data, and RECFM FB is suggested for text data.

When the PDS member or sequential dataset istransmitted out-bound, any record-
length fields (such as are present for VB format records) are removed and only the
raw datais transmitted.

Theinput file data can be ASCII binary data or EBCDIC text data.

If TEXT format dataiis specified, trailing EBCDIC blanks are removed from each
datarecord before an ending CR (carriage return) character is appended. Each line
istranslated from EBCDIC to ASCII before transmission.

Unless NOHTX was explicitly specified on the function request, HTML Exten-
sion values are processed before the member is transmitted. When HTML Exten-
sions are actually present within the input member, transmission of the Last -

December 1999

Shadow Programming Guide 7-125

Host Application APl Function Calls

Modi fi ed: HTTP response header is suppressed. Instead, an Expi r es: header
is generating giving the current time.

If ISPF-type statistics exist for the PDS member, the | SPF last-modified datais
used to generate the Last - Modi fi ed: HTML response header; otherwise, the
Last - nodi fi ed: HTML response header is not generated. The Last - nodi -
fied: response header is surpressed if HTML Extension Statements are present
and might cause the data to be tailored different for a future request.

SEND checks the HTTP transaction headers before actually transmitting the full
PDS member outbound. If the in-bound HT TP transaction method is HEAD, only
the HTML response header information is transmitted. Similarly, if the in-bound
URL contained an | f - nodi f i ed- si nce: specification, the Server may have
transmitted a"Not Modified" (304) responseinstead of sending the contents of the
file.

The out-bound transmission generated by a successful SEND operation consti-
tutes an entire and complete HTTP response. The REXX process which issues the
SWSFILE function should not transmit additional data to the web client unless
some error is returned by the function.

SEND Return Values

Return Value Description

0

The function was completed successfully. The out-bound data
stream was flushed from Web Server buffers.

4 The communciations link failed during out-bound transmission.

8 The specified member name does not exist within the PDS.

12 Either the specified DDNAME (the filename operand) is not
allocated to the Shadow Web Server address space or the specified
DSNAME does not exist.

16 0r 20 Aninternal processing error, or abend condition.

24 The SECURITY (USERID) isin effect for the dataset
and the effective userid does not have authority to the
dataset.

28 Thefile exceeds the FILESATAGINGSIZELIMIT

value set for pre-staging of datafiles. Normally such
requests are re-driven automatically without pre-
staging, but DDNAME format requests made from
REXX procedures cannot be re-driven automatically
and are rejected with this return code.

The STATS Operation

STATS is used to check the status of a PDS member or sequential dataset and
return to the REXX procedure information about that member or sequential
dataset. Thisinformation can be useful in dynamically creating transaction
responses from within the REXX procedure.

7-126

Shadow Programming Guide December 1999

Web Server Specific APIs

Coding STATS Requests
zrc = SWBFI LE(" STATS', nanet ype, fil enane, nbr nane, dat af nt)

The arguments for the STATS operation are described in the SWSFILE Arugu-
ments Tabl e below.

Run-Time Operation of STATS
STATS can operate of RECFM F,FB, V, VB, or U datasets.

STATS returns a content length, record count and last modification date value
which corresponds to information which would be required to transmit the mem-
ber out-bound to aweb client.

STATS Return Values

For binary format data, the member size or sequential dataset size returned will
reflect an exact count of the data bytes within each logical record of the PDS
member or sequential file.

For text format data, the member or sequential file istreated as EBCDIC text. In
calculating the member or sequential file size, trailing EBCDIC blanks are elimi-
nated, and one additional byte per logical record (for the trailing carriage return
character) is assumed. If a zero-length record is encountered within a RECFM=V
or RECFM=VB file, asingle blank is substituted for the zero-length record (zero-
length records cannot be created in text files using | SPF, however, then can be
present if the data has been uploaded to MV S via FTP).

STATSreturnsa NULL string if the dataset does not exist, or member does not
exist within the specified PDS, or if the dataset cannot be accessed.

The STATS function returns a character string suitable for processing by REXX
using blank-delimited word type processing.

The returned string contains the following information:

Word 1
Set to the value Y ES or NO to indicate whether or not | SPF statistics
were present within the PDS directory for the member.

Word 2
Contains the integer value representing the length, in bytes, of the
member or sequential dataset.

Word 3
Containsthe count of logical records within the member or sequential
dataset.

Word 4& ff

The remainder of the string contains the HTTP formatted Last -
Modi fi ed: dataand time stamp and is derived from the | SPF last-

December 1999

Shadow Programming Guide 7-127

Host Application APl Function Calls

update time. Thisinformation is omitted if |SPF statistics are not
present for the member.

Arguments Table

The table which follows describes each of the arguments which can be supplied
for an SWSFILE function call.

Argument Name

given in Syntax Description of Argument
Examples
nametype Indicates whether the filename argument on the function call isan MVS DD name or a

fully-qualified dataset name.
The nametype argument must be one of the following:

< DDNAME or DD indicates that the filename argument is a DD name value. The
DD name must be allocated to the Shadow Web Server address space.

< DSNAME or DSN indicates that the flename argument is a fully-qualified MVS
dataset name.

filename Specifies the dataset to be operated upon by the function call. The dataset specification
can be made using either an MVS DD name value or as a fully-qualified dataset name.
must be a PDS, PDSE, or sequential dataset.

« DD name values must be given as an 8-byte, blank-padded string.
* Fully-qualified dataset names must be given as a 44-byte, blank-padded string.
< When a DD name is used, it must be pre-allocated to the Server address space.

¢ You specify whether a DD name or dataset name is being passed on the call using
the nametype argument shown above.

e For the legacy operations (PDSSEND, PDSSTATS, and PDSQUEUE) only an 8-
byte DD name is permitted. The DD name must reference a PDS or PDSE dataset.

mbrname The 8-byte, blank padded member name to be transmitted from a PDS or PDSE dataset.
This argument must be specified when the SWSFILE operation refers to a PDS or PDSE
dataset. It should be omitted when a sequential dataset is referred to (code a single
comma in place of the argument).

mimetype The 50-byte, blank padded MIME content type value to be used when the data is
transmitted.

The value coded here is used to generate the Content-type: out-bound HTML response
header. It can be set to any value, but would normally be set to 'image/gif', "Text/HTML'
or some other widely known value. The server does not perform a validity test upon this
argument.

If this argument is omitted, the Server assumes a default value of ‘text/plain’.

datafmt The format of the data contained within the file to be transmitted. Valid values are:

« TEXT indicates that the data to be sent exists in text format. It is translated by the
server, during output, to ASCII, trailing blanks are stripped, and a carriage return
character is appended to each line. HTML Extension Statements, if any, within the
data are processed by the Server.

« BINARY indicates that the data to be sent exists in binary format. It is transmitted
by the server, as is.

If this argument is omitted, the Server uses BINARY as the default value.

7-128 Shadow Programming Guide December 1999

Web Server Specific APIs

Argument Name
given in Syntax
Examples

Description of Argument

htxopt

Indicate how (or if) HTML Extension Statements within the file data are processed by
the Server before output. This argument should be omitted for binary format files, and is
optional when text format datais processed.

Valid values are:

¢« HTX indicates that HTML extension processing should be performed during the
output operation.

« NOHTX indicates that HTML extension processing should not be performed dur-
ing the output operation.

« HTXREXXRULES indicates that un-initialized variables located during HTML
extension processing are replaced with the upper-case variable name. Normal
extension processing replaces un-initialized variables with a NULL string.

If this argument is omitted, the Server assumes a value of HTX for all text format files.

December 1999

Shadow Programming Guide 7-129

Host Application APl Function Calls

High-Level Language Interface
SWSSET (SWCPSO) Function

/ Can be used in Shadow/REXX. See RETURN RESCAN or RETURN FLUSH.
/ Can be used from other REXX interpreters.
/ HLL entry point name is SWCPSO.

The SWSSET built-in function allows the caller to control various runtime envi-
ronmental options. Following is alist of functions that can be specified:

Function Name

Description

SWS OPTION_RESCAN

Provides anew URL value which the server uses during the rescan operation.
The rescan operation does not actually begin until after the current application
program terminates normally.

The rescan function provides high-level language programs with an equivalent
functionality which the Shadow/REXX Interpreter intrinsically provides. For
Shadow/REXX, the equivalent function is performed by using the RESCAN
option of the RETURN statement.

SWS OPTION_FLUSH

Allows the user to send the current "buffered” output. This function normally
occurs after the current application program terminates normally.

SWS OPTION_NOFLUSH

Allows the user to inhibit the sending of the "buffered” output. This function
occurs after the current application program terminates normally.

SWS OPTION_SENDTRACE

Allows the user to specify the output tracing option.

SWS OPTION_PARSETRACE

Allows the user to specify the URL tracing option.

SWS OPTION_RESPMODE

Allows the user to specify the server parsing mode.

SWS OPTION_DPRTY

Allows the user to adjust the current processing priority of their TCB within
the Shadow Server address space. This can be a positive or negative whole
number which is added to the TCB's current dispatching priority.

SWS OPTION_AUTOFLUSH

Allows the user to specify the maximum number of buffersto allow before
automatically sending them. Value must be specified as a whole number
between 0 and 32767.

SWS OPTION_MAXRESPBYTES

Allows the user to specify the maximum number of byteswhich can be sent in
responseto asingle URL. Value must be specified as awhole number between
0 and 2147483647.

SWS_OPTION_MASRESPBUFFERS

Allows the user to specify the maximum number of buffers which can be sent
in response to asingle URL. Value must be specified as a whole number
between 0 and 32767.

SWS _OPTION_USERDATA1

Allows the user to specify information to be added to the Shadow Web Server
SMF record.

7-130

Shadow Programming Guide December 1999

Web Server Specific APIs

Function Name

Description

SWS OPTION_USERDATAZ2

Allows the user to specify information to be added to the Shadow Web Server
SMF record. This option can only be executed from a WWW Master rule.

SWSOPTION ASCIIEBCDICMAP

Allows the user to specify alanguage conversion value to be used for
trandating any subsequent output generated by thisrule.

CALL Arguments

The SWSSET function takes four arguments. All four arguments must be speci-
fied on the call.

HLL Argument Type

Arg I/O Description of Argument
C COBOL PL/I
1 HDBC Usage PTR Input The Web Server connection handle. The connection
pointer handle is an opaque, four-byte address pointer. The
connection handle is currently not used, and must be
set to zero (NULL).
2 UDWORD | PIC S9(5) FIXED Input A flag word indicating the function which the
COMP BIN(31) SWSSET invocation should perform. You must
specify one of the aforementioned functions for this
parameter.
3 CHAR* PIC X(8) CHAR(8) OUTPUT The data value to be set. The format of this argument

varies, depending on the value supplied for the
second argument.

Function Value
SWS OPTION_ Specify a1-to-128 byte
RESCAN URL rescan value. The

rescan URL vaue can be
anull terminated string.

SWS_OPTION_ Parameter not required.
FLUSH
SWS_OPTION_ Parameter not required.
NOFLUSH
SWS_OPTION_ « YESto turn the
SENDTRACE option on.
* NOto turn the

option off.
SWS_OPTION_ * NONE for Non-
RESPMODE parsed headers.

e SERVER for
Server-parsed head-
ers.

SWS_OPTION_ A value from -255 to 255.
DPRTY

December 1999

Shadow Programming Guide 7-131

Host Application APl Function Calls

HLL Argument Type
Arg I/O Description of Argument
C COBOL PL/I
SWS OPTION _ A value from 0 to 32767.
AUTOFLUSH
SWS OPTION _ A valuefrom O to
MAXRESPBYTES 2147483647.
SWS OPTION _ A value from 0 to 32767.
MAXRESPBUFFERS
SWS OPTION _ e YESto turn the
PARSETRACE option on.
* NOtoturn the

option off.
SWS_OPTION_ Any text string from 1 to
USERDATA1 256 bytes long
SWS_OPTION_ Any text string from 1 to
USERDATA2 256 bytes long
SWS_OPTION_ Any valid 3 or 4 character
ASCIIEBCDICMAP language code string

4 SDWORD | PIC S9(5) | FIXED Input This argument specifies the size of the function data
COMP BIN(31) given by the third argument. The required size varies

depending on the function specified by the second
argument.
If the data specified as parameter 3 is a null-
terminated string, you can specify the manifest
constanSWW5_NTS.

The tape will contain a serial number of the form “NSnnnn” on its external label.
Use this label in the JCL above and in the SSINSTAL job below.

Return Values

SWSSET always sets a signed numeric return code value. Possible values are:

Return Value Description
SWS SUCCESS The operation succeeded.
SWS ERROR A parameter validation or runtime error was encountered. Error

information is available using the SWSERROR function.

SWS ENVIRONMENT_ERROR The request could not be processed because of a runtime
environmental error, for example, you invoked the API service
outside of a web transaction procedure, or from outside the Server's
address space. The Serm@y provide diagnostic information in the
wrap-around trace.

SWS INVALID HANDLE The connection handle is invalid. No error information is available.

7-132 Shadow Programming Guide December 1999

Web Server Specific APIs

Return Value

Description

Any other value

The operation failed. By using the SQLERROR/SWSERROR
interface, you can obtain the error message pertinent to the error.

SWS_OPTION_ASCIIEBCDICMAP Language Codes

The following list of language codes are used to trandl ate text.

Code Lanuguage

BEL BELGIAN

CBL CANADIAN BILINGUAL
DAN DANISH (MS)

DAN2 DANISH/NORWEGIAN
DEU GERMAN (MS)

DEU2 AUSTRIAN/GERMAN
ENG U.K. ENGLISH (MS)
ENG2 U.K. ENGLISH

ENU U.S. ENGLISH

ENU2 U.S. ENGLISH (ORIG. SWS VERSION)
ESN MODERN SPANISH (MS)
ESP CASTILIAN SPANISH (MS)
ESP2 SPANISH

FIN FINISH (MS)

FIN2 FINISH/SWEDISH

FRA FRENCH (MS)

FRA2 FRENCH

FRC CANADIAN FRENCH
ISL ICELANDIC (MS)

ITA ITALIAN (MS)

ITA2 ITALIAN

JPE JAPANESE/ENGLISH
NLD DUTCH (MS)

NLD2 DUTCH

NOR NORWEGIAN (MS)

PTG PORTUGUESE (MS)

December 1999

Shadow Programming Guide

7-133

Host Application APl Function Calls

Code Lanuguage
PTG2 PORTUGUESE
SVE SWEDISH (MS)
SWF SWISS/FRENCH
SWG SWISS/IGERMAN
PL/I Example
DCL TCGONN PTR /* Connection Handl e */
DAL TDATA CHAR(256); /* data buffer area */
DAL TSI ZE FI XED BI N(31); /* data |l ength */
DAL RC FI XED BI N(31); /* return code */
DCL DVHX FI XED Bl N(31) BASED, /* Dummy Handl e field */
ADDR(TOONN) - >DVHX = 0; /* dear Connection Handl e */
TDATA =’ SYSTEM ERRCR/ 500’ ; /* Set rescan URL val ue */
TSI ZE = 16; /* set length */
CALL SWBSET(TOONN /* Set rescan URL val ue */
SWS_CPTI ON_RESCAN,
TDATA
TSI ZE);
RC = PLIRETV(); /* get return code */
| F RC "= SWs SUCCESS THEN /* if bad RC, then go */
QOTO ERRCR _LABEL; /* report the error or */
/* abort the transaction */
CALL PLIRETTO0); /* Rescan URL is set up, so */
RETURN(O) ; /* let Server do re-natch */

G her function call fornats:
CALL SWBSET(TOONN
SW5 CPTI ON FLUSH) ;
CALL SWBSET(TOONN
SWE_CPTI ON_NCFLUSH) ;
TSI ZE = 3;
CALL SWBSET(TOONN
SW5 CPTI ON_SENDTRACE,
SW5 _CPTI ON_YES,
TSI ZE);
TS ZE = 2;
CALL SWBSET(TOONN
SW5 CPTI ON_PARSETRACE,
SW5 CPTION NQ
TSI ZE);
TS ZE = 4;
CALL SWBSET(TOONN

7-134 Shadow Programming Guide December 1999

Web Server Specific APIs

SWS_CPTI ON_RESPMCDE,
SVS_CPTI ON_NONE,
TSI ZE);

TDATA = ' 5

TSI ZE = 1;

CALL SWBSET(TCONN,
SV _CPTI ON_DPRTY,
TDATA, TSI ZE);

TDATA =’ 100’
TSI ZE = 3;
CALL SWBSET(TCONN,

SWS_CPTI ON_AUTCFLUSH,

TDATA,
TSI ZE);

TDATA = ’ 32000’

TSIZE = 5; CALL SWBSET(TCONN,
SVS_CPTI ON_MAXRESPBYTES,
TDATA,
TSI ZE);

TDATA = ' 55 ;

TSI ZE = 2;

CALL SWBSET(TCONN
SVWS_CPTI ON_ MAXRESPBUFFERS,
TDATA,
TSI ZE);
TDATA =’ USER DATA MESSAGE
TSI ZE = 17;
CALL SWBSET(TCONN
SVWS_CPTI ON_USERDATAL,
TDATA,
TSI ZE);
TDATA =’ SECURED USER DATA MESSACE
TSI ZE = 25;
CALL SWBSET(TCONN
SVWS_CPTI ON_USERDATA,

TDATA,
TSI ZE);
TDATA =’ FRA2’
TSI ZE = 4; CALL SWBSET(TCONN,
SVWS_CPTI ON_ASC! | EBCDI OMVAP,
TDATA,
TSI ZE);

December 1999 Shadow Programming Guide 7-135

Host Application APl Function Calls

C Example
HDBC t Conn = NULL;

char tData[] = "SYSTEM ERROR/ 500";

| ong RC
rc = SWsSet (& Conn,
SWE_CPTI ON_RESCAN
t dat a,
strlen(tdata));
if (rc "= SW5s SUCCESS) return;
{

}
el se
return O;

G her function call fornats:
rc = SWsSet (& Conn,

SW5 CPTI ON FLUSH) ;
rc = SWsSet (& Conn,

SWE_CPTI ON_NCFLUSH) ;
rc = SWsSet (& Conn,

SWS_CPTI ON_SENDTRACE,

SV _CPTI ON_NO

strien(SWs CPTION NJ);

rc = SWsSet (& Conn,

SWS_CPTI ON_PARSETRACE,

SV _CPTI ON_NO

strlien(SWs_ CPTION NO) ;

rc = SWsSet (& Conn,
SWE_CPTI ON_RESPMCDE,
SW5 CPTI ON_SERVER,

/*
/*
/*
/*

/*
/*
/*
/*
/*
/*

Connecti on Handl e */
rescan URL val ue */
return code */

set rescan URL val ue *[

if bad RC from SWSSET */
perform sone appl-dep. */
error recovery or abort */
pr ocessi ng. */
Qherwise, URL is set so*/
let Server do re-match */

strlen(SWs CPTI ON_SERVER)) ;

char tData[] = "-40";

rc = SWsSet (& Conn,
SW5 CPTI ON_DPRTY,
t dat a,
strlen(tdata));

char tData[] = "50";

rc = SWsSet (& Conn,

SV CPTI ON_AUTCFLUSH

t dat a,
strlen(tdata));
char tData[] = "2000000";
rc = SWsSet (& Conn,

SWS_CPTI ON_ MAXRESPBYTES,

t dat a,
strlen(tdata));
char tData[] = "80";
rc = SWsSet (& Conn,

SWS_CPTI ON_ MAXRESPBUFFERS,

t dat a,
strlen(tdata));

char tData[] = "USER DATA MESSACE';

7-136

Shadow Programming Guide

December 1999

Web Server Specific APIs

rc = SWsSet (

char tData[]
rc = SWsSet (

char tData[]
rc = SWsSet (

&t Conn,

SWS_CPTI ON_USERDATAL,

t dat a,

strlen(tdata));

= "SECURED USER DATA MESSAGE';
&t Conn,

SWS_CPTI ON_USERDATAZ,

t dat a,

strlen(tdata));

= "FRA2";

&t Conn,

SWS_CPTI ON_ASC | EBCDI CVAP,
t dat a,

strlen(tdata));

December 1999

Shadow Programming Guide 7-137

Host Application APl Function Calls

COBOL Example

77 TOONN USACE | S
P NTER

77 TDATA Pl C X(128).
77 TSI ZE Pl C S9(5)
COWP.

MOVE ’ SYSTEM ERRCR! 500° TO TDATA
MOVE 16 TO TSI ZE

CALL * SWOPSO USI NG TOONN,
SWE- CPTI ON- RESCAN,
TDATA,
TSI ZE.
MOVE RETURN QCDE TO W5 SWEAPI - RETURN- OCDE.
I F NOT SW& SUCCESS PERFCRM 9999- ABCRT- PROCEDURE.
MOVE O t o RETURN CCDE.
ABACK.
G her function call fornats:
CALL ' SWOPSO
USI NG TOONN,
SV CPTI ON- FLUSH
CALL ' SWOPSO
USI NG TOONN,
SVBE- CPTI ON- NCFLUSH
MOVE 3 TO TSI ZE.
CALL ' SWOPSO USI NG TOONN,
SWE- CPTI ON- SENDTRACE,
SWE- CPTI ON- YES,
TSI ZE.
MOVE 2 TO TSI ZE.
CALL ' SWOPSO
USI NG TOONN,
SVBE- CPTI ON- PARSETRACE,
SVE- CPTI ON-NQ
TS ZE.
MOVE 4 TO TSI ZE.
CALL ' SWOPSO
USI NG TOONN,
SW5E- CPTI ON- RESPMODE,
SWE- CPTI ONF NONE,

TSl ZE.
MOVE ’ - 17 TO TDATA
MOVE 3 TO TSI ZE.
CALL ' SWIPSO
USI NG TOONN,
SWS- CPTI ON- DPRTY,
TDATA,
TS ZE.
MOVE ' 100’ TO TDATA
MOVE 3 TO TSI ZE.
CALL ' SWOPSO
USI NG TOONN,

SWE- CPTI ON- AUTCFLUSH,

7-138 Shadow Programming Guide December 1999

Web Server Specific APIs

TDATA,
TSI ZE
MOVE * 100000’
MOVE 6
CALL ' SWOPSO
USI NG TOONN,
SWS- CPTI ON- NAXRESPBYTES,
TDATA,
TSI ZE
MOVE ' 255’
MOVE 3
CALL ' SWOPSO
USI NG TOONN,
SWE- CPTI ON- MAXRESPBUFFERS,
TDATA,
TS ZE.
MOVE ' USER DATA MESSAGE
TDATA
MOVE 17
CALL ' SWOPSO
USI NG TGONN,
SWE- CPTI ON- USERDATAL,
TDATA,
TS ZE.
MOVE ' SECURED USER DATA MESSAGE
TDATA
MOVE 25
CALL ' SWOPSO
USI NG TGONN,
SWE- CPTI ON- USERDATAZ,
TDATA,
TS ZE.
MOVE ' FRAZ’
MOVE 4
CALL ' SWOPSO
USI NG TGONN,
SWE- CPTI ON- ASCl | EBCDI QVAP,
TDATA,
TS ZE.

TO TDATA
TO TSI ZE.

TO TDATA
TO TSl ZE.

TO

TO TSI ZE.

TO

TO TSI ZE.

TO TDATA
TO TSI ZE.

December 1999

Shadow Programming Guide

7-139

Host Application APl Function Calls

SWSSET Function

Can be used in Shadow/REXX. See RETURN RESCAN or RETURN FLUSH.

Can be used from other REXX interpreters.

High-level language interface available.

The SWSSET built-in function alows the caller to control various runtime envi-
ronmental options. The following is alist of functions that can be specified:

Function Name Description Subparameter
RESCAN Provides anew URL value which the Server uses during the | Specify a 1-to-128 byte
rescan operation. The rescan operation does not actually begin | URL rescan value.
until after the current application program terminates
normally.
FLUSH Provides anew URL value which the Server will useduring | This function has no sub-
the rescan operation. The rescan operation does not actually | parameters.
begin until after the current application program terminates
normally.
NOFLUSH Forces any scheduled output to be sent to the user and This function has no sub-
terminates any further processing. parameters.
SENDTRACE Allows the user to specify the output tracing option. ¢ YESto turn the option
on.
¢ NO to turn the option
off.
PARSETRACE Allows the user to specify the URL tracing option. *YES o turn the option
on.
¢ NO to turn the option
off.
RESPMODE Allows the user to specify the server parsing mode. NONE for Non-parsed
headers.
e SERVER for Server-
parsed headers.
DPRTY Allows the user to adjust the current processing priority of A value from -255 to 255.
their TCB within the Shadow Server address space. This|can
be a positive or negative whole number which is added to the
TCB's current dispatching priority.
AUTOFLUSH Allows the user to specify the maximum number of buffersAovalue from 0 to 32767.
allow before automatically sending them.
MAXRESPBYTES Allows the user to specify the maximum number of bytes tlhavalue from 0O to
can be sent in response to a single URL. 2147483647.
MAXRESPBUFFERS Allows the user to specify the maximum number of buffersA value from 0 to 32767.
that can be sent in response to a single URL.
7-140 Shadow Programming Guide December 1999

Web Server Specific APIs

Function Name Description Subparameter
USERDATA1 Allows the user to specify atext sting to be inserted in the Must be atext string from 1
Shadow Web Server SMF record. to 256 bytes long.
USERDATA2 Allows the user to specify atext sting to be inserted in the Must be atext string from 1
Shadow Web Server SMF record. This string of text is secured | to 256 bytes long.
in asmuch asit can only be specified inaWWW Master rule.

Return Values

The function always returns 0 (zero) to the caller.

SWSSET always sets a signed numeric return code value. Possible values are:

Return Value Description

0 The function succeeded.

1 The API cdl cannot "connect back" into the subsystem code
properly.

Coding Samples

rc = SWESET(' RESCAN , newurl)

rc = SWSSET(' FLUSH)

rc = SWESET(' NOFLUSH)

rc = SWESET(' SENDTRACE , 'YES)

rc = SWESET(’ PARSETRACE , ' YES)

rc = SWBSET(' RESPMIDE , ' SERVER)

rc = SWSET('DPRTY, '-2')

rc = SWESET(' AUTCFLUSH , '25')

rc = SWBSET(' MAXRESPBYTES , ' 10000°)

rc = SWSSET(' MAXRESPBUFFERS ' 100")

rc = SWASET(' USERDATAl" ' USER MESSAGE DATA)
rc = SWBSET(' USERDATA2 ’ SECURED USER MESSAGE DATA)

rc = SWBSET(’ ASC | EBCDI OVAPPI NG’ FRA2')

December 1999 Shadow Programming Guide 7-141

Host Application APl Function Calls

High-Level Language Interface
SWSWTO (SWCPWT) Function

/ Can be used in Shadow/REXX.
/ Can be used from other REXX interpreters.
/ HLL entry point nameis SWCPWT.

The SWSWTO function allows a message to be written to the MV S opera-
tor console. Optionally, aroute code can be supplied. If azero route codeis
coded, the default will be used. The route code is one of four constants,
which are described below. Each constant determines a set of route and
descriptor codes, which is described in the IBM publication - - Assembler
Services Reference.:

CALL Arguments

The SWSWTO function takes four arguments. All four arguments must be

specified on the call.
HLL Argument Type
Arg I/O Description of Argument
C COBOL PL/I
1 HDBC Usage PTR Input The Web Server connection handle is an opaque,
pointer four-byte address pointer. The connection handleis

currently not used, and must be set to zero (NULL).

2 PTR PIC X(nnn) | CHAR(nNnNn) | Input The message passed to the WTO service. You can
specify anull terminated string, or explicitly provide
the value length via the third argument. The
maximum length is 70 bytes.

3 SDWORD | PIC S9(5) FIXED Input The size of the data value given by the second
COMP BIN(31) argument passed to WTO. You can optionally specify
SWS NTStoindicate the datais anull terminated
string.
4 UDWORD | PIC S9(5) FIXED Input This argument is one of the following constants:
CompP BIN(31) SWS-WTO-INFO rtcde(1)desc(4,9)

SWS-WTO-WARN rtcde(1,11)desc(4,9)
SWS-WTO-SEVERE rted(1,11)desc(1,11)
SWS-WTO-HARDCOPY none

7-142 Shadow Programming Guide December 1999

Web Server Specific APIs

Return Values
SWSWTO always sets a signed numeric return code value. Possible values are:

Return Value Description
SWS SUCCESS The operation succeeded. The specified data was written to the
product’s wrap-around trace.
SWS ERROR A parameter validation or runtime error was encountered. Error
information is available using the SWSERROR function.
SWS INVALID_HANDLE The connection handleisinvalid. No error information is available.
Any other value The operation failed.
PL/I Example
DL TOONN PTR /* Connection Handl e */
DAL TDATA CHAR(70) ; [* Text output area */
DAL TSI ZE FI XED BI N(31); /[* Text length area */
DAL RC FI XED BI N(31); [* return code */
DL DVHX FI XED BIN(31) BASED, /* Dummy Handle field */
ADDR(TOONN) - >DVHX = 0; /* dear Connection Handl e */
TDATA = 'WO Message Text’; /* Set output area */
TS ZE = 16; /* set length */
CALL SWAWQQ(TOONN /* output trace message */
TDATA,
TSI ZE,
SWE- WG I NFO) ;
RC = PLIRET\(); /* get return code */
| F RC "= SWs SUCCESS THEN /* exit programif bad RC */
EXIT;
C Example
HDBC t Conn = NULL; /* Connection Handl e */
char tData[] = "Null-terminated!"; /* Text string definition */
| ong RC /[* return code */
rc = SWAWo(& Conn, /* output trace message */
t Dat a,
SWE NTS,
SWs- WG I NFO) ;
if (rc ~= SW5 SUCCESS) return; /* exit programif bad RC */

December 1999 Shadow Programming Guide 7-143

Host Application APl Function Calls

COBOL Example

77 TOONN USAGE | S PO NTER
77 TDATA Pl C X(70).
77 TSI ZE Pl C S9(5) COWP.
77 DESC Pl C S9(5) COWP VALLE 12.
77 ROUTE Pl C S9(5) COWP VALUE 1.
MOVE ' WIO MESSAGE TO TDATA
MOVE 11 TO TSI ZE
CALL ’ SWPW" US| NG TOOWN,
TDATA,
TSI ZE,
SVB- WO | NFQ

MOVE RETURN- CCDE TO W5~ SWEAPI - RETURN- CCDE.
I F NOT' SW5- SUCCESS GOBACK.

7-144 Shadow Programming Guide December 1999

Web Server Specific APIs

SWSWTO Function
/ Can be used in Shadow/REXX.
/ Can be used from other REXX interpreters.
/ High-level language interface available.

The SWSWTO built-in function provides a meansto issue an MV S write to oper-
ator.

The SWSWTO function allows a message to be written to the MV S operator con-
sole. Optionally, aroute code may be supplied. If a zero route codeis supplied, the
default will be used. The route code is one of four string constants, which
aredescribed below. Each constant determines a set of route and descriptor codes,
which is described in the IBM publication - - Assembler Services Reference.

Coding SWSWTO
To code the SWSWTO function, use the following format:

RC = SWBWQQ textstring ,<route code>)

Valid Route Codes

Route Code Description

Informational desc codes 4,9 route code 1
Warning desc codes 4,9 route codes 1,11
Severe desc codes 2,11 route codes 2,11
Hardcopy None

Route Code Description

Return Values

The function returns O (zero) if successful and non-zero if the WTO failed.

December 1999 Shadow Programming Guide 7-145

Host Application APl Function Calls

RPC Direct Host APIs

This section covers the following RPC Direct APIs:

API Description DIRECT WEB SEF WEB/RX
RPC Direct APIs
To access cur rent execution sdcpif

environment information:

To add text messageto trace sdcpmg

browser log:

To read buffer of data from client: | sdcprd

To send buffer of datato client: sdcpwr

Q0 0| 0| 0
Q 02|99
Q 2|90

Host RPCs can use avariety of APIs provided by Shadow Server to communicate
with the Shadow Server address space. These APIs are used to:

= Transmit datato and from the client.
m Add messagesto Trace Browse.
= Obtain additional information about the execution environment.

Host RPCs can be used in any high-level language. The same routines are pro-
vided for dl languages. All of the host RPC API functions can be invoked by
either AMODE 24 or AMODE 31 callers. All data areas passed to these functions
can either be above or below the 16 MB line. All functions accept a fixed number
of arguments passed using an OS parameter list with the VL bit set for the last
parameter in the list. The VL bit must be correctly set to maintain compatibility
with future releases of the host RPC API. The functions of the Shadow Server
host RPC API are:

sdcpif

Access and update execution environment information.
sdcpmg

Add a user message to the Trace Browse log.
sdcprd

Read a buffer of data from the client application.
sdcpwr

Write a buffer of datato the client application.

7-146

Shadow Programming Guide December 1999

RPC Direct Host APIs

sdcpif Function

RPC Direct

sdcpif isused to gain information about the current execution environment. Infor-
mation requests and a buffer data area are passed to this function. This function
either updates the buffer with the requested data or uses the data in the buffer to
update the current execution environment.

Syntax

The genera form for invoication of sdcpif is:
| ong sdcpif(rgsr, ouar)

CALL Arguments

The sdcpif function accepts the following arguments:

Type Argument Use Description

scrasr * rasr Input Request string. This request string is passed using a variable

length string. Variable length string starts with atwo byte
prefix followed by name of current request. Request name
must be passed in uppercase, and length prefix must be equal
to number of charactersin request name.

char * ouar 1/0 Buffer area. This data areais used to either return information

about the current execution environment or provide a new
value for some element of the current execution environment.

Return Values

sdcpif returns:

Return Value Description

CMCPCMOK

The information request was successfully handled.

CMCPIVRQ

The request name string was invalid.

Comments

sdcpif provides supports requests for several different types of information about
the current execution environment. The supported request types are:

m HOSTNAME. Thisrequest is used to obtain the host name of the client
system that initiated the current RPC. The host name is returned in the output
buffer as avariable length string. The first two bytes of the output buffer will
contain the length of the host name string. Up to 16 bytes of host name
information will be returned after the two-byte length prefix. The size of the
return buffer should be at least 102 bytesto alow for longer host namesin the

December 1999

Shadow Programming Guide 7-147

Host Application APl Function Calls

future. Currently, host names are limited to 16 bytes, however, 100 bytes
should bereserved in the result areato allow for future expansion of thisfield.
The host name will be on of the following:

m A TCP/IP host name in character string format
An IP addressin dotted decimal notation (for example, 140.252.14.65)
The SNA LU name of the system running the client application.

s USERID. The userid that the client application program provided to logon to
the host system will be returned in the buffer area as a variable length string.
Thefirst two byteswill contain the userid length followed by the userid string.
The userid string can be up to 8 bytes long and will not be padded with
trailing blanks.

m PROGRAM. Thisisthe name of the currently executing RPC. The program
name will be either aload module name or aload module alias. The buffer
will contain the program name as a variable length string. The first two bytes
will contain the program name length followed by up to 8 bytes of the
program name. The program name will not be padded with trailing blanks.

m CPUTIME. CPU timeisthe amount of TCB time used by the current task so
far. The amount of TCB CPU timewill be returned to the output buffer areaas
an 8-byte double-precision floating-point value in units of seconds.

» UNIQUETOKEN. Thisis an 8-byte unique token value returned in the
output buffer area. The token value can be used as needed by the host RPC
application. It will always monotonically increase and can be assumed to be
unique across al of the CPU engines of a system image.

s USERAREA. Thisisa4K scratchpad areashared by all RPCsrunning inthe
Shadow Server address space. Shadow Server does not provide any
serialization for thisuser area. This area can be accessed and updated by all
RPCs using the 4-byte USERAREA address returned in the output buffer
area.

The sdcpif function can also be used to update certain elements of the current exe-
cution environment. The following update request type is supported:

PLANNAM E. The plan nameisupdated using the contents of the buffer area.
The buffer areamust be avariable length string containing the plan name. The
first 2 bytes of the buffer areaindicate the length of the plan name, followed

7-148 Shadow Programming Guide December 1999

RPC Direct Host APIs

by the actual plan name. This name will be padded with trailing blanks if
needed when it copied into the plan name area.

Note:

This call does not actually alter the DB2 plan (if any) used by
the current RPC. It will only update the plan names displayed by
the Shadow Server diagnostic facility and the SDB | SPF
application on the host. This request type is normally only used
by RPCs that establish their own connections to DB2 with
DSNALI, and then update the Shadow execution environment
plan name for diagnostic purposes.

Example

None at thistime.

Related Functions

For information about See
Adding a user message to the Trace Browse log sdcpmg
Reading a buffer of data from the client sdcprd
Writing a buffer of datato the client sdcpwr

December 1999 Shadow Programming Guide 7-149

Host Application APl Function Calls

sdcpmg Function

RPC Direct
sdcpmg adds a text message to the Trace Browse log.

Syntax

The general form for invoication of sdcpmgis:
| ong sdcpny(ngsr, ngln)

CALL Arguments

The sdcpmg function accepts the following arguments:

Type Ar

gument Use Description

char *

mgsr Input Text message. The mgsr argument points to text message that

should be added to Trace Browse log. This text message
should not start with a length prefix of any kind and should not
be null terminated. The text message can contain any
combination of characters, however, printable characters are
preferred for usability purposes.

long

mgln Input Text message length. The mgsr argument must be greater than

or equal to zero.

Return Values

sdcpmg returns:

Return Value Description
CMCPCMOK The user message was successfully added to Trace Browse.
CMCPEXER General execution errors were detected.
CMCPTBER The message could not be added to Trace Browse for any other
reason.
Comments

This function adds user messages to the Trace Browse area. User messages have
an event type of message and can be added at any time and in any number, how-
ever, some caution should be used in adding user messages to Trace Browse. If
there are too many messages added, there will be less room for system messages
that can be needed for debugging purposes. A user message consists only of mes-
sage text. The message text can contain any combination of characters passed by
the caller and will be truncated if it exceeds the maximum message text length.

7-150

Shadow Programming Guide December 1999

RPC Direct Host APIs

Example

None at thistime.

Related Functions

For information about See
Accessing and updating execution environment information sdcpif
Reading a buffer of data from the client application sdcprd
Writing a buffer of data to the client application sdcpwr

December 1999

Shadow Programming Guide

7-151

Host Application APl Function Calls

sdcprd Function

RPC Direct
sdcprd reads a buffer of datafrom the client.

Syntax
The general form for invocation of sdcprd is:
| ong sdcprd(buar, bul n)

CALL Arguments

The sdcprd function accepts the following arguments:

Type Argument Use Description
char * buar Output Buffer area for message received from client application. This
areamust be at |east aslarge as the size value specified in next
argument.
long buln Input Buffer length. Size of the buar buffer area.
Return Values
sdcprd returns.
Return Value Description

A Non-Negative Buffer Length Value | A message was successfully read from the client.

Note:

If the input buffer length is zero then the return code from this
function will also be zero.

CMCPBUER The message buffer reset failed.

CMCPEXER A general execution error occurred.

CMCPSXSz The buffer sent by the client application was larger than the buffer
area provided by the host RPC.

CMCPREER The client application failed, the system running the client
application failed, or the network failed.

CMCPTPEN The client application terminated.

Comments

Thisfunction is used to read one buffer of datafrom the client. The return code
from this function will be either an actual buffer size or a negative error code. If
the client system network or application fails, this function will return a negative
error code.

7-152

Shadow Programming Guide December 1999

RPC Direct Host APIs

The buffer should be large enough for the largest possible message sent by the cli-
ent application. In general, client applications are limited to sending messages of
up to 30 kilobytes.

Note:

If the receiving buffer is smaller than the message transmitted by the
client, the client message will be discarded, not truncated.

The buffer of datareceived from aclient will not be trandated or converted in any
way, so if the buffer contains binary data values, these will be returned to the host
application unchanged. In other words, al bit combinations can be transmitted
from the client application to the host RPC without alteration.

Calling this function will suspend execution of ahost RPC until a data buffer is
available or until acommunication |/O error is detected. In other words, the host
RPC will be suspended until the client application transmits a data buffer or until a
communication failure occurs. If the client application fails to supply a buffer of
data, the host application will be suspended indefinitely. Thereisno time out asso-
ciated with thisfunction at thistime.

Examples

None at thistime.

Related Functions

For information about See
Accessing and updating execution environment information sdcpif
Adding a user message to the Trace Browse log sdcpmg
Writing a buffer of datato the client application sdcpwr

December 1999

Shadow Programming Guide

7-153

Host Application APl Function Calls

sdcpwr Function

RPC Direct
Thisfunction is used to send a buffer of datafrom the host application to the cli-

ent.

Syntax

The general form for invocation of sdcpwr is:

| ong sdcpwr (buar, buln, cnfg)

CALL Arguments

The sdcpwr function accepts the following arguments:

Type Argument

Use

Description

char * buar

Input

Buffer area containing message to be sent to client application.
This data area does not start with alength prefix and need not
be null-delimited. This data area must be at |east aslarge as
size value specified by next argument.

long buln

Input

Buffer length. Thisargument contains number of bytes of data
to be transmitted from host to client. This value must be
greater than or equal to zero. This value should not exceed
maximum size buffer that can be transmitted from host to
client, or approximately 30K.

long cmfg

Input

Communication flags. This argument is used to pass flags to
write routine to control how write operation is done. See
comments section below for definition of flags.

Return Values

sdcpwr returns;

Return Value Description
CMCPCMOK The data buffer was successfully transmitted to the client.
Note:
There is no guarantee that the buffer was successfully received even
if the return code is CMCPCMOK.
CMCPBUER The transmission buffer could not be reset.
CMCPEXER A general execution error occurred.
CMCPSEER A communication error of some kind was detected. A

communication error will bereported if the network failed, the client
application program failed, or the system running the client
application program failed.

7-154

Shadow Programming Guide December 1999

RPC Direct Host APIs

Comments

This buffer of data can contain any combination of characters or binary values,
and will not be translated or converted in any way asit istransmitted from the host
system to the client. This function will return to the caller before the data has actu-
aly been transmitted from the host, at which time the host RPC can assume that
the data has been copied from the buffer. However, no assumptions can be made
about when the data will actually be delivered to the client application.

The host RPC buffer write function can be called consecutively any number of

times. There is no requirement that any data buffer be received from the client

before, after, or in between buffer write calls. However, if the host application

attempts to write “too much” data to the client, then the host communication buff-
ers can be filled causing the call to be suspended until a sufficient amount of data

has actually been sent to the client.

The communication flags argument is optional. If this argument is omitted, all
flags will be assumed to be off. The communication flag is:

SDCPWRNO. This flag is set to prevent the line from being turned around
after each write. By default, the line is turned around after each write to allow
the client to send a buffer to the host. This flag must be set if another write
will follow the current write without an intervening read.

Note:

This flag will only have an effect on LU 6.2 client/server
sessions. This flag should be set if there is any possibility that
the host RPC will ever have to use LU 6.2 to communicate with

the client.

Examples

None at this time.

Related Functions

For information about

See

Accessing and updating execution environment information

sdcpif

Adding a user message to the Trace Browse log

sdcpmg

Reading a buffer of data form the client application

sdeprd

December 1999 Shadow Programming Guide

7-155

Host Application APl Function Calls

General APIs

This section covers the following General APls:

API Description DIRECT WEB SEF WEB/RX

General APIs

To get error information: SQLERROR SWSERROR SDBERROR SWSERROR
or SDCPSE or SWCPSE

Toreturn information to ODBC | SQLGETINFO SWSINFO SDBINFO SWSINFO

CALL RPC: or SDCPGI or SWCPGI

Towrite messageto trace SQLTRACEMSG SWSTRACEMSG SDBTRACE SWSTRACE

browser: or SDCPTM or SWCPTM

To dynamically allocate a file: SDBALLOC SWSALLOC SDBALLOC SWSALLOC
or SDCPAL or SWCPAL

To de-allocate datasets: SDBFREE SWSFREE SDBFREE SWSFREE
or SDCPFR or SWCPFR

Tofetch or set transaction run- SDBVALUE SWSVALUE SDBVALUE SWSVALUE

timevariable values: or SDCPVL or SWCPVL

Tosaveand restoretransaction- | SQLTOKEN SWSTOKEN SDBTOKEN SWSTOKEN

oriented data: or SDCPTK or SWCPTK

To concatenate multiple SDBCONCT SWSCONCT SDBCONCT SWSCONCT

DDNames under a single or SDCPCC or SWCPCC.

DDName.

7-156

Shadow Programming Guide

December 1999

General APIs

High-Level Language Interface
SQLERROR (SDCPSE)
SWSERROR (SWCPSE) Function

Can be used in Shadow/REXX.

Can be used from other REXX interpreters.

HLL entry point name is SDCPSE/SWCPSE.

SQLERROR/SWSERROR is the Web Server API function used to fetch informa-
tion pertaining to the last Application Program Interface error detected for this

transaction.

CALL Arguments

The SQLERROR/SWSERROR function call requires eight arguments. None can
be omitted from the function call.

HLL Argument Type

Arg I/O Description of Argument
C COBOL PL/I
1 HENV USAGE PTR INPUT The Web Server environment handle. The
POINTER environment handle is an opaque, four-byte address
pointer. The environment handle is currently not
used, and must be set to zero (NULL).
2 HDBC USAGE PTR INPUT The connection handle. The connection handleis an
POINTER opaque, four-byte address pointer. The connection
handleis currently not used, and must be set to zero
(NULL).
3 HSTMT USAGE PTR INPUT The Web Server statement handle. The statement
POINTER handle is an opaque, four-byte address pointer. The
statement handleis currently not used, and must be
set to zero (NULL).
4 UCHAR* PIC CHAR(6) OUTPUT This argument should specify a character string
X(6) buffer of at least 6 bytesin length. A state value,
compatiblein format with the ODBC specification is
returned in this area, asanull terminated string.
5 SDWORD* | PIC S9(5) FIXED OUTPUT The 'native’ error codeis returned within this area.
COMP BIN(31) Thisis some value that describes the error condition.
6 UCHAR* PIC X CHAR OUTPUT The buffer area which receives the error message
(nnn) (nnn) text. Note that the error message text will dways be

null-terminated. Room for the trailing null must be
provided.

December 1999

Shadow Programming Guide 7-157

Host Application APl Function Calls

HLL Argument Type
Arg I/O Description of Argument
C COBOL PL/I
7 SDWORD* | PIC S9(5) FIXED INPUT The total size of the error message buffer area
COMP BIN(31) supplied by the sixth argument. The error message
will be truncated if it does not fit into this buffer,
including room for the trailing null terminator.
8 SDWORD* | PIC S9(5) FIXED OUTPUT The API returnsthe total size of the error message
COMP BIN(31) (excluding the null terminator). The returned size
value will be larger than the buffer size if the error
message has been truncated.

Return Values

SQLERROR/SWSERROR always sets a signed numeric return code value. Possi-
ble values are:

Return Value

Description

SWS SUCCESS,
SQL_SUCCESS

The operation succeeded. The return values have been set.

SWS SUCCESS WITH_INFO,
SQL_SUCCESS WITH_INFO

The operation partially succeeded. This return code value is set
when the returned error message text has been truncated.

SWS ENVIRONMENT_ERROR

The request could not be processed because of a runtime

environmental error, for example, you invoked the API service
outside of aweb transaction procedure, or from outside the Server's
address space. The Server may provide diagnostic information in the
wrap-around trace.

SWS ERROR,
SQL_ERROR

A parameter validation or runtime error was encountered. Error
information is avail able using the SWSERROR/SQL ERROR
function.

SWS NO_DATA_FOUND,

Thereisno prior error condition upon which to report.

SQL_NO_DATA_FOUND

SWS INVALID_HANDLE,
SQL_INVALID_HANDLE

One of the handle argumentsisinvalid.

7-158

Shadow Programming Guide

December 1999

General APIs

PL/I Example
DCL SENVH PTR /* Environnent Handle */
DCL SCONN PTR /* Connection Handle */
DCL SSTMI PTR /* Statnent Handl e */
DL SSBT CHAR(6); /* CDBC State */
DAL SNATV FI XED BIN(31); /* Native Error Code */
DAL SERVG (HAR(256); /* error message text */
DAL SMSZ FIXED BIN(31) INNT(256); [/* Buffer size */
DAL SRTSZ FIXED BIN(31); /* Fetched val ue size */
DAL RC FI XED BI N(31); /* return code */
DL DWHX FI XED Bl N(31) BASED, /* Dummy Handle field */
ADDR(SENVH) - >DVHX = 0; /* A ear Environment Hhdl . */
ADDR(SCONN) - >DVHX = 0; /* dear Connection Handl e*/
ADDR(SSTMI) - >DVHX = 0; /* Qear Staterment Handle */
CALL SWBERROR(SENVH, /* get last error info */

SCONN,

SSTM,

SSQET,

SNATV,

SERM5

SME5Z,

SRTSZ);
RC = PLIRETVW(); /* get return code */
IF (RC "= SWs SUCCESS & /* exit programif bad RC */

RC "= SW5 SUCCESS WTH | NFO THEN
EXT,

C Example
HDBC sEnvh = NULL; /* Environment Handl e */
HDBC sConn = NULL; /* Connection Handl e */
HSTMI' sStmt = NULL; /* Statement Handl e */
char sSqgst [6]; /* CDBG Conpatible state */
SDWRD sNat v; /* Native Error Code */
char sEr ng[256] ; /* Error message text */
SDWRD sRE sz; /* Error message Size */
rc = SWsError(&sEnvh, /* get error information */

&sConn,

&St ,

sSgst,

&sNat v,

sEr ny,

si zeof (sErng),

&R sz);
if (rc *= SW5_SUCCESS) return; /* exit programif bad RC */

December 1999 Shadow Programming Guide 7-159

Host Application APl Function Calls

COBOL Example

77
77
77
77
77
77
77
77

SENVH
SCONN
SSTMI
SSCBT
SNATV
SERMG
SMEZ
SRTSZ

USAGE | S PO NTER
USAGE | S PO NTER
USAGE | S PO NTER

Pl C X(6).

Pl C S9(5) COWP.

Pl C X(256).

Pl C S9(5) COWP VALUE 256.
Pl C S9(5) COWP.

CALL ' SWOPSE USI NG SENVH,

SCONN,
SSTM,
SSCET,
SNATV,
SERMG
SMEZ,
SRTSZ.

MOVE RETURN- OCDE TO W& SWEAPI - RETURN- CCDE.
I F NOT SWE- SUCCESS GCBACKGOBACK

7-160

Shadow Programming Guide

December 1999

General APIs

SDBERROR/SWSERROR Function

/ Can be used in Shadow/REXX.
/ Can be used from other REXX interpreters.
/ High-level language interface available.

SDBERROR/SWSERROR is abuilt-in function used to retrieve information
about the last error condition encountered by a Web Server API function. If no
error condition has been encountered, the function returnsa NULL string. Other-
wise a description of the last error is returned.

Syntax
The general form for invocation of SDBERROR/SWSERROR is:

SDBERRCR()

string

or

string

SWBERRCR()
The SDBERROR/SWSERROR function is coded without arguments.

Return Values

After the call shown above completes, the variable string will be set toaNULL
value if no error condition has been encountered. Otherwise, it will contain atext-
format description of the error.

December 1999 Shadow Programming Guide 7-161

Host Application APl Function Calls

High-Level Language Interface

SQOLGETINFO (SDCPGI)

SWSINFO (SWCPGI) Function

v

Can be used in Shadow/REXX.

v

Can be used from other REXX interpreters.

v

HLL entry point name is SDCPGI/SWCPGI.

SQLGETINFO/SWSINFO is the Web Server API function used to fetch informa-
tion about the current transaction execution environment and return it to the caller.

CALL Arguments

The SQLGETINFO/SWSINFO function takes five arguments. All five arguments
must be specified on the call.

HLL Argument Type

Arg I/O Description of Argument
C COBOL PL/I
1 HDBC Usage PTR Input The connection handle. The connection handleis an
pointer opaque, four-byte address pointer. The connection
handleis currently not used, and must be set to zero
(NULL).
2 UDWORD | PIC S9(5) FIXED Input A four-byte binary integer indicating the information
COMP BIN(31) item to be returned by the function. Specify any one
of the manifest constants, shown in the table below,
to indicate the data item to be fetched.
3 UCHAR* PIC X(nnn) | CHAR Output The data buffer to receive the fetched information.
(nnn) Depending on the value of the second argument, the
returned data can be a null-terminated string; a 16-hit
integer value, a 32-bit flag-word value, or a 32-hit
signed or unsigned integer.
4 SDWORD | PIC S9(5) FIXED Input The size of the data buffer area given by the third
COMP BIN(31) argument.
7-162 Shadow Programming Guide December 1999

General APIs

HLL Argument Type

Arg I/O Description of Argument
C COBOL PL/I
5 SDWORD * | PIC S9(5) FIXED Output Return areareceiving thetota size, in bytes, of the
COMP BIN(31) requested information value, regardless of whether

the fetched value could be completely stored within
the buffer area. For character format data items,
which are null terminated, this value does not include
the null termination byte.

For requests which return character data: If the total
size of the requested information is greater than or
equal to the size of the data buffer the returned
character string is truncated, and a null
terminationbyte is placed into the last available of the
buffer area.

For requests which return any other datatype:The
value given by the forth argument isignored. The
size of the return buffer areais assumed to be at least
four bytes.

The following table shows the values which can be specified for the second argu-
ment. Note that for COBOL, the value names contain hyphensinstead of underbar

characters.

Manifest Constant

Value Returned

SWS GET_ASID

The ASID as a 2-byte binary value.

SWS GET_BYTES

The number of saved bytes

SWS_GET_CLOCK

The current TOD clock value as an 8-byte binary TOD vaue. Note that thisis
the un-adjusted STCK value.

SWS GET_CONNECTID

The unique CONNECTION ID value as a4-byte binary value.

SWS GET_CPUDELTA

The 8-byte task CPU time delta value.

SWS GET_CPUTIME

The 8-byte task CPU time value.

SWS GET_DB2PLAN

The DB2 plan name.

SWS GET_DB2SUBSYS

The DB2 subsystem name.

SWS GET_EVENTTYPE

An indication of the event type associated with the invocation of the rule/
program.

SWS GET_HOSTDOMAIN

The host (server) domain associated with the current request.

SWS GET_HOSTNAME

The HOSTNAME (CLIENT) associated with the current request.

SWS GET_IPADDRESS

The |P Addressfor the current connection. The returned value is 4-byte binary
value.

SWS GET_JOBNAME

The MV Sjob name related to the current primary address space.

SWS GET_LASTCONNECTID

Thelast CONNECTION ID used on the current link.

SWS GET_LASTUSERID

The last Userid used on the current link

December 1999

Shadow Programming Guide

7-163

Host Application APl Function Calls

Manifest Constant

Value Returned

SWS GET_LINKTYPE

The link type for the current request

SWS GET_LU

The LU NAME for the current request

SWS GET_MAINPGM

The name of the main REXX program or rule.

SWS GET_MODE

The mode name for the current request

SWS GET_PRODUCT

The Product Identification string

SWS GET_PRODUCTSTATUS

The current product status

SWS GET_PROGRAM

The name of the REXX program or rule.

SWS GET_ROWS

The number of source rows

SWS GET_SEFFEATURE

A single blank if SEF is not enabled.

SWS_GET_SUBSYS

The accessed subsystem ID from the current OPM S image.

SWS GET_SUBSYSASID

The ASID of the active subsystem from the real OPMS as atwo-byte binary
value.

SWS GET_SMFID

The SMFID of the MV'S system.

SWS GET_TASKTYPE

The task type.

SWS GET_TRANSTYPE

The transaction program type.

SWS GET_USERID

The Userid value.

SWS GET_VERSION

The version string of the product subsystem under which this rule/program is
running.

Return Values
SQLGETINFO/SWSINFO aways sets a signed numeric return code value. Possi-

ble values are;

Return Value

Description

SWS SUCCESS,
SQL_SUCCESS

The operation succeeded. The requested data has been fetched and
placed into the buffer area. The actual size of the dataiis set into the
sixth argument.

SWS SUCCESS WITH_INFO,
SQL_SUCCESS WITH_INFO

The return buffer area was not large enough to store the fetched
item. The fetched item was truncated. The size of the fetched item,
before truncation, is returned to the sixth argument. For character
data, anull termination byte is always placed into the last buffer
position.

SWS _ENVIRONMENT_ERROR

The request could not be processed because of a runtime
environmental error, for example, you invoked the API service
outside of aweb transaction procedure, or from outside the Server's
address space. The Server may provide diagnostic information in the
wrap-around trace.

7-164

Shadow Programming Guide December 1999

General APIs

Return Value

Description

SWS ERROR,
SQL_ERROR

A parameter validation or runtime error was encountered. Error
information is avail able using the SWSERROR/SQL ERROR
function.

SWS INVALID_HANDLE,
SQL_INVALID_HANDLE

The connection handle argument isinvalid. No error information can
be returned using SQLERROR/SWSERROR.

PL/I Examples

Note:
I> SQLGETINFO/SWSINFO can be used as an alias for the pre-
processor symbol SWSINFO.

DCL SOONN PTR, /* Connection Handle */
DAL SBUFF CHAR(256) ; /* Return Buffer area */
DAL SBFSZ FIXED BIN(31) INT(256); /* Size of buffer */
DAL SRTsz FI XED BI N(31); /* Actual itemsize */
DAL RC FI XED BIN 31); /* return code */
DAL DVHX FI XED Bl N(31) BASED, /* Dumy Handle field */
ADDR(SOON\N) - > DWHX = 0; /* dear Connection Handl e*/
CALL SWBI NFQU SCONN [* fetch the I P address */
ADDR(SOON\N) - > DWHX = 0; /* dear Connection Handl e*/
_| PADDRESS,

SBUFF,

SBFSZ,

SRTSZ);
RC = PLIRET\(); /* get return code */
| F RC "= SWs SUCCESS THEN /* exit programif bad RC */
EXIT,

December 1999

Shadow Programming Guide 7-165

Host Application APl Function Calls

C Example

Note:

SQLGETINFO/SWSINFO can be used as an alias for the pre-
processor symbol SWSINFO.

HDBC sConn = NULL; /* Connection Handl e */
char sBuf f [256] ; /* Return Buffer Area */
SDWCRD SRTSZ; /* Return itemsize */
| ong RC /* return code */
rc = SWBl NFQU &sConn, /* obtain the | P Address */

SWE_CGET_| PADDRESS,

&Buff[0],

(SDWRD) si zeof (sBuff),

&SRISZ);
if (rc "= SW5 SUCCESS) return; /* exit programif bad RC */

COBOL Example

77
77
77
77

SCONN
SBUFF
SBFSZ
SRTSZ

USAGE | S PO NTER
Pl C X(80).

Pl C S9(5) COWP VALLE 80.
Pl C S9(5) COWP.

CALL * SWOPA * USI NG SCONN,

SWE- CET- | PADDRESS,
SBUFF,
SBFSZ,
SRTSZ.

MOVE RETURN- CCDE TO WS- SWEAP! - RETURN- OCDE.
I F NOT SW&- SUCCESS GQCBACK

7-166

Shadow Programming Guide

December 1999

General APIs

SDBINFO/SWSINFO Function

Can be used in Shadow/REXX.

Can be used from other REXX interpreters.

High-level language interface available.

SDBINFO/SWSINFO is abuilt-in function used to retrieve environmental infor-
mation from the Shadow Web Server Subsystem.

Syntax
The general form for invocation of SDBINFO/SWSINFO is:
var = SDBI NFQ SWBI NFQU argl)

Valid Arguments

The SDBINFO/SWSINFO function takes one argument. The input argument can
be one of the following string constants:

Manifest Constant Value Returned

ASID

The ASID as a 2-byte binary value, when invoked via the program API. The
ASID isreturned as a 4-byte value when invoked from REXX.

BYTES The number of saved bytes

CLOCK The current TOD clock value as an 8-byte binary TOD vaue. Note that thisis
the un-adjusted STCK value.

CONNECTID The unique CONNECTION ID value

CPUDELTA The 8-byte task CPU time deltavalue

CPUTIME The 8-byte task CPU time value

DB2PLAN The DB2 plan name

DB2SUBSYS The DB2 subsystem name

EVENTTYPE An indication of the event type associated with the invocation of the rule/
program.

HOSTDOMAIN The host (server) domain associated with the current request.

HOSTNAME The HOSTNAME (CLIENT) associated with the current request.

IPADDRESS The IP Address for the current request. The function returns a 4-byte binary
value, when invoked viathe program API. A formatted character value in the
form, 10.123.2.12 is returned when this function is invoked from REXX.

JOBNAME TheMV S job name related to the current primary address space

December 1999

Shadow Programming Guide 7-167

Host Application APl Function Calls

Manifest Constant

Value Returned

LASTCONNECTID

The last CONNECTION ID used on the current link

LASTUSERID The last Userid used on the current link
LINKTYPE The link type for the current request

LU The LU NAME for the current request
MAINPGM The name of the main REXX program or rule
MODE The mode name for the current request
ODBCDATE The compile date of the ODBC driver

ODBCVERSION

The ODBC driver version

PRODUCT The Product Identification string

PRODUCTSTATUS The current product status

PROGRAM The name of the REXX program or rule

ROWS The number of source rows

SEFFEATURE A single blank if SEF is not enabled.

SUBSYS The accessed subsystem ID from the current OPM S image

SUBSYSASID The ASID of the active subsystem from the real OPMS

SMFID The SMFID

TASKTYPE The task type

TRANSTYPE The transaction program type

USERID The Userid value

USERPARM The user parameter string from the client

VERSION The version string of the product subsystem under which this rule/program is

running.
Return Values
The function always returns the indicated value. If the value requested is not valid
for the environment, aNULL string isreturned.
Examples
The following request will set the REXX variable, |PA, to the 4-byte binary TCP/
I P address of the Web Client program:
| PA = SDBI NFQ SWBl NFQ(' | PADDRESS')
7-168 Shadow Programming Guide December 1999

General APIs

High-Level Language Interface
SQLTRACEMSG (SDCPTM)
SWSTRACEMSG (SWCPTM) Function

Can be used in Shadow/REXX.

Can be used from other REXX Intepreters.

HLL entry point name is SDCPTM/SWCPTM.

SQLTRACEMSG/SWSTRACEMSG is used to write a message into the Shadow

Web Server or Shadow Direct's wrap-around trace browse dataset. The message
can contain any text desired. If the message is too long to fit within a trace browse
record, it is truncated. Truncation is not considered an error.

CALL Arguments

The SQLTRACEMSG/SWSTRACEMSG function takes four arguments. All
four arguments must be specified on the call.

HLL Argument Type
Arg I/O Description of Argument
C COBOL PL/I
1 HDBC Usage PTR Input The connection handle. The connection handleis an
pointer opague, four-byte address pointer. The connection
handleis currently not used, and must be set to zero
(NULL).
2 PTR PIC X(nnn) | CHAR Input The data value which is to be written to the trace
(nnn) browse wrap-around dataset. You can specify anull
terminated string, or explicitly provide the value
length via the third argument.
The maximum useable length for atrace browse
record is approximately 730 bytes.
3 SDWORD | PIC S9(5) FIXED Input The size of the data value given by the second
COMP BIN(31) argument which is to be written to the trace record.
You can optionally specify SWS_NTS, to indicate
that the datais a null terminated string.
4 UDWORD | PIC S9(5) FIXED Input This argument is currently not used, but can bein
COMP BIN(31) future releases. You must specify a zero value.

December 1999

Shadow Programming Guide 7-169

Host Application APl Function Calls

Return Values

SQLTRACEM SG/SWSTRACEM SG aways sets a signed numeric return code
value. Possible values are:

Return Value Description
SWS SUCCESS, The operation succeeded. The specified data was written to the
SQL_SUCCESS product’s wrap-around trace.

SWS ENVIRONMENT_ERROR The request could not be processed because of a runtime
environmental error, for example, you invoked the API service
outside of aweb transaction procedure, or from outside the Server's
address space. The Server may provide diagnostic information in the
wrap-around trace.

SWS ERROR, A parameter validation or runtime error was encountered. Error
SQL_ERROR information is avail able using the SWSERROR/SQL ERROR
function.
SWS INVALID HANDLE, The connection handleisinvalid. No error information is available
SQL_INVALID HANDLE
Any Other Value The operation failed.
PL/I Example
DL TOON PTR /* Connection Handl e */
DAL TDATA CHAR(256); /* Text output area */
DAL TSIZE FIXED BIN(31); /* Text length area */
DAL RC FI XED BI N(31); /* return code */
DL DVHX FI XED Bl N(31) BASED /* Durmy Handl e field */
DAL FBOO FIXED BIN(31) INT(0); /* Dummy argunent */
ADDR(TOONN) - >DVHX = 0; /* dear Connection Handl e*/
TDATA = 'Trace Message Text’; /* Set output area */
TS ZE = 18; /* set length */
CALL SWSTRACE(TCOONN /* output trace message */
TDATA,
TSI ZE,
FBOO);
RC = PLIRET\(); /* get return code */
| F RC "= SWs_SUCCESS THEN /* exit programif bad RC */
EXT,

7-170 Shadow Programming Guide December 1999

General APIs

C Example

HDBC t Conn = NULL
char tData[] = "Null-termnated!";
| ong RG
rc = SWETRACE(& Conn,
t Dat a,
SWE NTS,
0);
if (rc "= SW5 SUCCESS) return;

COBOL Example

/*
/*
/*
/*

/*

Connecti on Handl e */
Text string definition */
return code */
out put trace nessage */

exit programif bad RC */

77 TOONN USAGE | S PO NTER
77 TDATA Pl C X(80).

77 TSI ZE Pl C S9(5) COWP.

77 FBOO Pl C S9(5) COMP VALLE 0.

MOVE ' TRACE MESSAGE TO TDATA
MOVE 1310 TSl ZE.
CALL * SWOPTM USI NG TCONN,
TDATA,
TSl ZE,
FBOO.

MOVE RETURN- CCDE TO WS- SWEAP! - RETURN- OCDE.

I F NOT SW&- SUCCESS GQCBACK

December 1999

Shadow Programming Guide

7-171

Host Application APl Function Calls

SDBTRACE/SWSTRACE Function

Can be used in Shadow/REXX.

Can be used from other REXX interpreters.

High-level language interface available.

The SWSTRACE built-in function provides a means of logging text information
to the Shadow Web Server Wrap-around trace.

The SWSTRACE function is primarily intended to allow logging of trace mes-
sages from other REX X interpreters. You can generate log messages from
Shadow/REXX using this function, if you desire. However, REXX SAY state-
ments issued from Shadow/REX X event procedures are automatically logged to
the wrap-around trace without the overhead of invoking this function.

Coding SDBTRACE/SWSTRACE
To code the SWSTRACE function, use the following format:

RC = SWBTRACE(textstring)

Return Values

The function always returns 0 (zero) to the caller.

7-172

Shadow Programming Guide December 1999

General APIs

High-Level Language Interface
SDBALLOC (SDCPAL)
SWSALLOC (SWCPAL) Function

/ Can be used in Shadow/REXX.
/ Can be used from other REXX interpreters.
/ HLL entry point name is SDCPAL/SWCPAL.

SDBALLOC/SWSALLOC isused to dynamically allocate an MV S dataset for
use by Web Client program.

The format of this command is similar in features and functions to the TSO/E
Allocate command. A text string isused as input in order to provide the parame-
ters necessary to allocate the specified dataset. Use the SWSFREE command to
de-alocate datasets all ocated with the SDBALLOC/SWSALLOC command.

Note:

I> Because of comparable functionality of SWSALLOC to IBM’s
ALLOC function, this documentation is similar to IBM’s TSO/E
online help.

Call Arguments

The SDBALLOC/SWSALLOC (SDCPAL/SWCPAL) function arguments are
described in the table which follows. Only two of the three arguments are

required.
HLL Argument Type
Arg I/O Description of Argument
C COBOL PL/I
1 LONG PIC FIXED INPUT The length of the allocation command string. If the
S9(5) BINARY length is longer than the actual command, trailing
COMP (3D nulls or blanks will be ignored. If the length isless
than the actual command string, the allocation
command string will be truncated and possibly cause
execution errors. The maximum string length is
32768 bytes.
2 CHAR* PIC CHAR INPUT The allocation command string. See Supported
X (nnnnn) (nnnnn) Dynamic Allocation Keywords below.

December 1999

Shadow Programming Guide

7-173

Host Application APl Function Calls

HLL Argument Type

Arg I/O Description of Argument
C COBOL PL/I
3 SWSASB* | Usage PTR OUTPUT The Shadow Web Server Allocation Status Block.
Pointer Thisisan optiona argument that provides

information concerning the status of the allocation
request. If you do not specify this argument, you will
not have access to the reason code nor the DAIR
code.

Return Values
SDBALLOC/SWSALLOC aways sets asigned numeric return code value. Possi-

ble values are:
Return Value Description
SWS SUCCESS, The operation succeeded. The specified operation was performed.
SQL_SUCCESS
SWS ERROR, A parameter validation or runtime error was encountered. Error
SQLERROR information is avail able using the SWSERROR/SQLERROR

function.

SWS ENVIRONMENT_ERROR The request could not be processed because of a runtime
environmental error, for example, you invoked the APl service
outside of aweb transaction procedure, or from outside the Server's
address space. The Server may provide diagnostic information in the
wrap-around trace.

Any other value The operation failed. Generally this indicates that the file was not
dlocated. There will be an error message in the Allocation Status
Block describing the error.

Supported Dynamic Allocation Keywords

The SWSALLOC (SWCPAL) interface supports the following dataset allocation
request parameters:

Allocation Keyword Description
DSN(DSNAME) Specifies the name of the dataset to be allocated. You can only specify asingle
dataset name.

Dataset names must be fully qualified as there will be no prefix appended to
the supplied name.

Note: Thisisarequired parameter unless you specify a PATH parameter.

DDN(DDNAME) Specifiesthe DDNAME to associate with the allocated file. If you do not
specify one, one will be dynamically generated for you. The generated
DDNAME can be obtained from the Allocation Status Block which isinput to
the all ocation request.

7-174 Shadow Programming Guide December 1999

General APIs

Allocation Keyword

Description

DEST(DESTINATION/NODE
USERID)

Remote destination or a User at a specified node to which SY SOUT data sets
are to be routed.

DISP(STATUSNORMAL

Specifies the disposition of file upon normal and abnormal (conditional)

ABNORMAL) session termination.

Status disposition: Indicates the disposition of the file upon normal session

termination.

¢« SHR = Dataset exists and exclusive control is not required.

¢ OLD = Dataset exists and exclusive control is required.

¢ MOD = Additions are to be made to the dataset.

¢ NEW = Dataset is to be created .

Normal termination disposition: Indicates the disposition of the file upon

normal session termination.

e UNCATALOG = Specifies that the file should be uncatalogued.

e CATALOG = Specifies that the file should be catalog.

« KEEP = Specifies that the file should be kept.

« DELETE = Specifies that the file should be deleted.

Abnormal (conditional) termination disposition: indicates the disposition of

the file upon abnormal (conditional) session termination.

< UNCATALOG = Specifies that the file should be uncatalogued.

¢ CATALOG = Specifies that the file should be catalog.

« KEEP = Specifies that the file should be kept.

« DELETE = Specifies that the file should be deleted.
SYSOUT(CLASS) Dataset is to be a system output dataset.

VOLUME(SERIAL(9))

Volume(s) on which the dataset resides or is to reside.

BLKSIZE(VALUE)

Blocksize; must be 0 to 32760.

BLOCK S(PRIMARY
SECONDARY)

Space is to be allocated by BLOCKS.
Note: Requires the BLKSIZE parameter.

TRACK S(PRIMARY
SECONDARY)

Space is to be allocated by tracks.

CYLINDERS(PRIMARY
SECONDARY)

Space is to be allocated by cylinders.

DIR(INTEGER)

Number of Directory Blocks required.

December 1999

Shadow Programming Guide 7-175

Host Application APl Function Calls

Allocation Keyword

Description

LIKE(MODEL _DATASET _
NAME)

The model dataset is adataset whose attributes are to be used to allocate a new
dataset. The following attributes are copied from the model dataset:

« Primary and Secondary space quantities (SPACE).
« Directory space quantity (DIR).

« Dataset Organization (DSORG).

¢ Record Format (RECFM).

¢ Optional Services Codes (OPTCD).

e Logical Record Length (LRECL).

« Key Length (KEYLEN).

* Blocksize (BLKSIZE).

¢ Volume Sequence Number (VSEQ).

e Expiration Date (EXPDT).

If SMS is active the following attributes are not copied:

e Optional Services Codes (OPTCD).
* Blocksize (BLKSIZE).

¢ Volume Sequence Number (VSEQ).
¢ Expiration Date (EXPDT).

Any attribute(s) of the model data set can be overridden by explicitly
specifying the appropriate keyword(s) on the allocate command.

HOLD

Dataset is to be placed on a hold queue upon de-allocation.

UNIT(UNIT_TYPE)

Device type to which a file or data set is to be allocated.

UCOUNT(COUNT)

Maximum number of devices to which a file or data set can be allocated.

PARALLEL

One device mounted for each volume specified on the volume parameter.

MAXVOL (VOL_COUNT)

Maximum number of volumes a data set can use.

PRIVATE A volume which is not permanently resident or reserved is to be assigned the
private volume use attribute.
RELEASE Unused space is to be deleted when the data set is closed.

VSEQ(VOL_SEQ_NUM)

Which volume of a multi-volume data set to begin processing with.

ROUND Allocated space should be equal to one or more cylinders.
BFALN(VALUE) Buffer boundary alignment. Legitimate values are:

« D = Double word boundary.

¢ F = Full word boundary.
BFTEK(VALUE) Type of buffering. Legitimate values are:

¢ A = Automatic record area construction.
¢ D = Dynamic buffering.

« E = Exchange buffering.

* R = Record buffering.

e S=Simple buffering.

BUFL(INTEGER)

Buffer length; must be 0 to 32760.

BUFNO(INTEGER)

Number of buffers; must be 0 to 255.

BUFOFF(INTEGER)

Block prefix length; must be 0 to 99.

7-176

Shadow Programming Guide December 1999

General APIs

Allocation Keyword

Description

DSORG(VALUE) Dataset Organization. Legitimate values are:
DA = Direct Access.
« DAU = Direct Access Unmovable.
¢ PO = Partitioned Organization.
¢ POU = Partitioned Organization Unmovable.
e PS=Physical Sequential.
¢ PSU = Physical Sequential Unmovable.
EROPT(VALUE) Error Option. Legitimate values are:

e ABE = Abnormal End-Of-Task.
* ACC = Accept block causing error.
e SKP = Skip block causing error.

KEYLEN(INTEGER)

Key length; must be 0 to 255.

LIMCT(INTEGER)

Number of blocks or tracks to be searched for a block or available space; must
be 0 to 32760.

LRECL (VAL UE)

Logical Record Length. Legitimate values are:

. 0 to 32760.
¢ Character "X".
e 1to 16384 with K-multiplier.

Where:

¢ X =LRECL value exceeds 32756 for variable length spanned records
processed under QSAM.
¢ K =LRECL value is a multiplier of 1024.

NCP(INTEGER)

Maximum number of read or write macros before a check; must be 0 to 255.

If you are running TSO/E on MVS/ESA SP 4.2.2 or earlier, the maximum
value is 99.

OPTCD(VALUE) Optional Services Codes. Legitimate values are:
« A =Actual device addresses presented in read and write macro instruc-
tions.
« B = End-Of-File recognition disregarded for tapes.
e C = Chained scheduling is to be used.
« E = Extended search for block or available space.
« F = Feedback can be requested in read and write macro instructions.
¢ Q= ANSlI translate.
« R =Requests relative block addressing.
T =Requests user totaling facility.
W = Requests a validity check for write operations on direct access
devices.
« J=lIndicates that the character after the carriage control character is to be
interpreted as a table reference character .
PROCOPT(VALUE) File processing option. Legitimate values are:
* INPUT = Specifies that the data set is to be processed for input only.
¢ OUTPUT = Specifies that the data set is to be processed for output only .
EXPDT(VALUE) Dataset expiration date (YYDDD OR YYYY/DDD).

RETPD(INTEGER)

Dataset retention period (NNNN).

December 1999

Shadow Programming Guide 7-177

Host Application APl Function Calls

Allocation Keyword

Description

FCB(IMAGE_ID)

Forms Control Image (Buffer) to be used to print an output data set.

IMAGE_ID specifiesal to 4 aphanumeric or national characters which
identify the image to be loaded into the Forms Control Buffer.

COPIES(NNN)

Number of copies of adataset to print. Aninteger from 1 to 255.

COPYGROUPS(GROUP_
VALUE1 GROUP_VALUE2
..GROUP_VAL UE8))

Used with the COPI ES option to specify the number of times each pageisto
be printed. Up to eight group values can be specified with a sum not exceeding
the number specified in the COPIES parameter.

PROTECT Specifiesthat the DASD data set or tape volume containing atape data set isto
be RACF protected.
ACCODE(VALUE) ANSI accessihility code (A through Z).

OUTBIN(VALUE)

Specifies the output bin on the IBM 3800 laser printer. Legitimate values are:

« BURST = Specifies that the data set should be sent to the burster/trimmer
bin on the IBM 3800 laser printer.

« NOBURST = Specifies that the data set should be sent to the continuous
feed bin on the IBM 3800 laser printer.

CHARS(CHAR_TABLE1
..CHAR_TABLE4)

Specifies the character table that is to be used for printing. One to four
character tables can be specified.

FLASH(NAME COPIES)

Provides the ability to print a form, grid, design, or constant data on paper as it
is being processed through the 3800 printer. Legitimate values are:

« NAME = Specifies the name of the forms overlay to be used.
« COPIES = Specifies the number of copies on which the forms overlay is
to be used.

Note: Separate parameters by spaces. Do not use commas.

FORM S(VALUE)

Specifies the specific print form to be mounted.

OUTDES(OUTPUT _
DESCRIPTOR_NAME ..)

Specifies a list of output descriptors that will be associated with the sysout data
set. These descriptors are created by /OUTPUT JCL statements in the Shadow
Web Server or Shadow Direct procedure.

Note: Separate parameters by spaces. Do not use commas.

UCS(UCS NAME)

Specifies the universal character set (font name) to be used when processing a
print data set in the absence of a 'CHARS' specification.

WRITER(EXTERNAL _
WRITER_NAME)

Specifies the member name of a program in the system library that is to write
the sysout data set. This program will be used instead of JES2 or JESS.

STORCLAS(STORAGE_CLASS)

The name of the storage class which is used to specify the service level for the
data set.

MGMTCLAS
(MANAGEMENT_CLASS)

The management class which is used to specify management criteria for the
data set.

DATACLAS(DATA_CLASS)

The name of the data class which is used as an allocation template for the data
set.

7-178

Shadow Programming Guide

December 1999

General APIs

Allocation Keyword

Description

RECFM (OPTION1 OPTION2
..OPTIONb)

Record Format. Legitimate option values are:

* A =ASAPRINTER CHARACTERS.

« B =BLOCKED.

« D =VARIABLE LENGTH ASCII RECORDS.
« F=FIXED.

¢ M =MACHINE CONTROL CHARACTER.
* S=STANDARD BLOCKS OR SPANNED.

e T =TRACK OVERFLOW.

e U=UNDEFINED.

* V =VARIABLE.

Note: Combinations of these options can be selected. Each selection must be
separated by a space. Review your MVS JCL Reference Manual for legitimate
combinations.

RECORG(ORGANIZATION)

Dataset Organization. Legitimate values are:

e KS=VSAM Cluster (KSDS).

e ES=VSAM Entry Sequenced (ESDS).
* RR =VSAM Relative Record (RRDS).
¢ LS=VSAM Linear Space (LDS).

K EYOFF(OFFSET)

Key Offset.

REFDD(DDNAME)

The DDNAME of a data set whose properties specified on the JCL statement
and in the data class are to be used to allocate the new data set. The following
properties are copied from the referenced DD statement:

« Dataset Organization (RECORG).
e Size.

e Directory blocks.

e Logical Record Length (LRECL).
¢ Record Format (RECFM).

« Key Length (KEYLEN).

* Key Offset (KEYOFF).

SECMODEL (MODEL_NAME)

The name of a "model" profile which RACF should use in creating a discrete
profile for the data set.

DSNTYPE(DSNTY PE)

DATA SET NAME TYPE. Legitimate values are:

« LIBRARY = A partitioned data set in PDSE format.
¢ PDS= A partitioned data set in record format.

« PIPE = A data pipe.

¢ HFS= An HFS (Hierarchical File System) file.

RLS(RLS VALUE)

Record Level Sharing. Legitimate values are:

¢ CR = Consistent Read.
* NRI = No Read Integrity.

FILEDATA(VALUE)

How the system converts between record format and byte-stream format.
Currently meaningful only if path also is coded and the program uses BSAM
or QSAM. Legitimate values are:

« TEXT = Data consists of records that are separated by a delimiter. Cur-
rently it is EBCDIC newline (x'15").

« BINARY = Data does not contain record delimiters. In the current release
the default is binary when creating the file. If you do not code PATHO-
PTS(OCREATE), then FILEDATA temporarily overrides the creation
value.

December 1999

Shadow Programming Guide 7-179

Host Application APl Function Calls

Allocation Keyword

Description

PATH(PATHNAME)

Identifies an HFSfile.

A pathname consists of the names of the directories from the root to the file
being identified, and then the name of the file. The form isINAMELNAME2/
.../NAMERn.

A pathname begins with a slash (/). The system treats any consecutive slashes
like asingle slash.

The pathname can be 1 to 250 characters. A name can be 1 to 249 characters.
Consists of printable characters from x’40’ through X'FE’.

A pathnameis case sensitive. Thus, /usr/joe and /USR/joe define two different
files.

Note: Thisisa required parameter unless you specify a DS\ parameter.

PATHDISP(NORMAL
ABNORMAL)

Specifies the disposition of an HFS file upon normal and abnormal
(conditional) session termination.

Normal termination disposition: Indicates the disposition of the HFS file upon
normal session termination.

« KEEP = Specifies that the file should be kept.
« DELETE = Specifies that the file should be deleted.

Abnormal (conditional) termination disposition: indicates the disposition of
the HFS file upon abnormal (conditional) session termination.

KEEP = Specifies that the file should be kept.
« DELETE = Specifies that the file should be deleted.

Note: The default for datasets allocated with the PATH parameter is
PATHDISP(KEEP KEEP).

PATHMODE(FILE_ACCESS

Specifies the file access attributes when the PATHOPTS operand specifies

ATTRIBUTE ..) OCREAT. A FILE ACCESS ATTRIBUTE is one of the following:

« SIRUSR
¢ SIWUSR
¢ SIXUSR
¢ SIRWXU
 SIRGRP
e SIWGRP
e SIXGRP
*« SIRWXG
¢ SIROTH
e SIWOTH
e SIXOTH
* SIRWXO
 SISUID
e SISGID
You can specify up to 14 FILE ACCESS ATTRIBUTES. The system treats
duplicate specifications of FILE ACCESS ATTRIBUTES as a single
specification.

7-180 Shadow Programming Guide December 1999

General APIs

Allocation Keyword

Description

PATHOPTS(FILE_OPTION ..)

Specifies the file access and status used when accessing a file specified on the
path operand. A FILE OPTION can be in the access group or the status group
and is one of the following:

Valid Access Groups are:

¢ ORDONLY

¢ OWRONLY

« ORDWR

Valid Status Groups are:
« OAPPEND

e OCREAT

e OEXCL

e ONOCTTY

e ONONBLOCK
e OSYNC

¢ OTRUNC

You can specify up to 8 FILE OPTIONS.

The system treats duplicate specifications of FILE OPTIONSs as a single
specification.

Code the FILE OPTIONSs as follows:

« Specify only one FILE OPTION from the access group. if you specify

more than one access group file-option, the system ignores them and uses
ORDWR as the option.

e Specify up to 7 FILE OPTIONSs from the status group. You can specify
any combination of FILE OPTIONs from the status group.

SEGMENT(INTEGER)

The number of pages produced for a sysout data set before they are processed
for printing. Must be 1 to 99999

SPIN(VAL UE)

Specifies when a sysout data set is printed. Legitimate values are:

< UNALLOC = Makes the dataset available for printing immediately after
the dataset is unallocated from an explicit unallocation or at the end of the
session.

* NO = Makes the dataset available for printing at the end of the session.

MESSAGE(VAL UE)

Specifies whether or not to display dynamic allocation failure messages on the
system console. This value overrides the user-specifiable system default (See
FILEMESSAGES). Legitimate values are:

e YES= Display dynamic allocation failure messages.
¢ NO = Do not display dynamic allocation failure messages.

MOUNT (VAL UE)

Specifies whether to allow or not allow a volume to be mounted in order to
satisfy a dynamic allocation request. This value overrides the user-specifiable
system default. (See FILEMOUNT). Legitimate values are:

¢ YES= Allow the system to mount a volume to satisfy a dynamic alloca-
tion request.

*« NO = Do not allow the system to mount a volume to satisfy a dynamic
allocation request.

December 1999

Shadow Programming Guide 7-181

Host Application APl Function Calls

Allocation Keyword

Description

RECALL (VALUE)

Specifies whether to allow or not allow the system to recall a migrated dataset
in order to satisfy a dynamic allocation request. This value overrides the user-
specifiable system default. (See FILERECALL). Legitimate vaues are:

* YES=Allow the system to recall datasets to satisfy a dynamic allocation
request.

*« NO = Do not allow the system to recall datasets to satisfy a dynamic allo-
cation request.

File Access Attributes for PATHMODE parameter

Sub-Parameter

Definition

SIRUSR Specifies permission for the file owner to read the file.

SIWUSR Specifies permission for the file owner to write the file.

SIXUSR Specifies permission for the file owner to search, if the file is a directory, or to
execute, for any other file.

SIRWXU Specifies permission for the file owner to read, write, and search, if the file is a
directory, or to read, write, and execute, for any other file. this value is the bit
inclusive or of SIRUSR, SIWUSR, and SIXUSR.

SIRGRP Specifies permission for users in the file group to read the file.

SIWGRP Specifies permission for users in the file group to write the file.

SIXGRP Specifies permission for users in the file group to search, if the file is a
directory, or to execute, for any other file.

SIRWXG Specifies permission for users in the file group to read, write, and search, if the
file is a directory, or to read, write, and execute, for any other file. This value is
the bit inclusive or of SIRGRP, SIWGRP, and SIXGRP.

SIROTH Specifies permission for users in the file other class to read the file.

SIWOTH Specifies permission for users in the file other class to write the file.

SIXOTH Specifies permission for users in the file other class to search, if the file is a
directory, or to execute, for any other file.

SIRWXO Specifies permission for users in the file other class to read, write, and search,
if the file is a directory, or to read, write, and execute, for any other file. this
value is the bit inclusive or of SIROTH, SIWOTH, and SIXOTH.

SISUID Specifies that the system set the user id of the process to be the same as the
user id of the file owner when the file is run as a program.

SISGID Specifies that the system set the file group of the process to be the same as the

group id of the file owner when the file is run as a program.

7-182

Shadow Programming Guide December 1999

General APIs

File Option descriptions for PATHOPTS parameter

Sub-Parameter

Definition

ORDONLY

Specifies that the program can open the file for reading.

OWRONLY

Specifies that the program can open the file for writing.

ORDWR

Specifies that the program can open thefile for reading and writing. Do not
use this option for a FIFO special file; the result is undefined.

OAPPEND

Specifies that the system sets the file offset to the end of the file before each
write, so that datais written at the end of the existing file.

OCREAT

Specifies that the system isto create thefile. If the file already exists, the
operation will fail if OEXCL is specified, and will open existing fileif
OEXCL is not specified.

OEXCL

Specifiesthat, if thefile aready exists, then HFS open file processing will fail.
Note: The systemignores OEXCL if OCREAT is not also specified.

ONOCTTY

Specifiesthat, if the patterning of the file will not make the terminal devicethe
controlling aterminal device, then op

ONONBLOCK

Specifies the following, depending on the type of file. For FIFO specia files:

* With ONONBLOCK specified and ORDONLY access: an open() func-
tion for reading-only returns without delay.

* With ONONBLOCK not specified and ORDONLY access: an open()
function for reading-only blocks (waits) until a process opens the file for
writing.

« With ONONBLOCK specified and OWRONLY access: an open() func-
tion for writing-only returns an error if no process currently has the file
open for reading.

* With ONONBLOCK not specified and OWRONLY access: an open()
function for writing-only blocks (waits) until a process opens the file for
reading.

For character special files:

« If ONONBLOCK is specified: an open() function returns without block-
ing (waiting) until the device is ready or available. Device response
depends on the type of device.

+ If ONONBLOCK is not specified: an open() function blocks (waits) until
the device is ready or available. Specification of ONONBLOCK has no
other effects.

OSYNC

Specifies that the system is to move data from buffer storage to disk (or other
permanent storage) before returning control from a callable service that
performs a write.

OTRUNC

Specifies that the system is to truncate the file length to zero if all of the
following are true:

« The file specified on the path operand exists.
* The file is a regular file.
e The file successfully opened with ORDWR or OWRONLY.

The system does not change the mode and owner. OTRUNC has no effect on
FIFO special files or terminal device files.

December 1999

Shadow Programming Guide 7-183

Host Application APl Function Calls

PL/I Example
9% NCLUDE SPCPHD

DL COMVAND CHAR(80) /* ALLOCATE COMVAND */
I N T(" DSN(SW5. | NPUT. DATA) DDN(INFILE) DI SP(SHR ');
DL CMDLEN FI XED Bl N(31); /* COMVAND LENGTH */
DO RC FI XED BIN(31); /* RETURN CCDE */
OMDLEN = LENGTH COWAND) ; /* SET COMVAND LEN */
/* DYNAM CALLY ALLCCATE
AN | NPUT FI LE */
CALL SWBALLOQ OVDLEN, /* COMVAND LENGTH */
COMVAND, /* COMVAND */
SWBASB) ; /* ALLCCATI ON STATUS BLOCK*/
RC = PLIRETV(); /* CGET RETURN OCDE */
IF RC -= SWS_SUCCESS THEN /¥ EXIT PROGRAM IF BAD RC */
EXIT;
C Example
SWS_ALLOCATION_STATUS BLOCK swsASB; /*response area *
long RC; * return code *

char szCommand[] = "DSN(SWS.INPUT.DATA) DDN(INFILE) DISP(SHRY)";
* Dynamically allocate an

input file *
rc = SWSALLOC(strlen(szCommand), f* Command Length *
szCommand, ¥ Command *
SWSASB); [* Response area *

if (rc == SWS_SUCCESS)

do
printf(swsASB.Error_Message);
return rc;

end

7-184

Shadow Programming Guide December 1999

General APIs

COBOL Example

* NEON APl OCPY BOCK
COPY SBCPHD.
77 COMWAND LENGTH Pl C S9(5) COWP
77 COWRND Pl C X(80)
VALUE * DSN(SV, | NPUT. DATA) DDN(I NFI LE) DI SP(SHR)' .
* DYNAM CALLY ALLOCATE AN | NPUT FI LE

MOVE 80 TO COMVAND- LENGTH
CALL SWRALLCC
US| NG COMVAND- LENGTH,
COMVAND,
SWS- ALLGCATI ON- STATUS- BLOCK
MOVE RETURN CCDE TO W5- SWAAPI - RETURN- CCDE.
I F NOI SW5- SUCCESS
DI SPLAY " | NFI LE ALLOCATI ON FAI LED." UPCON CONSCLE
DI SPLAY SWHASB- ERRCR- MESSAGE UPCN CONSCLE
GOBACK.

December 1999

Shadow Programming Guide 7-185

Host Application APl Function Calls

The Shadow Web Server Allocation Status Block

Can not be used in Shadow/REXX.

Can not be used from Other REXX interpreters.

High-level language interface available through the use of the SWSFREE and SWSALLOC
APlIs.

V0 O

This structure allows the user to retrieve any error messages generated during
dynamic allocation and de-allocation. It will also allow the user to obtain the sys-
tem-generated DDName or DSName if one is not specified during the invocation

of the SWSALLOC API.

PL/I Layout

/* __ */

/* THE FOLLON NG DEFI NES THE ALLQOCATI CN STATUS BLOCK */

/* WHERE DYNAM C ALLOCATI CN | NFCRVATI CN | S RETURNED TO THE */

/* CLI ENT PROCGRAM TH S GONTRCL BLOXK 1S USED WTH THE */

[* SWBALLOC AND SWSFREE H GH LEVEL LANGUAGE | NTERFACE */

R e LR bl S e o el e |

DCL 1 SWBASB, /* ALLOCATI ON STATUS BLOK AREA*/

2 ASBINFO FIXED BIN(31),/* DAIR INO CDE */
2 ASBRSN FI XED BIN(31),/* DA R REASON OCDE */
2 ASBDDN CHAR(8), /* ASSI G\ED DDNAME *]
2 ASBDSN OHAR(44), /* ASSI GNED DSNAME *
2 ASBMBG OHAR(256); /* ERRCR MESSAGE *

This layout is avail able when you specify:
% NCLUDE SPCPHD;

7-186 Shadow Programming Guide December 1999

General APIs

C Layout

/* __ */
/* The following structure is used as a feedback area */
/* for dynamc allocate and de-all ocation requests. */

R e S T SR e S - SEEEE SR - S

typedef struct SWS ALLQCATI ON STATUS BLOCK{ */
long Info_Code; /* DAIR I nfo Code */
long Reason_Code; /* SVC 99 Reason Code */
char Assi gned_DDNane[8]; /* Assigned DDNane from SWBALLCC */
char Assi gned_DSNane[44]; /* Assigned DSNane from SWBALLCC */
char Error_Message[256]; /* Dynamc (de)allocation rrornsg*/
} SWS ALLQCATI ON _STATUS BLOCK;/* request string structure */

This layout is available when you specify:

#i ncl ude "sccphd. h"

COBOL Layout

019105***

019110* THE SWAALLOT SWAEFREE API

| NTERFACES USE THE FOLLON NG AREA

019115***

019120
019125
019130
019135
019140
019145

01 SW5- ALLCCATI ON- STATUS- BLOCK

03 SWBASB- | NFO CCDE Pl C S9(5)
03 SWBASB- REASON- CCDE Pl C S9(5)
03 SWBASB- ASSI GNED- DDNAME Pl C X(8).
03 SWBASB- ASSI GNED- DSNAME Pl C X(44).
03 SWBASB- ERRCR- MESSAGE Pl C X(256) .

This layout is avail able when you specify:

OQCPY SBCPHD.

COWP.
COWP.

December 1999

Shadow Programming Guide

7-187

Host Application APl Function Calls

SDBALLOC/SWSALLOC Function

/ Can be used in Shadow/REXX.
/ Can be used from other REXX interpreters.
/ High-level Language Interface available.

The REXX-language SDBALLOC/SWSALLOC built-in function can be used to
dynamically allocate datasets. Datasets allocated using the SWSALLOC built-in
function should use the SWSFREE built-in function.

Note:

I> Because of comparable functionality of SWSALLOC to IBM’s
ALLOC function, this documentation is similar to IBM’s TSO/E
online help.

Syntax

The general form for aREX X-language invocation of SDBALLOC/SWSALLOC
is:

rc = SDBALLOT SWBALLOX(" STR NG')

The format of this command is similar in features and functions to the TSO/E
Alloc command. If an error occurs, Shadow WebServer variable ALLOC.MES-
SAGE will be populated with a descriptive error message.

If you do not specify a DDN parameter, a system generated DDNAME will be
created and the variable ALLOC.DDNAME will contain the generated
DDNAME. The system generated DDNAME will bein the form of SY Sfollowed
by afive (5) digit number.

If you do not specify a DSN parameter, a system generated DATASET NAME
will be created and the variable ALLOC.DSNAME will contain the generated
DATASET NAME.

In the event of an error, the DAIR return code can be obtained from the
ALLOC.INFOCODE and the reason code can be obtained from the
ALLOC.REASON.

7-188 Shadow Programming Guide December 1999

General APIs

Valid Arguments

DSN(DSNAME)

Specifies the name of the dataset to be allocated. You can only specify asingle
dataset name.

Dataset names must be fully qualified as there will be no prefix appended to
the supplied name.

Note: Thisisarequired parameter unless you specify a PATH parameter.

DDN(DDNAME)

Specifiesthe DDNAME to associate with the allocated file. If you do not
specify one, one will be dynamically generated for you. The generated
DDNAME can be obtained from the variable ALLOC.DDNAME.

DEST(DESTINATION/NODE
USERID)

Remote destination or a User at a specified node to which SY SOUT data sets
are to be routed.

DISP(STATUSNORMAL

Specifies the disposition of file upon normal and abnormal (conditional)

ABNORMAL) session termination.

Status disposition: Indicates the disposition of the file upon normal session

termination.

¢« SHR = Dataset exists and exclusive control is not required.

¢ OLD = Dataset exists and exclusive control is required.

¢ MOD = Additions are to be made to the dataset.

< NEW = Dataset is to be created.

Normal termination disposition: Indicates the disposition of the file upon

normal session termination.

e UNCATALOG = Specifies that the file should be uncatalogued.

e CATALOG = Specifies that the file should be catalog.

« KEEP = Specifies that the file should be kept.

« DELETE = Specifies that the file should be deleted.

Abnormal (conditional) termination disposition: indicates the disposition of

the file upon abnormal (conditional) session termination.

¢ UNCATALOG = Specifies that the file should be uncatalogued.

¢ CATALOG = Specifies that the file should be catalog.

« KEEP = Specifies that the file should be kept.

« DELETE = Specifies that the file should be deleted.
SYSOUT(CLASS) Dataset is to be a system output dataset.

VOLUME(SERIAL(9))

Volume(s) on which the dataset resides or is to reside.

BLKSIZE(VALUE)

Blocksize; must be 0 to 32760.

BLOCK S(PRIMARY
SECONDARY)

Space is to be allocated by BLOCKS.
Note: Requires the BLKSIZE parameter.

TRACK S(PRIMARY
SECONDARY)

Space is to be allocated by tracks.

CYLINDERS(PRIMARY
SECONDARY)

Space is to be allocated by cylinders.

DIR(INTEGER)

Number of Directory Blocks required.

December 1999

Shadow Programming Guide 7-189

Host Application APl Function Calls

LIKE(MODEL_DATASET_NAME)

The model dataset is adataset whose attributes are to be used to allocate a new
dataset.

The following attributes are copied from the model dataset:

e Primary and Secondary space quantities (SPACE).
« Directory space quantity (DIR).

¢ Dataset Organization (DSORG).

¢ Record Format (RECFM).

e Optional Services Codes (OPTCD).

e Logical Record Length (LRECL).

¢ Key Length (KEYLEN).

« Blocksize (BLKSIZE).

¢ Volume Sequence Number (VSEQ).

e Expiration Date (EXPDT).

If SMS is active the following attributes are not copied:

e Optional Services Codes (OPTCD).
« Blocksize (BLKSIZE).

¢ Volume Sequence Number (VSEQ).
e Expiration Date (EXPDT).

Any attribute(s) of the model data set can be overridden by explicitly
specifying the appropriate keyword(s) on the allocate command.

HOLD

Dataset is to be placed on a hold queue upon de-allocation.

UNIT(UNIT_TYPE)

Device type to which a file or data set is to be allocated.

UCOUNT(COUNT)

Maximum number of devices to which a file or data set can be allocated.

PARALLEL

One device mounted for each volume specified on the volume parameter.

MAXVOL (VOL_COUNT)

Maximum number of volumes a data set can use.

PRIVATE A volume which is not permanently resident or reserved is to be assigned the
private volume use attribute.
RELEASE Unused space is to be deleted when the data set is closed.

VSEQ(VOL_SEQ_NUM)

Which volume of a multi-volume data set to begin processing with.

ROUND Allocated space should be equal to one or more cylinders.
BFALN(VALUE) Buffer boundary alignment. Legitimate values are:

¢ D = Double word boundary.

¢ F = Full word boundary.
BFTEK(VALUE) Type of buffering. Legitimate values are:

¢« A = Automatic record area construction.
¢ D = Dynamic buffering.

« E = Exchange buffering.

R = Record buffering.

¢« S=Simple buffering .

BUFL(INTEGER)

Buffer length; must be 0 to 32760.

BUFNO(INTEGER)

Number of buffers; must be 0 to 255.

BUFOFF(INTEGER)

Block prefix length; must be 0 to 99.

7-190

Shadow Programming Guide December 1999

General APIs

DSORG(VALUE) Dataset Organization. Legitimate values are:

« DA = Direct Access.

« DAU = Direct Access Unmovable.

e PO = Partitioned Organization.

¢ POU = Partitioned Organization Unmovable.

e PS=Physical Sequential.

¢ PSU = Physical Sequential Unmovable.
EROPT(VALUE) Error Option. Legitimate values are:

e ABE = Abnormal End-Of-Task.
e ACC = Accept block causing error.
e SKP = Skip block causing error.

KEYLEN(INTEGER)

Key length; must be 0 to 255.

LIMCT(INTEGER)

Number of blocks or tracks to be searched for a block or available space; must
be 0 to 32760.

LRECL (VAL UE)

Logical Record Length. Legitimate values are:

. 0 to 32760.
¢ Character "X".
e 1to 16384 with K-multiplier .

Where:

¢ X =LRECL value exceeds 32756 for variable length spanned records
processed under QSAM.
¢ K =LRECL value is a multiplier of 1024.

NCP(INTEGER)

Maximum number of read or write macros before a check; must be 0 to 255.

If you are running TSO/E on MVS/ESA SP 4.2.2 or earlier, the maximum
value is 99.

OPTCD(VALUE) Optional Services Codes. Legitimate values are:
« A =Actual device addresses presented in read and write macro instruc-
tions.
« B = End-Of-File recognition disregarded for tapes.
¢ C = Chained scheduling is to be used.
« E = Extended search for block or available space.
¢« F = Feedback can be requested in read and write macro instructions.
¢ Q= ANSlI translate.
¢ R =Requests relative block addressing.
T =Requests user totaling facility.
W = Requests a validity check for write operations on direct access
devices.
« J=lIndicates that the character after the carriage control character is to be
interpreted as a table reference character.
PROCOPT(VALUE) File processing option. Legitimate values are:

* INPUT = Specifies that the data set is to be processed for input only.
e OUTPUT = Specifies that the data set is to be processed for output only.

RETPD(INTEGER)

Dataset retention period (NNNN).

FCB(IMAGE_ID)

Forms Control Image (Buffer) to be used to print an output data set.

IMAGE_ID specifies a 1 to 4 alphameric or national characters which identify
the image to be loaded into the Forms Control Buffer.

COPIES(NNN)

Number of copies of a dataset to print; an integer from 1 to 255.

December 1999

Shadow Programming Guide 7-191

Host Application APl Function Calls

COPYGROUPS(GROUP_
VALUE1 GROUP_VALUE2
..GROUP_VAL UES8))

Used with the COPIES option to specify the number of times each pageisto
be printed. Up to eight group values can be specified with a sum not exceeding
the number specified in the COPIES parameter. PROTECT Specifies that the
DASD data set or tape volume containing a tape data set isto be RACF
protected.

ACCODE(VAL UE)

ANSI accessibility code (A through Z).

OUTBIN(VALUE)

Specifies the output bin on the IBM 3800 laser printer. Legitimate values are:

« BURST = Specifies that the data set should be sent to the burster/trimmer
bin on the IBM 3800 laser printer.

< NOBURST = Specifies that the data set should be sent to the continuous
feed bin on the IBM 3800 laser printer.

CHARS(CHAR_TABLE1
..CHAR_TABLE4)

Specifies the character table that is to be used for printing. One to four
character tables can be specified.

FLASH(NAME COPIES)

Provides the ability to print a form, grid, design, or constant data on paper as it
is being processed through the 3800 printer. Legitimate values are:

« NAME - Specifies the name of the forms overlay to be used.
« COPIES - Specifies the number of copies on which the forms overlay is
to be used.

Note: Separate parameters by spaces. Do not use commas.

FORM S(VALUE)

Specifies the specific print form to be mounted.

OUTDES(OUTPUT _
DESCRIPTOR_NAME ..)

Specifies a list of output descriptors that will be associated with the sysout data
set. These descriptors are created by /OUTPUT JCL statements in the Shadow
WebServer or Shadow Direct procedure.

Note: Separate parameters by spaces. Do not use commas.

UCS(UCS NAME)

Specifies the universal character set (font name) to be used when processing a
print data set in the absence of a 'CHARS' specification.

WRITER(EXTERNAL_
WRITER_NAME)

Specifies the member name of a program in the system library that is to write
the sysout data set. This program will be used instead of JES2 or JESS.

STORCLAS(STORAGE_CLASS)

The name of the storage class which is used to specify the service level for the
data set.

MGMTCLAS
(MANAGEMENT_CLASS)

The management class which is used to specify management criteria for the
data set.

DATACLAS(DATA_CLASS)

The name of the data class which is used as an allocation template for the data
set.

7-192

Shadow Programming Guide

December 1999

General APIs

RECFM (OPTION1 OPTION2 Record Format. Legitimate option values are:

~-OPTIONS) « A=ASAPRINTER CHARACTERS.

« B=BLOCKED.

« D= VARIABLE LENGTH ASCIl RECORDS.
. F=FIXED.

« M = MACHINE CONTROL CHARACTER.
« S=STANDARD BLOCKS OR SPANNED.

« T =TRACK OVERFLOW.

« U= UNDEFINED.

« V= VARIABLE.

Note: Combinations of these options can be selected. Each selection must be
separated by a space. Review your MVS JCL Reference Manual for legitimate
combinations.

RECORG Dataset Organization. Legitimate values are:

(ORGANIZATION) « KS=VSAM Cluster (KSDS).

¢ ES=VSAM Entry Sequenced (ESDS).
* RR =VSAM Relative Record (RRDS).
¢ LS=VSAM Linear Space (LDS) .

K EY OFF(OFFSET) Key Offset.

REFDD(DDNAME) The DDNAME of a data set whose properties specified on the jcl statement
and in the data class are to be used to allocate the new data set. The following
properties are copied from the referenced DD statement:

« Dataset Organization (RECORG).

e Size.

« Directory blocks Logical Record Length (LRECL).
¢ Record Format (RECFM).

¢« Key Length (KEYLEN).

« Key Offset (KEYOFF).

SECMODEL (MODEL _ The name of a "model" profile which RACF should use in creating a discrete
NAME) profile for the data set.

DSNTYPE(DSNTYPE) DATA SET | Legitimate values are:

NAME TYPE « LIBRARY = A partitioned data set in pdse format.
« PDS= A partitioned data set in record format.
« PIPE = A data pipe.
¢ HFS= An HFS (Hierarchical File System) file.
RLS(RLS VALUE) Record Level Sharing. Legitimate values are:
¢ CR = Consistent Read.
*« NRI = No Read Integrity.
FILEDATA(VALUE) How the system converts between record format and byte-stream format.

Currently meaningful only if path also is coded and the program uses BSAM
or QSAM. Legitimate values are:

¢ TEXT = Data consists of records that are separated by a delimiter. Cur-
rently it is EBCDIC newline (x'15").

¢« BINARY = Data does not contain record delimiters. In the current release
the default is binary when creating the file. If you do not code PATHO-
PTS(OCREATE), then FILEDATA temporarily overrides the creation
value.

December 1999 Shadow Programming Guide 7-193

Host Application APl Function Calls

PATH(PATHNAME)

Identifies an HFSfile.

A pathname consists of the names of the directories from the root to the file
being identified, and then the name of the file. The form isINAMELNAME2/
.../NAMEn.

A pathname begins with a slash (/). The system treats any consecutive slashes
like asingle slash.

The pathname can be 1 to 250 characters. A name can be 1 to 249 characters.
Consists of printable characters from x’40’ through X'FE’.

A pathnameis case sensitive. Thus, /usr/joe and /USR/joe define two different
files.

Note: Thisisarequired parameter unless you specify aDSN parameter.

PATHDISP(NORMAL
ABNORMAL)

Specifies the disposition of an HFS file upon normal and abnormal
(conditional) session termination.

Normal termination disposition: Indicates the disposition of the HFS file upon
normal session termination.

« KEEP = Specifies that the file should be kept.
« DELETE = Specifies that the file should be deleted.

Abnormal (conditional) termination disposition: indicates the disposition of
the HFS file upon abnormal (conditional) session termination.

KEEP = Specifies that the file should be kept.
« DELETE = Specifies that the file should be deleted.

Note: The default for datasets allocated with the PATH parameter is
PATHDISP(KEEP KEEP).

PATHMODE(FILE_
ACCESS ATTRIBUTE ...)

Specifies the file access attributes when the PATHOPTS operand specifies
OCREAT. A FILE_ACCESS_ATTRIBUTE is one of the following:

* SIRUSR
* SIWUSR
« SIXUSR
« SIRWXU
« SIRGRP
« SIWGRP
* SIXGRP
* SIRWXG
« SIROTH
« SIWOTH
e SIXOTH
« SIRWXO
e SISUID

« SISGID

You can specify up to 14 FILE_ACCESS_ATTRIBUTES.

The system treats duplicate specifications of FILE_ACCESS_ATTRIBUTES
as a single specification.

7-194

Shadow Programming Guide December 1999

General APIs

PATHOPTS(FILE_
OPTION ...)

Specifies the file access and status used when accessing a file specified on the
path operand. A file_option can be in the access group or the status group and
is one of the following:

Valid Access Groups are:

¢ ORDONLY

¢ OWRONLY

« ORDWR

e Valid Status Groups are:
« OAPPEND

e OCREAT

e OEXCL

e ONOCTTY

« ONONBLOCK
e OSYNC

e OTRUNC

You can specify up to 8 FILE_OPTIONS.

The system treats duplicate specifications of FILE_OPTIONS as a single
specification.

Code the FILE_OPTIONSs as follows:

* Specify only one FILE_OPTION from the access group. if you specify
more than one access group file-option, the system ignores them and uses
ORDWR as the option.

e Specify up to 7 FILE_OPTIONSs from the status group. You can specify
any combination of FILE_OPTIONs from the status group.

SEGMENT(INTEGER)

The number of pages produced for a sysout data set before they are processed
for printing; must be 1 to 99999

SPIN(VALUE)

Specifies when a sysout data set is printed. Legitimate values are:

¢ UNALLOC = Makes the dataset available for printing immediately after
the dataset is unallocated from an explicit unallocation or at the end of the
session.

< NO = Makes the dataset available for printing at the end of the session.

MESSAGE(VAL UE)

Specifies whether or not to display dynamic allocation failure messages on the
system console. This value overrides the user-specifiable system default (See
FILEMESSAGES). Legitimate values are:

¢« YES= Display dynamic allocation failure messages.
« NO = Do not display dynamic allocation failure messages.

MOUNT (VAL UE)

Specifies whether to allow or not allow a volume to be mounted in order to
satisfy a dynamic allocation request. This value overrides the user-specifiable
system default. (See FILEMOUNT). Legitimate values are:

* YES= Allow the system to mount a volume to satisfy a dynamic alloca-
tion request.

« NO = Do not allow the system to mount a volume to satisfy a dynamic
allocation request.

RECALL (VAL UE)

Specifies whether to allow or not allow the system to recall a migrated dataset
in order to satisfy a dynamic allocation request. This value overrides the user-
specifiable system default. (See FILERECALL). Legitimate values are:

¢ YES=Allow the system to recall datasets to satisfy a dynamic allocation
request.

< NO = Do not allow the system to recall datasets to satisfy a dynamic allo-
cation request.

December 1999

Shadow Programming Guide 7-195

Host Application APl Function Calls

File Access Attributes for PATHMODE parameter

Sub-Parameter | Definition

SIRUSR Specifies permission for the file owner to read thefile.
SIWUSR Specifies permission for the file owner to write thefile.
SIXUSR Specifies permission for the file owner to search, if the fileisadirectory, or to

execute, for any other file.

SIRWXU Specifies permission for thefile owner to read, write, and search, if thefileisa
directory, or to read, write, and execute, for any other file. thisvalueisthe bit
inclusive or of SIRUSR, SIWUSR, and SIXUSR.

SIRGRP Specifies permission for usersin the file group to read the file.
SIWGRP Specifies permission for usersin the file group to write thefile.
SIXGRP Specifies permission for usersin the file group to search, if thefileisa

directory, or to execute, for any other file.

SIRWXG Specifies permission for usersin the file group to read, write, and search, if the
fileisadirectory, or toread, write, and execute, for any other file. Thisvalueis
the bit inclusive or of SIRGRP, SIWGRP, and SIXGRP.

SIROTH Specifies permission for usersin the file other classto read thefile.
SIWOTH Specifies permission for usersin the file other classto write thefile.
SIXOTH Specifies permission for usersin the file other classto search, if thefileisa

directory, or to execute, for any other file.

SIRWXO Specifies permission for usersin the file other class to read, write, and search,
if thefileis adirectory, or to read, write, and execute, for any other file. this
valueisthe bit inclusive or of SIROTH, SIWOTH, and SIXOTH.

SISUID Specifies that the system set the user id of the process to be the same asthe
user id of the file owner when thefileis run as a program.

SISGID Specifies that the system set the file group of the processto be the same as the
group id of the file owner when thefileis run as a program.

File Option descriptions for PATHOPTS parameter

Sub-Parameter | Definition

ORDONLY Specifies that the program can open the file for reading.
OWRONLY Specifies that the program can open the file for writing.
ORDWR Specifies that the program can open the file for reading and writing. Do not

use this option for afifo special file; the result is undefined.

OAPPEND Specifies that the system sets the file offset to the end of the file before each
write, so that datais written at the end of the existing file.

OCREAT Specifies that the system isto create thefile. If the file already exists, the
operation will fail if OEXCL is specified, and will open the existing file if
OEXCL is not specified.

7-196 Shadow Programming Guide December 1999

General APIs

Sub-Parameter

Definition

OEXCL Specifiesthat, if thefile already exists, then HFS open file processing will fail.

Note: The system ignores OEXCL if OCREAT is not also specified.

ONOCTTY Specifiesthat, if the patenting of the file will not make the terminal device the
controlling aterminal device, then op ONONBLOCK Specifies the following,
depending on the type of file:

For fifo specid files:

* With ONONBLOCK specified and ORDONLY access: an open() func-
tion for reading-only returns without delay.

* With ONONBLOCK not specified and ORDONLY access: an open()
function for reading-only blocks (waits) until a process opens the file for
writing.

* With ONONBLOCK specified and OWRONLY access: an open() func-
tion for writing-only returns an error if no process currently has the file
open for reading.

* With ONONBLOCK not specified and OWRONLY access: an open()
function for writing-only blocks (waits) until a process opens the file for
reading.

For character special files:

« If ONONBLOCK is specified: an open() function returns without block-
ing (waiting) until the device is ready or available. Device response
depends on the type of device.

* If ONONBLOCK is not specified: an open() function blocks (waits) until
the device is ready or available. Specification of ononblock has no other
effects.

OSYNC Specifies that the system is to move data from buffer storage to disk (or other
permanent storage) before returning control from a callable service that
performs a write.

OTRUNC Specifies that the system is to truncate the file length to zero if all of the

following are true:

« The file specified on the path operand exists.
« Thefile is a regular file.
* The file successfully opened with ordwr or owronly.

The system does not change the mode and owner. OTRUNC has no effect on
fifo special files or terminal device files.

December 1999

Shadow Programming Guide 7-197

Host Application APl Function Calls

SDBALLOC/SWSALLOC Examples

To
rc
To
rc

To
rc

allocate an input file with shared control:

= SWBALLOQ(DSN(SW&. | NPUT. FI LE) D SP(SHR)

allocate a new fil e as out put

= SWBALLOQ " DSN(SW6. QUTPUT. FI LE) DDN(QUTFI LE)
Dl SP(NEW CATALGG DELETE) SPACE(1 5) TRACKS
LRECL(80) BLKSI ZE(3120) RECFMF B)
DSORE PS) ")

al locate a sysout file:

= SWBALLOQ DDN(PRTFI LE) SYSQUT(A) DEST(RMVI3))

7-198

Shadow Programming Guide

December 1999

General APIs

High-Level Language Interface
SDBFREE (SDCPFR)
SWSFREE (SWCPFR) Function

v

Can be used in Shadow/REX X.

v

Can be used from other REXX interpreters.

v

HLL entry point name is SDCPFR/SWCPFR .

SDBFREE/SWSFREE is used to de-allocate datasets. The SDBFREE/SWSFREE
APl dynamically de-allocates a data set and/or an HFSfile. You can aso change
the output class of a sysout dataset, making it immediately available for process-
ing by an output writer, while de-allocating them. The original dataset disposition,
set when the dataset was dynamically allocated, can be overridden during de-allo-
cation.

Theformat of thiscommand issimilar in features and functions to the TSO/E Free
command. A text string is used asinput in order to provide the parameters neces-
sary to de-allocate the specified dataset.

CALL Arguments

The SDBFREE/SWSFREE (SDCPFR/SWCPFR) function arguments are
described in the table which follows.

HLL Argument Type
Arg I/0 Description of Argument
C COBOL PL/I
1 LONG PIC $9(5) | FIXED Input The length of the de-all ocation command string. If
COMP BIN(31) the length islonger than the actual command, trailing
nulls or blanks will be ignored. If the lengthisless
than the actual command string, the de-allocation
command string will be truncated and possibly cause
execution errors. The maximum string lengthis
32768 bytes.
2 CHAR* PIC CHAR Input The de-allocation command string. See Supported
X(nnnnn) (nnnn) dynamic de-allocation keywords below.
3 SWSASB * | Usage PTR Output The Shadow WebServer Allocation Status Block.
pointer Thisis an required argument that provides
information concerning the status of the de-allocation
request.

December 1999

Shadow Programming Guide 7-199

Host Application APl Function Calls

Return Values
SDBFREE/SWSFREE always sets a signed numeric return code value. Possible

values are:
Return Value Description
SWS SUCCESS, The operation succeeded. The specified operation was performed.
SQL_SUCCESS
SWS ERROR, A parameter validation or runtime error was encountered. Error
SQL_ERROR information is avail able using the SWSERROR/SQL ERROR

function.

SWS ENVIRONMENT_ERROR The request could not be processed because of a runtime
environmental error, for example, you invoked the API service
outside of aweb transaction procedure, or from outside the Server's
address space. The Server may provide diagnostic information in the
wrap-around trace.

Any other value The operation failed. Generally this indicates that the file was not
dlocated. There will be an error message in the Allocation Status
Block describing the error.

Supported dynamic de-allocation keywords

The SDBFREE/SWSFREE (SDCPFR/SWCPFR) interface supports the following
dataset de-allocation request parameters:

Allocation Keyword Description

DSN(DSNAME) Specifies the name of the dataset to be de-allocated. You can only specify a
single dataset name. Dataset names must be fully qualified as there will be no
prefix appended to the supplied name.

PATH(PATHNAME) Identifies an HFSfile to be de-allocated. A pathname consists of the names of
the directories from the root to the file being identified, and then the name of
thefile. The form is/INAMEL/NAME2/../NAMEn.

A pathname begins with a dash (/). The system treats any consecutive slashes
like asingle slash.

The pathname can be 1 to 250 characters. A name can be 1 to 249 characters.
Consists of printable characters from x’40’ through X'FE'.
A pathnameis case sensitive. Thus, /usr/joe and /USR/joe define two different

files.
DDN(DDNAME) Specifiesthe DDNAME, of the datasets, to be de-allocated. Thisisarequired
field.
DEST (DESTINATION/NODE Remote destination or a User at a specified node to which SY SOUT data sets
USERID) areto be routed.

OUTDES(OUTPUT_DESCRIPTOR | Specifiesalist of output descriptorsthat will be associated with the sysout data
_NAME ..) set. These descriptors are created by /OUTPUT JCL statementsin the Shadow
WebServer or Shadow Direct procedure.

Note: Separate parameters by spaces. Do not use commas.

7-200 Shadow Programming Guide December 1999

General APIs

Allocation Keyword

Description

SYSOUT(CLASS)

Dataset is to be a system output dataset

DISP(NORMAL)

Specifies the disposition of file upon de-allocation. Legitimate values are:

< UNCATALOG = Specifies that the file should be uncatalogued.
¢ CATALOG = Specifies that the file should be catalog.

« KEEP = Specifies that the file should be kept.

« DELETE = Specifies that the file should be deleted.

HOLD

Dataset is to be placed on a hold queue upon de-allocation.

NOHOLD

Dataset is not to be placed on a hold queue upon unallocation.

PATHDISP(NORMAL)

Specifies the disposition of an HFS file upon normal session termination. Use
one of the following dispositions:

« KEEP = Specifies that the file should be kept.
« DELETE = Specifies that the file should be deleted.

SPIN(VAL UE)

Specifies when a sysout data set is printed. Legitimate values are:

« UNALLOC = Makes the dataset available for printing immediately after
the dataset is unallocated from an explicit unallocation or at the end of the
session.

* b = Makes the dataset available for printing at the end of the session.

MESSAGE(VAL UE)

Specifies whether or not to display dynamic allocation failure messages on the
system console. This value overrides the user-specifiable system default (See
FILEMESSAGES). Legitimate values are:

¢ YES= Display dynamic allocation failure messages.
* NO = Do not display dynamic allocation failure messages.

MOUNT (VAL UE)

Specifies whether to allow or not allow a volume to be mounted in order to
satisfy a dynamic allocation request. This value overrides the user-specifiable
system default. (See FILEMOUNT). Legitimate values are:

¢« YES= Allow the system to mount a volume to satisfy a dynamic alloca-
tion request.

*« NO = Do not allow the system to mount a volume to satisfy a dynamic
allocation request.

RECALL (VAL UE)

Specifies whether to allow or not allow the system to recall a migrated dataset
in order to satisfy a dynamic allocation request. This value overrides the user-
specifiable system default. (See FILERECALL). Legitimate values are:

« YES=Allow the system to recall datasets to satisfy a dynamic allocation
request.

*« NO = Do not allow the system to recall datasets to satisfy a dynamic allo-
cation request.

December 1999

Shadow Programming Guide 7-201

Host Application APl Function Calls

PL/I Example
9% NCLUDE SPCPHD

DAL COVWAND CHAR(80) /* ALLOCATE COMVAND */
IN T DDN(INFILE) ") ;

DAL OVDLEN FI XED Bl N(31); /* COMVAND LENGTH */

DO RC FI XED BI N(31); /* RETURN CCDE */

OMDLEN = LENGTH COWAND) ; /* SET COMVAND LEN */

/ *DYNAM CALLY ALLCCATE AN | NPUT FI LE */

CALL SWSFREE(OMDLEN, /* COMVAND LENGTH */
COMVAND, /* COMVAND */
SWBASB) ; /* ALLCCATI ON STATUS BLOCK*/

RC = PLIRETV(); /* CGET RETURN OCDE */

IF RC -= SWS_SUCCESS THEN ¥ EXIT PROGRAM IF BAD RC */

EXIT;

C Example

SWS_ALLOCATION_STATUS BLOCK swsASB; /*response area *

long RC; * return code *

char szCommand[] = "DDN(INFILE)"; ¥ Dynamically de-allocate
adataset by it's DDName ~ */

rc = SWSFREE(strlen(szCommand), f* Command Length *
szCommand, /*Command *
SWSASB); /* Response area *
if (rc == SWS_SUCCESS)
do

print(SwsASB.Error_Message);
return rc;
end

7-202

Shadow Programming Guide December 1999

General APIs

COBOL Example

* NEON APl OCPY BOCK
CCOPY SBCPHD.
77 COWAND- LENGTH Pl C S9(5) COWP.
77 COMAND Pl C X(80) VALUE
" DD\(| NFI LE) .
* DYNAM CALLY DE- ALLOCATE A DATASET BY | TS DDNAME
MOVE 80 TO COMVAND- LENGTH
CALL SWSFREE
US| NG COVVAND- LENGTH,
COMVAND,

SW5- ALLQCATI ON- STATUS- BLOCK
MOVE RETURN CCDE TO W5- SWAAPI - RETURN- CCDE.
I F NOI' SW&- SUCCESS
D SPLAY ' | NFI LE DE- ALLOCATI ON FAI LED.” UPON CONSQLE
D SPLAY SWBASB- ERRCR- MESSACE UPON CONSCLE
QBACK

December 1999

Shadow Programming Guide 7-203

Host Application APl Function Calls

SDBFREE/SWSFREE Function

/ Can be used in Shadow/REXX.
/ Can be used from other REXX interpreters.
/ High-level Language Interface available.

The REX X-language SDBFREE/SWSFREE built-in function can be used to
dynamically unallocate datasets.

Syntax
The general form for a REXX-language invocation of SDBFREE/SWSFREE is:
rc = SDBFREE SWEFREE(" STRI NG')

Theformat of thiscommand issimilar in features and functionsto the TSO/E Free
command. If an error occurs, the variable ALL OC.M ESSAGE will be populated
with a descriptive error message.

In the event of an error, the DAIR return code can be obtained from the
ALLOC.INFOCODE and the reason code can be obtained from the
ALLOC.REASON.

Valid Arguments

DSN(DSNAME) Specifies the name of the dataset to be de-allocated. You can only specify a
single dataset name.
Dataset names must be fully qualified as there will be no prefix appended to
the supplied name.

PATH(PATHNAME) Identifies an HFS file to be de-allocated.
A pathname consists of the names of the directories from the root to the file
being identified, and then the name of the file. The form is/INAMELNAME2/
..INAMEn.
A pathname begins with a dash (/). The system treats any consecutive slashes
like asingle slash.
The pathname can be 1 to 250 characters. A name can be 1 to 249 characters.
Consists of printable characters from x’40’ through X’FE’.
A pathnameis case sensitive. Thus, /usr/joe and /USR/joe define two different
files.

DDN(DDNAME) Specifies the DDNAME,of the datasets, to be de-allocated.

DEST(DESTINATION/NODE Remote destination or a User at a specified node to which SY SOUT data sets

USERID) areto be routed.

7-204 Shadow Programming Guide December 1999

General APIs

OUTDES(OUTPUT _
DESCRIPTOR_NAME ..)

Specifiesalist of output descriptorsthat will be associated with the sysout data
set. These descriptors are created by /OUTPUT JCL statementsin the Shadow
Web Server or Shadow Direct procedure.

Note: Separate parameters by spaces. Do not use commas.

SYSOUT(CLASS)

Dataset isto be a system output dataset

DISP(NORMAL)

Specifies the disposition of file upon de-allocation. Use one of the following
dispositions:

e UNCATALOG = Specifies that the file should be uncatalogued.

¢ CATALOG = Specifies that the file should be catalog.

« KEEP = Specifies that the file should be kept.

« DELETE = Specifies that the file should be deleted.

HOLD

Dataset is to be placed on a hold queue upon de-allocation.

NOHOLD

Dataset is not to be placed on a hold queue upon unallocation.

PATHDISP(NORMAL)

Specifies the disposition of an HFS file upon normal session termination. Use
one of the following dispositions:

« KEEP = Specifies that the file should be kept.
« DELETE = Specifies that the file should be deleted.

SPIN(VAL UE)

Specifies when a sysout data set is printed. Legitimate values are:

« UNALLOC = Makes the dataset available for printing immediately after
the dataset is unallocated from an explicit unallocation or at the end of the
session.

* NO = Makes the dataset available for printing at the end of the session.

MESSAGE(VAL UE)

Specifies whether or not to display dynamic allocation failure messages on the
system console. This value overrides the user-specifiable system default (See
FILEMESSAGES). Legitimate values are:

¢« YES= Display dynamic allocation failure messages.
« NO = Do not display dynamic allocation failure messages.

OUNT(VALUE)

Specifies whether to allow or not allow a volume to be mounted in order to
satisfy a dynamic allocation request. This value overrides the user-specifiable
system default. (See FILEMOUNT). Legitimate values are:

¢ YES= Allow the system to mount a volume to satisfy a dynamic alloca-
tion request.

« NO = Do not allow the system to mount a volume to satisfy a dynamic
allocation request.

RECALL (VAL UE)

Specifies whether to allow or not allow the system to recall a migrated dataset
in order to satisfy a dynamic allocation request. This value overrides the user-
specifiable system default. (See FILERECALL). Legitimate values are:

¢ YES=Allow the system to recall datasets to satisfy a dynamic allocation
request.

*« NO = Do not allow the system to recall datasets to satisfy a dynamic allo-
cation request.

December 1999

Shadow Programming Guide 7-205

Host Application APl Function Calls

SDBFREE/SWSFREE Examples

To free a specific DSNane:
rc = SWBFREE(" DSN{ MYPFX. DSNAME) ")
To free a specific DDNane:
rc = SWBFREE("DDN(I NFILE) ")
To route a file to sysout:
rc = SWABFREE(" DDN(PRTFI LE) SYSQUT(A) ")

7-206 Shadow Programming Guide December 1999

General APIs

High-Level Language Interface
SDBVALUE (SDCPVL)
SWSVALUE (SWCPVL) Function

/ Can be used in Shadow/REXX.
/ Can be used from other REXX interpreters.
/ HLL entry point name is SDCPVL/SWCPVL.

SDBVALUE/SWSVALUE is used to fetch or set transaction run-time variable
values. The HLL API can operate upon the following variable types:

Variable Type Fetch Existing Values Assign New/Changed Value
GLOBAL Yes Yes
GLVEVENT Yes Yes
Event-Related (See also, WWW.) Yes No

CALL Arguments

The SDBVALUE/SWSVALUE function call requires either six or seven argu-
ments. The seventh argument is required for value fetch requests; It must be omit-
ted for value update operations.

HLL Argument Type

Arg I/0 Description of Argument
C COBOL PL/I
1 HDBC Usage PTR Input The connection handle. The connection handleis an
pointer opague, four-byte address pointer. The connection
handleis currently not used, and must be set to zero
(NULL).

December 1999

Shadow Programming Guide 7-207

Host Application APl Function Calls

Arg

HLL Argument Type

C

COBOL

PL/I

I/O

Description of Argument

UDWORD

PIC S9(5)
COMP

FIXED
BIN(31)

Input

A four-byte flag-word indicating the sub-function to
be performed. One of the following manifest
constants should be used to indicate the desired
operation. The values are mutually exclusive; only
one can be used.

¢ SWS VALUE_OBTAIN fetches the current
value of the named variable. If the variable is
not initialized, return an error
(SWS_NO_DATA_FOUND) to the caller.

¢ SWS VALUE_VALUE fetches the current
value of the named variable. If the variable is
not initialized, the upper-case name of the vari-
able is returned as its current value. (This
matches the behavior of REXX-language proce-
dures, where the value of an un-initialized vari-
able is the name of the variable, itself.)

¢ SWS VALUE_UPDATE replaces the value of
an already named variable with the new value
specified by the caller. If the variable is un-ini-
tialized, create the variable and assign the speci-
fied value to it.

UCHAR *

PIC X(nnn)

CHAR
(nnn)

Input

The character name of the variable to be acted upon.
The variable name string can be null-terminated, or
the size can be explicitly specified by the 'SVASZ'
argument. The maximum length of any variable name
passed to the SWSVALUE API can not exceed 50
bytes.

SDWORD

PIC S9(5)
COMP

FIXED
BIN(31)

Input

The size of the variable name specified by the third
argument. This argument can be an integer fullword
value in the range 5-to-50. You can also use the
manifest constant, SWS_NTS, to specify that
variable name is a null-terminated string.

PTR

PIC X(nnn)

CHAR
(nnn)

InOut

For the SWS_VALUE_OBTAIN or
SWS_VALUE_VALUE sub-function, this argument
is the address of the data buffer which will receive
the fetched variable value.

Fetched values are always returned as a null-
terminated string, even if the value must be truncated
to fit within the supplied buffer space.

For the SWS_VALUE_UPDATE sub-function, this
argument specifies the address of the value data to be
assigned to the new/updated variable.

Note: The implementation maximum size for the
value of any variable is 32,000 bytes; 8,000 if used in
HTML extension substitution processing.

7-208

Shadow Programming Guide

December 1999

General APIs

HLL Argument Type

Arg I/O Description of Argument
C COBOL PL/I
6 SDWORD | PIC S9(5) FIXED Input For the SWS_VALUE_OBTAIN or
COMP BIN(31) SWS_VALUE_VALUE sub-function, this argument
specifiesthe total size of the buffer area (argument
five).
For the SWS VALUE _UPDATE sub-function, this
argument specifies the size of the variable value,
given by theargument five, which isto be assigned to
the variable.
7 SDWORD* | PIC S9(5) FIXED Output For the SWS_VALUE_OBTAIN or
COMP BIN(31) SWS_VALUE_VALUE sub-function, this argument

receives the actual size of the variable's value.

If the return value is shorter than the supplied

buffer area, this argument receives the actual

number of bytes used to store the value within
the output buffer.

If the number of bytes required to store the
fetched value is greater than or equal to the
return buffer area size, then the fetched value is
truncated, and a null terminator is placed in the
last buffer position. This argument receives the
count of bytes actually needed to save the entire

value.

For the SWS_VALUE_UPDATE sub-function, C-
language callers should code NULL for this

argument. COBOL and PL/I callers should omit this
argument.

Return Values

SDBVALUE/SWSVALUE always sets a signed numeric return code value. Possi-
ble values are:

Return Value

Description

SWS SUCCESS,
SQL_SUCCESS

The operation succeeded. The variable's value was fetched or
updated as requested.

SWS SUCCESS WITH_INFO,

SQL_SUCCESS WITH_INFO

The operation partially succeeded. This return code value is set for
fetch operations when the returned variable value has been
truncated.

SWS ERROR,
SQL_ERROR

A parameter validation or runtime error was encountered. Error
information is available using the SWSERROR/SQLERROR
function.

SWS _ENVIRONMENT_ERROR

The request could not be processed because of a runtime
environmental error. For instance, you invoked the API service
outside of a web transaction procedure, or from outside the Server's
address space. The Serm@y provide diagnostic information in the
wrap-around trace.

December 1999

Shadow Programming Guide 7-209

Host Application APl Function Calls

Return Value

Description

SWS NO_DATA_FOUND,
SQL_NO_DATA_FOUND

variableis not initialized.

For aSWS_VALUE_OBTAIN sub-function request, the named

SWS INVALID_HANDLE,
SQL_INVALID_HANDLE

The connection handle argument isinvalid. No error information can
be returned using SQLERROR/SWSERROR

PL/I Example

DAL SGON PTR /*
DAL SVANA CHAR(50); /*
DOL SVASZ FI XED BI N(31); /*
DL SBUFF CHAR(256); I*
DOL SBFSZ FIXED BIN(31) INT(256);/*
DOL SRTSZ FI XED BI N(31); /*
DAL RC FI XED BI N(31); /*
DOL DWHX FI XED BI N(31) BASED, /*
ADDR(SCONN) - >DVHX = O; I*
SVANA = " WW VAR FCRWF ELD ; /*
SvAsZ =17 I*

/*

SRTSZ);

RC = PLIRETV();
| F (RC "= SWS SUCCESS &

/*
/*

RC A= SWs_SUCCESS WTH | NFO THEN

EXIT,

SVANA
SVASZ
SBUFF
SBFSZ =

CALL SWBVALUE(SCONN

/*
/*
/*
/*
/*

" ALVEVENT. FCRWFI ELD
18;

"HmM FormField Val ue’;
21;

SWS_VALUE_UPDATE,

SVANA,
SVASZ,
SBUFF,
SBFSZ);

RC = PLIRETV();
| F (RC A= SW6 SUCCESS &

/*
/*

RC = SWS SUCCESS WTH | NFOQ THEN

EXIT;

Connecti on Handl e */
vari abl e nane */
vari abl e nanme si ze */
buffer area */
Buf fer size */
Fet ched val ue si ze */
return code */
Dummy Handl e field */

d ear Connection Handl e*/
Set vari abl e nane */
set variabl e nane | engt h*/
get the variable value */

get return code */
exit programif bad RC */

Set vari abl e nane */
set variabl e nane | engt h*/
set variabl e val ue data*/
I ength of value data */
create QVEVENT vari abl e*/

get return code */
exit programif bad RC */

7-210

Shadow Programming Guide

December 1999

General APIs

C Example
HDBC sConn = NULL; /* Connection Handl e */
char sVana[] = "WW VAR FCRMDATA'; /* vari abl e nane */
char sVana2[] = "Q.VEVENT. DATA'; [* variable nane */
char sBuff[256]; [* return buffer area */
SDWCRD sRE sz; /* return variable size */
| ong RG /* return code */
rc = SWsval ue(&Conn, /* get query variabl e val ue */
SW5s VALLE VALUE, [* subfunction =retrieve */
sVana, /* null-termnated nane */
SWE NTS, /* indicate null-termnated */
sBuf f, /* return buffer address */
si zeof (sBuff), /* maxi mum buf fer size */
&R sz); /* actual size return area */
if (rc "= SW5 SUCCESS) return; [* exit programif bad RC */
rc = SWsval ue(&Conn, /* set new variable value */
SWs VALLE UPDATE, /* subfunction = set value */
sVanaz2, /* null-termnated nane */
SWE NTS, /* indicate null-termnated */
sBuf f, /* value information buffer */
sR sz, /* size of value data */
NULL) ; /* Must be NULL for UPDATE */
if (rc "= SW5 SUCCESS) return; [* exit programif bad RC */

December 1999 Shadow Programming Guide 7-211

Host Application APl Function Calls

COBOL Example

77
77
77
77
77
77
77

SCONN
SBUFF
SBFSZ
SVANA
SVANAZ
SVASZ
SRTSZ

USAGE | S PO NTER
Pl C X(80).

Pl C S9(5) COWP VALUE 80.

Pl C X(50) VALUE ’ WWWVI NPUTURL .
Pl C X(50) VALUE ' GLVEVENT. ABC .
Pl C S9(5) COWP VALUE 50.

Pl C S9(5) COWP.

otain input URL val ue

CALL " SWOPVL' USI NG SCONN,
SW5- VALUE- VALUE,

SVANA,
SVASZ,
SBUFF,
SBFSZ,
SRTSZ.

MOVE RETURN- CCDE TO W& SWEAPI - RETURN- CCDE.
I F NOT' SW5- SUCCESS GOBACK.

*

*

Set ALVEVENT. ABC to the sane val ue

MOVE SRTSZ TO SBFSZ.
CALL " SWOPVL' USI NG SCONN,
SW5- VALUE- UPDATE,

SVANAZ,
SVASZ,
SBUFF,

SBFSZ.

MOVE RETURN- CCDE TO W& SWEAPI - RETURN- CCDE.
I F NOT' SW&- SUCCESS GOBACK

7-212

Shadow Programming Guide December 1999

General APIs

SDBVALUE/SWSVALUE Function

Can be used in Shadow/REXX.

Can be used from other REXX interpreters (see SWSVALUE For other REXX
interpreters).

High-level language interface available.

Using this function, you can manipulate Global Variablesin ways which are not
possiblein standard Shadow/REXX. For example, the SDBVALUE/SWSVALUE
function lets you use compound symbols as akind of data base.

This Shadow/REX X intrinsic function has been exported for use by other
REXX interpreters (see Invoking other REXX interpreters for additional
information).

However, the exported functionality differs considerably from the
functionality described here, by allowing other REXX interpreters to access
WWW Event-Related and GLVEVENT. Variables.

Consult the page SDBVALUE/SWSVALUE For other REXX interpreters for
information on using this function from other REXX interpreters. The
information on this page applies only to the Shadow/REXX implementation!

Use this function to access only Global Variables. Do not use this function to
access WWW. Event-Related Variables or GLVEVENT. Temporary Variables.

You need use this function only when some special interrogation or serialization
processing is required by your Shadow/REXX procedure. Under normal circum-
stances, you can reference or set the value of a Global variable, simply by using it
within anormal REXX-language statement, as in the following:

SAVENAME = (LCBAL. COVPANY. NAME
GLCBAL. COVPANY. NAME = "NECN Systens, Inc.”
QLVEVENT. MYDATA = " ABC'

You should not create too many global variables under a single global variable
stem. If you do, you will no longer be able to view them using the SWS/IPSF 7.1
Option, nor access them using the SWSVALUE function.

The absolute product limit is 32,768 variables under asingle global variable stem.
However, in practice, we strongly recommend that no more than 10,000 global
variables exist at any given instant under asingle global variable stem.

Syntax
The general form for invocation of SDBVALUE/SWSVALUE is:

var = SDBVALUE SWAVALUE(deri vednarre, actioncode, newal, ol dval)

December 1999

Shadow Programming Guide 7-213

Host Application APl Function Calls

Valid Arguments
derivedname Gives the name of the symbol to be acted on. When you use this argument
without quotation marks, simple symbols (which are case sensitive) following
the stem are replaced by their values.
Actioncode Specifies the action to be taken on the symbol. The table bel ow indicates what
actions are taken.
newval Supplies the new value (if any) to assign to the symbol.
oldval Fetches the value of the symbol before the action takes place.
Return Values
SDBVALUE/SWSVALUE returns avalue from the function call, and, in the case
of some action codes, also places information in the external data queue.
The Chart below shows what actions are performed for each of the action codes
values, and what values are returned.
Action Code Description
A (Add) Adds a number specified by increment, to the existing compound symbol

given by derivedname.
Returns the sum of the compound symbol and the increment
Does not change the external data queue

All references to the compound symbol are serialized during the ADD
operation. That is, you can use this function safely to increment a counter that
is set by concurrent tasks.

Syntax Example:
val = SWBVALUE(deri vednane,’ A ,increnent)

C (Compare and Update)

Updates a compound symbol after verifying its current value.

Safely updates Global symbols shared by more than one event procedure or
symbols that multiple copies of the same rule might access and update.

Does not change the Shadow/REXX external data queue.

Returns the REXX "true" value (1), if the comparison found the symbol’s pre-
action value to be equal to old value and the compound symbol was updated,
or the REXX "false" value (0), if the comparison found unequal values and
therefore did not update the value of the compound symbol.

Seridlizes the compare and update operations for global variables.
Syntax Example:
val = SWBVALUK(deri vednane,’ C , newal , ol dval)

7-214

Shadow Programming Guide December 1999

General APIs

Action Code Description

D (Drop) Performs the Shadow/REXX DROP operation on the compound symbol
specified by derivedname. The compound symbol is reset to its"uninitialized"
value; that is, its derived name.

If derivedname isthe name of astem, then all compound symbols belonging to
that stem are not just dropped, but also rendered "nonexistent” and the virtual
storage allocated to them is rel eased. Returns the value of derivedname.

Does not change the external data queue.

All other references either see the compound symbol asit existed before the
DROP operation began, or asit is after the DROP operation completes.

Syntax Example:
val = SWBVALUE(deri vednane,’ D)

E (Existence) Checksto see whether a given global variable exists.
Does not change the Shadow/REXX external data queue.
Returns the status of a given global variable as one of these characters:

e | for Initialized.
¢ U for Uninitialized.
. N for Does not exist.

Syntax Example:
val = SWBVALUK(deri vednane,’ E)

Note: For normal REXX symbols N and U would have interchangeable
meanings. However, for global variables, N means that no storage exists for a
variable; and U means that the variable exists in storage, but is uninitialized
and so is set to the value of its name.

F (Find) Checks to see if a given global variable exists. The F action is more efficient
and more reliable than using the E and O functions together.

Returns the status of a given global variable as one of these characters:

e | for Initialized.
¢ U for Uninitialized.
. N for Does not exist.

When the returned value is not N (meaning that the derived name exists), the
value of the node is returned on the external data queue. The maximum length
of a string pulled from the external data queue is 350 bytes. Longer values are
truncated.

Syntax Example:
val = SWBVALUE(deri vednane,’ F)

December 1999 Shadow Programming Guide 7-215

Host Application APl Function Calls

Action Code

Description

I (Information)

Returns to the external data queue information about all of the immediate

subnodes of the derivedname.

The derivedname value must be a compound symbol node. Thereturn valueis
the number of immediate subnodes that exist. The external data queue contains
two lines per subnode: the first line contains the next segment of the derived

name, and the second line contains statistics

about the derived name. The second line returned for each derived name
contains the information shown below:

Word | Length Diescription

| g Hummber of subnodes under this
sbnods

2 8 Create date {in the form yyw'mmidd)

3 g Create time (in the form hhommess)

4 17 Create event procedure o program
rnatne

5 g Create jobname, taskname, or TS0
I

é g Last modification date

7 g Last modification time

2 17 Last modification event procedure or
progratm natne

9 2 Last modification johname,
tasknamme or TS0 1D

10 g Mumber of access to this node

11 8 Mummher of updates to this node

Returns the number of subnodes listed in the external data queue.

Places two lines per subnode in the external data queue.

Returns no partially-updated symbol names.

Syntax Example:
val = SWBVALUE(deri vednane,’ 1)

7-216

Shadow Programming Guide

December 1999

General APIs

Action Code

Description

L (List)

Lists the derived names of all the immediate subnodes of derivedname by
placing them on the external data queue.

The results of this action illustrate the difference between dropped symbols
(processed by action D) and removed symbols (processed by action R).
Dropped symbols still exist, so the List action can find them. The List action
does not return removed symbols.

Returns the number of subnodes listed in the external data queue.

Places alist of subnodes of the specified nodesin the external data queue.
Syntax Example:

val = SWBVALUE(deri vednane,’ L")

O (Obtain)

Obtains the value of aglobal variable. If the global variable does not exist,
Shadow/REXX returns an error.

Does not change the external data queue.
Syntax Example:
val = SWBVALUE(deri vednane,’ O)

R (Remove)

Removes the node specified by derivedname and all of its subnodes. Once a
node is removed, it ceases to exist.

Returns the number of subnodes removed.
Does not change the external data queue.

Does not alow other accessors of compound symbols to see partially-updated
symbols.

Syntax Example:
val = SWBVALUK(deri vednane,’ R)

S (Subtree)

Liststhe derived names of all the subnodes of derivednamein the external data
gueue.

Action code Sis similar to code L with two differences:

« Shadow/REXX places the entire global variable name in the external data
queue.
« All subnodes of the derived name are listed.

Returns the number of subnodes listed in the external data queue.
Places the entire global variable name in the external data queue.
Returns no partially-updated symbol names

Syntax Example:

val = SWBVALUE(deri vednane,’S')

December 1999

Shadow Programming Guide 7-217

Host Application APl Function Calls

Action Code Description
T (Subtree/Info) Returns to the external data queue information on al the subnodes of the
derivedname

The derivedname value parameter must be a compound symbol node. The
return value isthe number of subnodes that exist. The external data queue
contains two lines per subnode: the first line contains the next segment of the
derived name, and the second line contains statistics about the derived name.
The second line contains information in the format shown for the | actioncode.

Action code T resembles code | with three differences:
The entire global variable name goes into the external data queue.
All subnodes of the derived name are listed.

The "Number of Subnodes' field on the second line of pair of messagesin the
external data queue for each node always contains zero.

Returns the number of subnodes listed in the external data queue

Places in the external data queue two lines per subnode and the entire Global
Variable name.

Returns no partially-updated symbol names
Syntax Example:
val = SWBVALUE(deri vednane,’S')

U (Update) Assigns newvalue as the value of the compound symbol specified by
derivedname. If the compound does not exist, Shadow/REXX creates it and
givesit the new value.

Returns the variable specified by newvalue.
Does not change the external data queue

Prevents others accessing compound symbols from seeing partially-updated
symbols

Syntax Example:
val = SWBVALUE(deri vednane,’ U, newal)

V (Value) Returns the current value of the node specified by derivedname. If the node
does not exist, Shadow/REXX createsit but assignsit no value (giving the
symbol the same value asits name).

Returns the value of the specified compound symbol.

Does not change the external data queue.

Prevents the issuer of SWSVALUE from seeing partialy-updated symbols.
Syntax Example:

val = SWBVALUE(deri vednane,’ V)

7-218 Shadow Programming Guide December 1999

General APIs

High-Level Language Interface
SQLTOKEN (SDCPTK)
SWSTOKEN (SWCPTK) Function

Can be used in Shadow/REXX.

Can be used from other REXX interpreters.

HLL entry point name is SDCPTK/SWCPTK.

The SQLTOKEN/SWSTOKEN service provides a means of saving and restoring
transaction-oriented data using a server-created token value.

Transaction data can be saved before generating an out-bound response to a Web
transaction, and then be restored (using the token value) when the next transaction
arrives.

Thetoken service alows you to create complex, inter-active Web transactions
which need a scratch-pad area to save state information between Web transaction
boundaries.

All tokens have atimeout associated with them at creation time. |f the token is not
accessed within the timeout period the Server automatically deletes the token
(along with the associated data).

CALL Arguments

The SQLTOKEN/SWSTOKEN service takes from three to eight arguments,
depending on the sub-function being requested.

The Create Sub-function

The create sub-function causes the Server to create anew token and save aninitial
datavaue. The service returns the 24-byte token identifier. The token identifier is
used to request other operations against the token.

HLL Argument Type
Arg I/0 Description of Argument
C COBOL PL/I
1 HDBC Usage PTR Input The connection handle. The connection handleis an
pointer opague, four-byte address pointer. The connection
handleis currently not used, and must be set to zero
(NULL).
2 SWS_TOKEN_CREATE Input A four-byte flag-word indicating the type of
operation to be performed. The constant shown
invokes the create sub-function.

December 1999

Shadow Programming Guide 7-219

Host Application APl Function Calls

HLL Argument Type

Arg I/O Description of Argument
C COBOL PL/I

3 UCHAR* PIC X(25) CHAR(25) | Output The buffer area where the service returns the 24-byte
token identifier. The 24-byte token ID is returned
with a 1-byte null terminator value in the 25th
position.

4 PTR PIC X(nnn) | CHAR(nnn) | Input The buffer area containing theinitial data to be saved
when the token is created. You can not specify anull-
terminated string for this argument. The length of the
data must be explicitly given by the fifth argument.

5 SDWORD | PIC S9(5) FIXED Input The size of theinitia datato be saved for the token.

COMP BIN(31) You must explicitly provide the size of the forth
argument; SWS_NTSisnot avalid argument value.

6 SDWORD | PIC S9(5) FIXED Input The timeout value for the token, expressed in

COMP BIN(31) seconds. The token service deletes un-referenced
tokens after some defined time period. Thetime
period for auto-del ete can be expressed using this
argument.

7 PTR PIC X(nnn) | CHAR(nNnNn) | Input Optional argument. If used, this argument is the user
data value to be associated with the token. The value
can be a null-terminated string.

8 SDWORD | PIC S9(5) FIXED Input Optional argument. If used, this argument isthe

COMP BIN(31) length of the user data given by the 7th argument.
You may specify SWS_NTS to indicate that the user
datavalueisanull terminated string.

The Delete Sub-function
The delete sub-function causes the Server to delete a token.
HLL Argument Type
Arg I/O Description of Argument
C COBOL PL/I

1 HDBC Usage PTR Input The connection handle. The connection handleisan

pointer opaque, four-byte address pointer. The connection
handleis currently not used, and must be set to zero
(NULL).

2 SWS TOKEN_DELETE Input A four-byte flag-word indicating the type of
operation to be performed. The constant shown
invokes the del ete sub-function.

3 UCHAR* PIC X (24) CHAR(24) | Intput The buffer areawhere the service obtains the 24-byte
token identifier of the token to be deleted.

4 PTR PIC X(nnn) | CHAR Input The buffer area containing theinitial data to be saved

(nnn) when the token is created. You can not specify a null-
terminated string for this argument. The length of the
datamust beexplicitly givenby the
fifth argument.

7-220 Shadow Programming Guide December 1999

General APIs

The Get Sub-function

The get sub-function retrieves the data associated with atoken.

HLL Argument Type

Arg I/0 Description of Argument
C COBOL PL/I
1 HDBC Usage PTR Input The connection handle. The connection handleisan
pointer opaque, four-byte address pointer. The connection
handleis currently not used, and must be set to zero
(NULL).

2 SWS _TOKEN_ GET Input A four-byte flag-word indicating the type of
operation to be performed. The constant shown
invokes the get sub-function

3 UCHAR* PIC X (24) CHAR(24) | Input The buffer areawhere the service obtains the 24-byte
token identifier of the token to be referenced.

4 PTR PIC X(nnn) | CHAR(nnNn) | Output The buffer area where the service returns the data
value associated with the token. If the actual token
dataislarger than this area, the returned value will be
truncated to fit within this area.

5 SDWORD | PICS9(5) FIXED Input The size of the return data area buffer, specified by

COMP BIN(31) the forth argument.
6 SDWORD * | PICS9(5) FIXED Output The token service returns the actual size of the data
COMP BIN(31) value associated with the token into this area.
The Put Sub-function
The put sub-function updates part or al of the data value associated with a token.
Note that the put sub-function cannot be used to alter the length of the data value
associated with atoken; only to re-write some or all of it.
HLL Argument Type
Arg I/O Description of Argument
C COBOL PL/I
1 HDBC Usage PTR Input The connection handle. The connection handleis an
pointer opague, four-byte address pointer. The connection
handleis currently not used, and must be set to zero
(NULL).

2 SWS TOKEN_PUT Input A four-byte flag-word indicating the type of
operation to be performed. The constant shown
invokes the put sub-function .

3 UCHAR* PIC X (24) CHAR(24) | Intput The buffer areawhere the service obtains the 24-byte

token identifier of the token to be updated.

December 1999

Shadow Programming Guide

7-221

Host Application APl Function Calls

HLL Argument Type

Arg I/O Description of Argument
C COBOL PL/I

4 PTR PIC X(nnn) | CHAR(nnNn) | Output The buffer area where the service obtains the new
data value to be written for the token. If the size of
thisareais smaller than the actual token data, this
datawill overwrite only the leading portion of the
token's data value; the remainder will be un-changed.
If this data value is larger than the actual token data,
the service rewrites only the portion corresponding to
the existing actual token data length. (I.E. This
service cannot be used to enlarge the data area
associated with atoken.)

5 SDWORD | PICS9(5) FIXED Input The size of the data area given by the forth argument.

COMP BIN(31)
The Replace Sub-function
The replace sub-function re-writes the data value associated with atoken. The
original datavalueis purged, and the new val ue becomes associated with the
token. Use this sub-function (not the put sub-function) to change the size of the
data associated with a token.
HLL Argument Type
Arg I/O Description of Argument
C COBOL PL/I
1 HDBC Usage PTR Input The Web Server connection connection handle. The
pointer connection handle is an opaque, four-byte address
pointer. The connection handle is currently not used,
and must be set to zero (NULL).

2 SWS _TOKEN_ REPLACE Input A four-byte flag-word indicating the type of
operation to be performed. The constant shown
invokes the replace sub-function

3 UCHAR* PIC X (24) CHAR(24) | Input The buffer areawhere the service obtains the 24-byte
token identifier of the token to be replaced.

4 PTR PIC X(nnn) | CHAR(nnNn) | Output The buffer area where the service obtains the new
data value to be written for the token. The new data
value completely replaces the existing data value.

5 SDWORD | PICS9(5) FIXED Input The size of the data area given by the forth argument.

COMP BIN(31)
7-222 Shadow Programming Guide December 1999

General APIs

Return Values

SWSTOKEN/SQLTOKEN aways sets a signed numeric return code value. Possi-
ble values are:

Return Value Description

SWS SUCCESS, SQL_SUCCESS The operation succeeded without error.

SWS SUCCESS WITH_INFO, The operation succeeded. Thisreturn valueis set when datais

SQL_SUCCESS WITH_INFO truncated for the get sub-function.

SWS NO DATA_FOUND, The requested token could not be found.

SQL_NO_DATA_FOUND

SWS ERROR, A parameter validation or runtime error was encountered. Error

SQL_ERROR information is avail able using the SWSERROR/SQL ERROR
function.

SWS ENVIRONMENT_ERROR The request could not be processed because of a runtime
environmental error. For instance, you invoked the APl service
outside of aweb transaction procedure, or from outside the Server's
address space. The Server may provide diagnostic information in the
wrap-around trace.

SWS INVALID HANDLE, The connection handle argument isinvalid. No error information can
SQL_INVALID _HANDLE be returned using SQL ERROR/SWSERROR.

PL/I Example
DCL SCONN PTR /* Connection Handl e */
DAL STKID CHAR(25); /* token | D val ue */
DAL SDATA CHAR(256); /* data val ue */
DAL SSIZE FI XED BI N(31); /* data val ue size */
DAL STMOU FI XED BIN(31) INT(300); /* tineout val ue */
DAL RC FI XED BI N(31); /* return code */
DL DWVHX FI XED BI N(31) BASED /* Dummy Handl e field */
ADDR(SOO\N) - >DVHX = 0; /* dear Connection Handl e*/
SDATA= "Hell o World!’; /* Set output area */
SSI ZE = 12; /* set length */
CALL SWSTCKEN SCONN /* create a token */

SW5 TCKEN _CREATE,

STKI D,

SDATA,

SSI ZE,

STMU) ;
RC = PLIRET\(); /* get return code */
| F RC "= SWs_SUCCESS THEN /* exit programif bad RC */
EXT,

December 1999 Shadow Programming Guide 7-223

Host Application APl Function Calls

C Example
HDBC sConn = NULL; /* Connection Handl e */
char sData[] = "Token Data Area"; /*data string definition*/
char sTkid[25]; [* Token IDreturn area */
| ong RC /* return code */
rc = SWEBTCKEN(&sConn, /* create the token */

SWE_TCKEN CREATE,

sTki d,

sDat a,

si zeof (sData));
if (rc "= SW5 SUCCESS) return; [* exit programif bad RC/

COBOL Example

77 SCONN USAGE | S PO NTER

77 STKID Pl C X(25).

77 SDATA Pl C X(80).

77 SSIZE Pl C S9(5) COWP.

77 STMU Pl C S9(5) COWMP VALUE 300.

77 SUSDA Pl C X(30) VALUE ' User Data Area .
77 SUSLN Pl C S9(5) COMP VALLE 30.

MOVE ’ HELLO WORLD!’ TO SDATA

MOVE 12 TO SSI ZE.

CALL ' SWPTK US| NG SCONN,

SVB- CREATE- TOKEN,

STKI D,

SDATA,

Ssl ZE,

STM,

SUSDA,

SUSLN) ;
MOVE RETURN OCDE TO A& SWBAP! - RETURN- CCDE.
| F NOT SW& SUCCESS GUBACK.

7-224 Shadow Programming Guide December 1999

General APIs

SDBTOKEN/SWSTOKEN Function

/ Can be used in Shadow/REXX
/ Can be used from other REXX interpreters
/ High-level language interface available

The SDBTOKEN/SWSTOKEN built-in function provides a means of saving and
restoring transaction-oriented data using a server-created token value.

Transaction data can be saved before generating an out-bound response to a trans-
action, and then be restored (using the token value) when the next transaction
arrives.

The token service allows you to create complex, inter-active transactions which
need a scratch-pad area to save state information between transaction boundaries.

All tokens have atimeout associated with them at creation time. If thetokenis not
accessed within the timeout period the Server automatically deletes the token
(along with the associated data).

Syntax
The general form for invocation of SDBTOKEN/SWSTOKEN is:
var = SWBTCKEN(func, arg2, arg3, arg 4)

Valid Arguments

Thefirst argument, func, to the SDBTOKEN/SWSTOKEN function specifies the
sub-function to be performed. The values which can be coded for the func argu-

ment are:
CREATE Create a new token and save the associated data.
GET Retrieve data associated with atoken value.
PUT Update the data associated with an existing token value.
REPLACE Replace the data associated with an existing token value.
DELETE Delete atoken and the associated data.

CREATE Service

The sub-function creates a new token value and saves data associated with the
token. The data can later be retrieved or updated, using the token value.

December 1999 Shadow Programming Guide 7-225

Host Application APl Function Calls

Syntax Example
The CREATE serviceisinvoked by coding:

newt ok = SWBVALUE(' CREATE , dat a, ti neout, user dat a)

The arguments to the CREATE service call are:

data The data to be associated with the token. This operand is
required. Oncethe token is created, the size of the data.can
only be altered using the REPLACE token service (PUT
cannot be used to change the data size). When invoked
from Shadow/REX X, the maximum size of thedataareais
limited to 32,000 bytes.

Timeout A expiration timeout val ue to be associated with the token,
specified in seconds. If the token value is un-accessed for
this length of time, the token value (and associated data) is
discarded by the system.

Any access to the token value causes this expiration timer
to berestarted. If this argument to the function call is
omitted, the system uses the value set for the
TOKENTIMEOUT product parameter.

Userdata Specifies an optional character string which is associated
with the token. If this operand is not specified, the user
datavalueis set to the value of the original URL under
which the token was created. This character string is
displayed on the active tokens | SPF display, but has no
other purpose.

This argument is optional. .

Return Value

The token CREATE service aways returns the 24-byte token value. A run-time
error is generated if the token cannot be created.

GET Service

The sub-function retrieves the data associated with a previously created token.

Syntax Example
The GET service isinvoked by coding:
data = SWBVALUE(' GET' , t oken)

The arguments to the GET service call are;

Token The token value returned from the CREATE function.

7-226 Shadow Programming Guide December 1999

General APIs

Return Value

Thetoken GET service returns the data associated with the token when it was cre-
ated. The length of the data returned is always equal to the length of the data asso-
ciated with the token when it was created.

If the input token value is unknown the function returns aNULL string. This can
occur because another application has caused the token to be explicitly deleted or
because the token timeout period has expired.

PUT Service
The sub-function updates the data associated with a previously created token.

Syntax Example
The PUT serviceisinvoked by coding:
rc = SWBVALUE(' PUT |, t oken, newdat a)

The arguments to the PUT service call are:

token The token value returned from the CREATE function.

newdata The new data value to be written to the token. If this data

valueislonger than the value originally written, it is
truncated to the length of the original datavalue. If the
new valueis shorter than the previous value, it overlays
only the front portion of the value. Note that the
REPLACE service must be used to alter the size of the
data associated with a token.

Return Value

The token PUT service returns one of the following numeric values.

Return Value Description

0

The newdata value was saved.

100

The token vaue is unknown or invalid. For example, the token has
been explicitly deleted or the timeout period has elapsed.

REPLACE Service
The sub-function replaces the data associated with a previously created token.

Syntax Example
The REPLACE serviceisinvoked by coding:

rc = SWBVALUE(' REPLACE , t oken, newdat a)

December 1999

Shadow Programming Guide 7-227

Host Application APl Function Calls

The arguments to the REPLACE service call are:

token The token value returned from the CREATE function.

newdata The new data value to be written to the token. This data
completely replaces the data associated with the token.

Return Value

The token REPLACE service returns one of the following numeric values:

Return Value Description

0 The newdata value was saved.

100 The token value is unknown or invalid. For example, the token has
been explicitly deleted or the timeout period has elapsed.

DELETE Service

The sub-function deletes a token and associated data and removesis from the sys-
tem.

Syntax Example
The DELETE serviceisinvoked by coding:
rc = SWBVALUE(' DELETE , t oken)

The arguments to the DELETE service call are:

token The token value returned from the CREATE function.

Return Value

Thetoken DELETE service returns one of the following numeric values:

Return Value Description

0 The token has been deleted.

100 The token value is unknown or invalid. For example, the token has
been explicitly deleted or the timeout period has elapsed.

7-228 Shadow Programming Guide December 1999

General APIs

High-Level Language Interface

SDBCONCT (SDCPCC)

SWSCONCT (SWCPCC) Function

Can be used in Shadow/REXX.

Can be used from other REXX interpreters.

HLL entry point name is SDCPCC/SWCPCC.

SDBCONCT/SWSCONCT is used to concatenate multiple DDNames under a
single DDName.

The format of this command is similar in features and functions to the TSO/E
CONCAT command. A text string is used as input in order to provide the parame-
ters necessary to define the files to be concatenated. Files can be "de-concate-
nated" using the SDBDECON/SWSDECON command.

CALL Arguments

The SDBCONCT/SWSCONCT (SDBPCC/SWCPCC) function arguments are
described in the table which follows. Only two of the three arguments are

required.
HLL Argument Type
Arg I/O Description of Argument
C COBOL PL/I
1 LONG PIC S9(5) FIXED Input The length of the concatenation command string. If
COMP BIN(31) the length islonger than the actual command, trailing
nulls or blanks will be ignored. If the lengthisless
than the actual command string, the concatenation
command string will be truncated and possibly cause
execution errors. The maximum string lengthis
32768 bytes.
2 CHAR* PIC CHAR Input The concatenation command string. See Supported
X(nnnnn) (nnnnn) Concatenation keywords below.
3 SWSASB* | Usage PTR Output The Shadow Web Server Allocation Status Block.
pointer Thisisan optiona argument that provides
information concerning the status of the
concatenation request. If you do not specify this
argument, you will not have accessto the reason code
nor the DAIR code.

December 1999

Shadow Programming Guide 7-229

Host Application APl Function Calls

Return Values

SDBCONCT/SWSCONCT always sets a signed humeric return code value. Pos-
sible values are:

Return Value Description
SWS SUCCESS The operation succeeded. The specified operation was performed.
SWS ERROR A parameter validation or run-time error was encountered. Error

information is available using the SWSERROR function.

Any other value The operation failed. Generally this indicates that the file was not
concatenated. There will be an error message in the Allocation
Status Block describing the error.

Supported Concatenation Keywords

The SDBCONCT/SWSCONCT (SDBPCC/SWCPCC) interface supports the fol-
lowing dataset concatenation request parameters:

Concatenation Keyword Description

DDN(DD1 DD2DD3..) Specifiesalist of previously alocated ddnames to be concatenated together.

Note: Separate parameters by spaces. Do not use commas. The datasets will be
concatenated as a single DDName using the first DDName in the list.

PERM (VALUE) Specifies whether or not to permanently concatenate these DDNames. Files
that are permanently concatenated can not be "de-concatenated”. L egitimate
values are:

« YES=Permanently concatenate these files.
* NO = Do not permanently concatenate these files.

Note: The default isNO.

PL/I Example
9% NCLUDE SPCPHD

DCL COMVAND CHAR(80) [* QOONCATENATE OVD */
INIT(" DDN(I NFI LEL | NFI LE2)");
DCL QVDLEN FI XED Bl N(31); /* COMVAND LENGTH */
DCL RC FI XED BI N(31); /* RETURN QCDE */
CMDLEN = LENGTH COWAND) ; /* SET COWAND LEN */
[* CONCATENATE THE | NPUT FI LES */
CALL SWBOONCT(CMDLEN, /* COMVAND LENGTH */
COWAND, /* COMVAND */
SWBASB) ; /* ALLQCATI ON STATUS BLQOCK*/
RC = PLIRETV) ; /* CGET RETURN CCDE */
| F RC "= SWs SUCCESS THEN /* EXXT PROBRAM | F BAD RC */
EXIT,

7-230 Shadow Programming Guide December 1999

General APIs

C Example
SWE ALLQCATI ON_STATUS BLOCK swsASB; /* response area

| ong RG /* return code
char szCommand[] = "DDN(I NFILELl | NFILE2)";

/* Concatenate the input files

rc = SWBOONCT(st rl en(szCommand) , /* Command Length
szComrand, /* Command
SWsASB) ; /* Response area

if (rc "= SWs SUCCESS)
do
printf(swsASB. Error_Message) ;
return rc;
end

COBOL Example

* NEON APl CCPY BOXK
COPY SBCPHD.
77 COWAND- LENGTH PI C S9(5) COwP.
77 COWAND PI C X(80)

VALUE ' DDN(I NFI LEL | NFI LE2) " .
* CONCATENATE THE | NPUT FI LES

MOVE 80 TO COMVAND- LENGTH
CALL SWSOONCT
USI NG COMVAND- LENGTH,
COMVAND,
SWE- ALLGCATI ON- STATUS- BLOCK.

MOVE RETURN- CCDE TO W5- SWEAPI - RETURN- CCDE.
I F NOT SW&- SUCCESS

*/

*/

*/

*/
*/
*/

DI SPLAY ’ FI LE CONCATENATI ON FAI LED. UPON CONSCLE

DI SPLAY SWBASB- ERROR MESSACE

December 1999

Shadow Programming Guide

7-231

Host Application APl Function Calls

SDBCONCT/SWSCONCT Function

Can be used in Shadow/REXX.

Can be used from other REXX interpreters.

High-level language interface available.

The REXX-language SDBCONCT/SWSCONCT built-in function can be used to
concatenate multiple ddnames of previously allocated datasets. Datasets concate-

nated using the SWSCONCT built-in function can use the SDBDECON/SWSDE-
CON built-in function to de-concatenate the DDName.

Note:

I> Because of comparable functionality of SDBCONCT/SWSCONCT
to IBM’s CONCAT function, this documentation is similar to IBM’s
TSO/E online help.

Syntax

Theformat of thiscommand is similar in features and functions to the TSO/E
CONCAT command. If an error occurs, the REXX variable, ALLOC.MES
SAGE, will be populated with a descriptive message. The DAIR return code can
be obtained from ALL OC.INFOCODE and the reason code can be obtained
from the ALLOC.REASON.

The general form for aREX X -language invocation of SDBCONCT/SWSCONCT
is:

rc = SWBOONCT(" STRI NG')
Supported Concatenation Keywords

The SDBCONCT/SWSCONCT (SDBPCC/SWCPCC) interface supports the fol-
lowing dataset concatenation request parameters:

Concatenation Keyword Description

DDN(DD1 DD2DD3..) Specifiesalist of previously alocated ddnames to be concatenated together.

Note: Separate parameters by spaces. Do not use commas. The datasets will be
concatenated as a single DDName using the first DDName in the list.

7-232

Shadow Programming Guide December 1999

General APIs

Concatenation Keyword Description

PERM (VALUE) Specifies whether or not to permanently concatenate these DDNames. Files
that are permanently concatenated can not be "de-concatenated”. L egitimate
vaues are:

* YES = Permanently concatenate these files.
* NO = Do not permanently concatenate these files.

Note: The default iSNO

SDBCONCT/SWSCONCT Examples

To concatenate multipl e ddnames

rc = SWBOONCT(DDN(| NFI LEL | NFI LE2))

December 1999 Shadow Programming Guide 7-233

Host Application APl Function Calls

High-Level Language Interface
SDBDECON (SDCPDC)
SWSDECON (SWCPDC) Function

/ Can be used in Shadow/REXX.
/ Can be used from other REXX interpreters.
/ HLL entry point name is SDCPDC/SWCPDC.

SDSBDECON/SWSDECON is used to "de-concatenate” a DDName that was
previoudy concatenated using the SDBCONCT/SWSCONCT command.

The format of this command is similar in features and functionsto the TSO/E
DECONCAT command. A text string is used as input in order to provide the
parameters necessary to define the file to be concatenated. Files can be concate-
nated using the SDBCONCT/SWSCONCT command.

CALL Arguments

The SDBCONCT/SWSCONCT (SDBPCC/SWCPCC) function arguments are
described in the table which follows. Only two of the three arguments are

required.
HLL Argument Type
Arg I/0 Description of Argument
C COBOL PL/I
1 LONG PIC S9(5) FIXED Input The length of the de-concatenation command string.
COMP BIN(31) If the length is longer than the actual command,

trailing nulls or blanks will be ignored. If the length
isless than the actual command string, the de-
concatenation command string will be truncated and
possibly cause execution errors. The maximum string
length is 32768 bytes.

2 CHAR* PIC CHAR Input The de-concatenation command string. See
X(nnnnn) (nnnnn) supported de-concatenation keywords.

3 SWSASB* | Usage PTR Output The Shadow Web Server Allocation Status Block.
pointer Thisisan optiona argument that provides

information concerning the status of the de-
concatenation request. If you do not specify this
argument, you will not have accessto the reason code
nor the DAIR code.

7-234 Shadow Programming Guide December 1999

General APIs

Return Values

SDBDECON/SWSDECON always sets a signed numeric return code value. Pos-
sible values are:

SWS_SUCCESS
The operation succeeded. The specified operation was performed.

SWS_ERROR

A parameter validation or run-time error was encountered. Error information is
available using the SWSERROR function.

Any other value

The operation failed. Generally this indicates that the file was not de-concate-
nated. There will be an error message in the Allocation Status Block describing
the error.

Supported De-concatenation Keywords

The SDBDECON/SWSDECON (SDBPDC/SWCPDC) interface supports the fol-
lowing dataset concatenation request parameters:

De-concatenation Keyword Description

DDN(DDNAME)

Specifies the ddname of the concatenated file.

PL/I Example
9% NCLUDE SPCPHD

DOL COWAND CHAR(80) /* DE- CONCAT COMWAND */
INT(’ DDN(INFILE) ") ;

DOL OVDLEN FI XED BI N(31); /* OCOWAND LENGTH */

DL RC FI XED BIN(31); /* RETURN OCDE */

CMDLEN = LENGTH COWAND) ; /* SET COMWAND LEN */

[* DE- CONCATENATE THE | NPUT FI LE */

CALL SWBDECON CMDLEN, /* COMVAND LENGTH *f

COMVAND, /* COMVAND */

SWBASB) ; /* ALLQCATI ON STATUS BLOCK*/

RC = PLIRETW(); /* CGET RETURN CCDE */

| F RC "= SWs SUCCESS THEN /* EXT PROGRAM | F BAD RC */

EXT;

December 1999

Shadow Programming Guide 7-235

Host Application APl Function Calls

C Example
SWE ALLQCATI ON_STATUS BLOCK swsASB; /* response area */
l ong RG /* return code */

char szCommand[] = "DDN(I NFILE)";

/* De-concatenate the input file */
rc = SWBDEQON st rl en(szConmand) , /* Command Length */
szCommrand, /* Command */
SWSASB) ; /* Response area */

if (rc "= SW5 SUCCESS)
do
printf(swsASB. Error_Message) ;
return rc;
end

COBOL Example

* NEON APl OCPY BOCK
COPY SBCPHD.
77 COWRND- LENGTH Pl C S9(5) COWP.
77 COWAND Pl C X(80)
VALUE * DD\(| NFI LE) .
* DE- CONCATENATE THE | NPUT FI LE.
MOVE 80 TO COMVAND- LENGTH
CALL SWBDECON
US| NG COMVAND- LENGTH
COMVAND,

SWE- ALLGCATI ON- STATUS- BLOCK

MOVE RETURN- CCDE TO W5~ SWEAPI - RETURN- CCDE.

I F NOT' SW5- SUCCESS
DI SPLAY " | NFI LE DE- GONCATENATI CN FAI LED.* UPON CONSCLE
DI SPLAY SWHASB- ERRCR- MESSACE UPON CONSCLE
GBAKK

7-236 Shadow Programming Guide December 1999

General APIs

SDBDECON/SWSDECON Function

Can be used in Shadow/REXX.

Can be used from other REXX interpreters.

High-level language interface available.

The REXX-language SDBDECON/SWSDECON built-in function can be used to
de-concatenate a single ddname that was previous concatenated using the SDB-
CONCT/SWSCONCT built-in function to concatenate the DDNames.

Note:

I> Because of comparable functionality of SDBDECON/SWSDECON
to IBM’s DECONCAT function, this documentation is similar to
IBM’s TSO/E online help.

Syntax

The format of thiscommand is similar in features and functions to the TSO/E
DECONCAT command. If an error occurs, the REXX variable ALLOC.MES-
SAGE will be populated with a descriptive message. The DAIR return code can
be obtained from ALLOC.INFOCODE and the reason code can be obtained
from the ALLOC.REASON.

The general form for aREX X -language invocation of SDBDECON/SWSDECON
is.

rc = SWSDECON{ DDN(| NFI LE1))

December 1999

Shadow Programming Guide 7-237

Host Application APl Function Calls

Web Server REXX and SEF APIs
This section covers the following Web Server REXX and SEF APIs:

API Description DIRECT WEB SEF WEB/RX

Web Server REXX and SEF only APIs

To clear REXX external data queue: ® SWSClearQueue ® SWSCLEDQ
or SWCPQL

To perform security authorization ® ® SDBECURE SWSECURE

processing:

To serialize usage of resour ces: ® ® ® SWSENQ

“PARSE PULL" operation in Shadow/ SWSGetQueue

O |osvome Ny \,

To set or display SWS product ® ® SDBPARM SWSPARM

parameter values:

Equivalent to Shadow/REXX “Queue” ® SWSPutQueue ® ®

(not “QUEUED()"): or SWCPQP

Partly equivalent to Shadow/REXX SWSOuervOueue

built-in function “QUEUED()": ® or S\S/\?CPég ® ®

To create and write customized SMF ® ® SDBSMF SWSSMF

records:

To transmit out-bound data to web ® SWSXMIT

server clients:

Q

\

7-238

Shadow Programming Guide

December 1999

Web Server REXX and SEF APIs

High Level Language SWSClearQueue
(SWCPQL) Function

v

Can be used in Shadow/REXX.

Q

Not available from Other REXX interpreters.

v

HLL entry point name is SWCPQL.

SWSClearQueue is the Web Server API function used to clear the external data
gueue associated with the current web transaction thread. Clearing the queue
marksit as empty.

Normally, an external data queue is allocated and used only when executing
Shadow/REX X procedures. However, a queue may now also be used from HLL
programs. For HLL program executions, an external data queue can be pre-allo-
cated by coding the QUEUESIZE() keyword. If one of the SWSxxxxxQueue
HLL functionsisinvoked, an external data queueis created dynamically, using
the default size, if one does not already exist.

CALL Arguments

The SWSClearQueue function takes one to three arguments; only thefirst is
required.

HLL Argument Type
Arg I/0 Description of Argument
C COBOL PL/I
1 HDBC Usage PTR Input The Web Server connection handle. The connection
Pointer handle is an opaque, four-byte address pointer. The
connection handle is currently not used, and must be
set to zero (NULL).
2 SDWORD | PIC S9(5) FIXED Input This argument is unused in the current release and
COMP BIN(31) must be set to zero.
3 SDWORD | PIC S9(5) FIXED Input This argument is unused-used in the current release
COMP BIN(31) and must be set to zero.

December 1999

Shadow Programming Guide 7-239

Host Application APl Function Calls

Return Values

SWSClearQueue always sets a signed numeric return code value. Possible values

are:
Return Value Description
SWS SUCCESS A parameter validation or runtime error was encountered. Error
information is available using the SWSERROR function.
SWS ERROR A parameter validation or runtime error was encountered. Error
information is available using the SWSERROR function.
SWS INVALID_HANDLE The connection handleisinvalid. No error information is available.

SWS ENVIRONMENT_ERROR The request could not be processed because of a runtime
environmental error, for example, you invoked the API service
outside of aweb transaction procedure, or from outside the Server's
address space. The Server may provide diagnostic information in the
wrap-around trace.

Any other value The operation failed.
PL/I Example
DCL TOONN PTR /* Connection Handl e */
DAL RC FI XED BI N(31); /* return code */
DL DwHX FI XED BIN(31) BASED, /* Dummy Handle field */
DAL FBOO FI XED BIN(31) INT(O);/* Dumny argunent */
ADDR(TOONN) - >DVHX = 0; /[* dear Connection Handl e */
CALL SWsd ear Queue(TOONN /* clear the queue */
FBOO,
FBO0O0) ;
RC = PLIRETVW(); /* get return code */
| F RC "= SW5s SUCCESS THEN [* exit programif bad RC */
EXT;
C Example
HDBC tConn = NULL; /* Connection Handl e */
SDNRD tDumy = 0; /* dummy ar gurent */
| ong RC /[* return code */
rc = SWAA ear Queue(& Conn, [* clear the queue */
t Dumy,
t Dunmy) ;
if (rc ~= SW5 SUCCESS) return; [* exit programif bad RC */

7-240 Shadow Programming Guide December 1999

Web Server REXX and SEF APIs

COBOL Example

77 TOONN USAGE | S PO NTER
77 FBOO Pl C S9(5) COWP VALUE O.

CALL ' SWIPQL' USI NG TOONN

FBOO,

FBOO.
MOVE RETURN- OCDE TO WS- SWEAPI - RETURN- CCDE.
I F NOT SW5- SUCCESS GCBACK.

December 1999 Shadow Programming Guide 7-241

Host Application APl Function Calls

SWSCLEDQ Function

v

Can be used in Shadow/REXX.

Q

Can not be used from other REXX interpreters.

Q

No high-level language interface.

The SWSCLEDQ built-in function provides a quick means of clearing the REXX
external data queue. The function is used as a short cut in place of the following
REXX coding:

DO WH LE QUEUEDY) > 0

PARSE PULL X
END

Coding SWSCLEDQ
To code the SWSCLEDQ function, use the following format:
var = SWBCLEDQ)

Return Values

The function always returns 0 (zero) to the caller.

7-242

Shadow Programming Guide December 1999

Web Server REXX and SEF APIs

High-Level Language Interface
SDBECURE (SDCPSC)
SWSECURE (SWCPSC) Function

/ Can be used in Shadow/REXX.
/ Can be used from other REXX interpreters.
/ HLL entry point name is SDCPSC/SWCPSC.

SDBECURE/SWSECURE is a built-in function used to do security authorization
processing. The function is divided into six different subfunctions each of which
provide a different type of security authorization processing.

Call Arguments

The SDBECURE/SWSECURE function takes a varying number of arguments
depending on the subfunction requested. The subfunction request itself is desig-
nated via the second entry in the parameter list passed to the SDBECURE/SW SE-
CURE function.

Return Values

SDBECURE/SWSECURE returns both a numeric code and a character response

if the subfunction call was asuccess. If the subfunction call failed, only anumeric

code is returned. The actual text results are returned to the “output buffer” location
specified on each call which is designated by the third entry in the parameter.

Return Value Description

SWS SUCCESS The requested operation succeeded. The return vaue has been
determined and placed into the buffer area. The actua size of the
datais set into the fourth argument.

SWS SUCCESS WITH_INFO The return buffer was not large enough to store thereturn value. The
return value was truncated. The size of the return value, before
truncation, is set in the fourth argument. For character data, a null
termination byte is always placed into the last position of the output
buffer area.

SWS ERROR A parameter validation or runtime error was encountered. Error
information is available using the SWSERROR function.

SWS ENVIRONMENT_ERROR The request could not be processed because of a runtime
environmental error, for example, you invoked the API service
outside of aweb transaction procedure, or from outside the Server's
address space. The Server may provide diagnostic information in the
wrap-around trace.

December 1999 Shadow Programming Guide 7-243

Host Application APl Function Calls

Return Value

Description

SWS INVALID_HANDLE

The connection handle argument isinvalid.

SDBECURE/SWSECURE Dataset Access Parameter

List
HLL Argument Type
Arg I/0 Description of Argument
C COBOL PL/I
1 HDBC Usage PTR Input Connection handle.
Pointer
2 UDWORD | PIC S9(5) FIXED Input A four byte binary integer indicating function to be
COMP BIN(31) performed. Must be the following:
SWS_SECURE_VFYDSN.
3 UCHAR* PIC X(nnn) | CHAR(nnn) | Input/ The data buffer to receive the information.
Output
4 SDWORD | PIC S9(5) FIXED Input The size of the output data buffer.
COMP BIN(31)
5 UCHAR * PIC X(nnn) | CHAR(NNN) | Input The dataset name.
6 SDWORD | PIC S9(5) FIXED Input The length of the dataset name.
COMP BIN(31)
7 UCHAR PIC X(2) CHAR(1) Input The accesstype:
« Ato verify Alter Access.
e Cto verify Control Access.
* Rto verify Read Access.
« U to verify Update access.
8 SDWORD | PIC S9(5) | FIXED Input The length of the access type (must be one).
COMP BIN(31)
9 UCHAR * | PIC X(nnn) | CHAR(nnn)| Input The volséOptional).
10 SDWORD | PIC S9(5) | FIXED Input The length of the vols€Optional).
COMP BIN(31)
Return Values
The function returns the string ALLOWif the specified type of accessto the data set
is alowed. Otherwise, an error message is returned. The returned value for CA-
ACF2isaCA-ACF2 message; for RACF, the returned value is one of these mes-
sages.
RESOURCE NOT PROTECTED BY RACF
RESOURCE ACCESS DEN ED BY RACF
7-244 Shadow Programming Guide December 1999

Web Server REXX and SEF APIs

SDBECURE/SWSECURE Fetching Logon ID Field Data
Parameter List

HLL Argument Type
Arg I/O Description of Argument
C COBOL PL/I
1 HDBC Usage PTR Input Connection handle.
Pointer
2 UDWORD | PIC S9(5) FIXED Input A four byte binary integer indicating function to be
COMP BIN(31) performed. Must be the following:
SWS_SECURE_USERINFO.
3 UCHAR* PIC X(nnn) | CHAR(nnn) | Output The data buffer to receive the information.
4 SDWORD | PIC S9(5) FIXED Input The size of the output data buffer.
COMP BIN(31)
5 UCHAR * PIC X(nnn) | CHAR(nnNn) | Input The fieldname.
6 SDWORD | PIC S9(5) FIXED Input The length of the fieldname.
COMP BIN(31)

Return Values

Shadow/REX X does the following conversions depending on field format:

Binary fields are converted to signed decimal values without leading zeros or
blanks. The number zero is returned as 0.

Character fields are returned as is, possibly truncated to the Shadow/REX X
defined maximum valid string length.

Date fields are converted to the form yyyy/ i dd with leading zeros kept
(so that the result is always exactly ten non-blank characters). A zero date
fidldisreturned asthestring * * ** [** [**

Bit fields are converted to a 0 (FALSE or off) or a1 (TRUE or on).

Thegroup list field inquiry is handled separately. The function returns a
integer count of the number of group entriesfound in thelist. Each individual
group name is returned as a separate entry in the external data queue.

December 1999

Shadow Programming Guide 7-245

Host Application APl Function Calls

SDBECURE/SWSECURE Requesting Security Product
Information Parameter List

HLL Argument Type

Arg I/O Description of Argument
C COBOL PL/I
1 HDBC Usage PTR Input Connection handle.
Pointer
2 UDWORD | PIC S9(5) FIXED Input A four byte binary integer indicating function to be
COMP BIN(31) performed. Must be the following:
SWS_SECURE_PRODINFO.
3 UCHAR * PIC X(nnn) | CHAR Output The data buffer to receive the information.
(nnn)
4 SDWORD | PIC S9(5) FIXED Input The size of the output data buffer.
COMP BIN(31)
5 UCHAR * PIC X(nnn) | CHAR Input The name constant.
(nnn)
6 SDWORD | PIC S9(5) FIXED Input The length of the name constant.
COMP BIN(31)
Return Values
The function returns a string with the requested information. If the information
cannot be obtained, aNULL string is returned.
7-246 Shadow Programming Guide December 1999

Web Server REXX and SEF APIs

SDBECURE/SWSECURE Generalized Resource Rule
Checks Parameter List

HLL Argument Type
Arg I/O Description of Argument
C COBOL PL/I
1 HDBC Usage PTR Input Connection handle.
Pointer
2 UDWORD | PIC S9(5) FIXED Input A four byte binary integer indicating function to be
COMP BIN(31) performed. Must be the following:
SWS_SECURE_GENRES.
3 UCHAR* PIC X(nnn) | CHAR(nnn) | Output The data buffer to receive the information.
4 SDWORD | PIC S9(5) FIXED Input The size of the output data buffer.
COMP BIN(31)
5 UCHAR * PIC X(nnn) | CHAR(nNN) | Input The resource class name.
6 SDWORD | PIC S9(5) FIXED Input The size of the resource class hame.
COMP BIN(31)
7 UCHAR* PIC X(nnn) | CHAR(hnn) | Input The resource entity name.
8 SDWORD | PIC S9(5) FIXED Input The size of the resource entity name.
COMP BIN(31)
9 UCHAR PIC X(2) CHAR(1) Input The accesstype:
* Ato verify Alter Access
e Cto verify Control Access
« Rto verify Read Access
e U to verify Update access
10 SDWORD | PIC S9(5) | FIXED Input The length of the access type
COMP BIN(31) (must be one).

Return Values

For any of the three security products, if the specified accessto the resourceis
allowed, Shadow/REXX returns the string ALLONVOtherwise, Shadow/REX X
returns an error message:

RESCURCE NOT' PROTECTED BY RACF
RESCURCE ACCESS DEN ED BY RACF

December 1999

Shadow Programming Guide 7-247

Host Application APl Function Calls

SDBECURE/SWSECURE Password Validation
Parameter List

HLL Argument Type
Arg I/O Description of Argument
C COBOL PL/I
1 HDBC Usage PTR Input Connection handle.
Pointer
2 UDWORD | PIC S9(5) FIXED Input A four byte binary integer indicating function to be
COMP BIN(31) performed
SWS_SECURE_VALPSWD.
3 UCHAR* PIC X(nnn) | CHAR(nnn) | Output The data buffer to receive the information.
4 SDWORD | PIC S9(5) FIXED Input The size of the output data buffer.
COMP BIN(31)
5 UCHAR* PIC X(nnn) | CHAR(nnn) | Input The userid.
6 SDWORD | PIC S9(5) FIXED Input The size of the userid.
COMP BIN(31)
7 UCHAR* PIC X(nnn) | CHAR(NNN) | Input The password.
8 SDWORD | PIC S9(5) FIXED Input The size of the password.
COMP BIN(31)
9 UCHAR * PIC X(nnn) | CHAR(nNnNn) | Input The new password.
10 SDWORD | PIC S9(5) FIXED Input The size of the new password.
COMP BIN(31)
Return Values
For all three security products, if the password was correct (and a new password
was assigned if specified), the returned value is the string ALLOWOtherwise,
Shadow/REXX returns a message:
I NVALI D SEQUR TY ENVI RONVENT
USER PRCFI LE NOT DEFI NED TO RACF
PASSWRD | S NOI' AUTHCR ZED
PASSWRD HAS EXPl RED
USER NOT DEFI NED TO THE GROUP
REJECTED BY | NSTALLATICN EXIT
ACCESS HAS BEEN REVCKED
RACF IS NOT ACTI VE
GROUP ACCESS HAS BEEN REVCKED
NOT AUTHCRI ZED TO USE TH S TERM NAL
| N\VALI D DAY CR TI ME CF DAY
TERM NAL CANNOT BE USED
NOT AUTHCRI ZED TO USE APPLI CATI ON
7-248 Shadow Programming Guide December 1999

Web Server REXX and SEF APIs

Note:

For CA-ACF2, invalid password attempt calls increase the invalid
password violation counter for the specified user ID.

PL/I Example
DCL SCONN PTR /* Connection Handl e */
DAL SBUFF CHAR(256) /* Qutput Buffer */
DAL SBFSz FI XED BI N(31) /* Qutput Buffer length */
DCL SUD CHAR(8) /* Wserid */
DAL SUDSZ FI XED Bl N(31) /* Wserid Length */
DAL PSVWD CHAR(8) /* Password */
DAL PSWDSZ FI XED BI N(31) /* Password Length */
ADDR(SOONN) - >DIVHX=0; /* Zero connection handl e*/
SUID="USERID" * Set Userid *
SUIDSZ=6; * Set Userid length */
PSWD="PASSWORD"; * Set Password *
PSWDSZ=8; [* Set Password length */
CALL SWSECURE(SCONN * Call the function */
SWS_SECURE_VALPSWD,
SBUFF,
SFFSZ,
SUID,
SUIDSZ,
SPSWD,
SPWDSZ2);
RC=PLIRETV(); * Get return code *
IF RC"=SWS_SUCCESS THEN * exit if bad RC *
EXIT;

December 1999 Shadow Programming Guide 7-249

Host Application APl Function Calls

C Example
HDBC sConn = NULL; /* Connection Handl e */
char hBuf f [80] /* Qutput Buffer */
SDWORD hBf sz /* size of output buffer */
char huid[] = 'USERID’ * Userid */
SDWORD hUidsz I* size of userid *
char hPwd[] = ‘PASSWORD f* password */
SDWORD hPwdsz [* size of password */
long RC [* return code *
rc = SWSecure(&sConn, * send the response */

SWS_SECURE_VALPSWD,

hBuff,

hBfsz,

huid,

hUidsz,

hPswd,

hPswdsz);
If(rc ~=SWS_SUCCESS) return; [* exit if bad rc */

COBOL Example

77 SCONN USAGE IS POINTER.

77 HBUFF PIC X(80).

77 HBUFFSZ PIC S9(5) COMP.

77 HUID PIC X(8)

77 HUIDSZ PIC S9(5) COMP.

77 HPSWD PIC X(8).

77 HPSWDSZ PIC S9(5) COMP.

MOVE 800 HBUFFSZ

MOVE ‘USERID'TO HUID.

MOVE 60 HUIDSZ.

MOVE ‘PASSWORDO HPSWD.

MOVE 80 HPSWDSZ.

CALL 'SWCPSC’ USING SCONN,
SWS-SECURE-VFYDSN,
HBUFF,
HBUFFSZ,
BDATA,
BSIZE.

MOVE RETURN CODE TO WS-SWSAPI-RETURN-CODE.

IF NOT SWS-SUCCESS GOBACK/

7-250 Shadow Programming Guide December 1999

Web Server REXX and SEF APIs

The SDBECURE/SWSECURE Function

Can be used in Shadow/REXX.

Can be used from other REXX interpreter.

High-level language entry point is SDBCPSC/SW SCPSC.

This function provides a set of subfunctions which perform six types of security
authorization processing.

The SDBECURE/SWSECURE function has one required parameter, which must
be followed with various other parameter arguments, depending on the requested
function.

The Operation Argument

Thefirst argument of the SDBECURE/SWSECURE function specifies the opera-
tion which isto be performed. The first argument can be one of the following val-
ues:

Used to verify data set access privileges.

Used to fetch information about alogged-on user.

Used to return information about the security product installed on your MVS
system.

Used to request generalized resource rule validation.

Enables you to validate a Userid and password and/or set a new Userid.

Verifying Data Set Access

You can verify that the current user has authorization to access a data set. The cur-
rent user, for Web transactions is the Effective Userid.

Coding Data Set Access Requests

Issue the version of SDBECURE/SWSECURE shown below to verify data set
access privileges:

var = SDBECURE/ SWBECQURE (' D, ' dshane’, ' accesstype’,’ vol ser’)

The arguments shown above, are coded as follows:

dsname

This argument specifies the dataset to be checked. The argument must be
present or the function request is rejected.

December 1999

Shadow Programming Guide 7-251

Host Application APl Function Calls

Accesstype Use the accesstype argument to specify the typ e of data set access you wish to
check. If you omit the accesstype argument, Shadow/REXX uses a default of
R (Read access).

The access type argument can be specified as one of:

A to verify Alter access to a data set.

C to verify Control access to a data set.

R to verify Read access to a data set.
U to verify Update access to a data set.

Volser The volser argument supplies the volser number to be validated. If you do not
specify a volser, the argument is blank by default.

Return Values

Thefunction returns the string ALLOMf the specified type of accessto the data set
is allowed. Otherwise, an error message is returned. The returned value for

CA-ACF2isaCA-ACF2 message; for RACF, the returned value is one of these
messages:

RESCURCE NOT' PROTECTED BY RACF
RESCURCE ACCESS DEN ED BY RACF

Fetching Logon ID Field Data

You can retrieve security subsystem information about the current user. The cur-
rent user for Web transactions is the Effective Userid.

Note:

I> The Shadow Web Server uses the MV S SAF router interface for
processing all security verification requests. This function will only
operate correctly for field values which are available on the ACEE
control block. Because many security products build only a skeletal
ACEE block, some or al of the values may be unavailable if the
underlying security subsystem product is other than RACF.

Coding Fetch Data Requests

| ssue the version of SDBECURE/SWSECURE shown below to fetch field data
from the current user's ACEE:

var = SDBECURE/ SWBECQURE(' F', ' fi el dname’)

7-252 Shadow Programming Guide December 1999

Web Server REXX and SEF APIs

The fieldname argument is required. One of the following character constants can

be coded:
Fieldname Constant RAUEGCIRAE L Description
Data
VERSION Binary ACEE Version code.
INSTALLATIONDATA Character Contents of the Installation Datafield.
USERDATA Character Contents of the user data field.
USERID Character Contents of the ACEE Userid field .
GROUP Character Contents of the ACEE Group Field.
SPECIAL Bit Specia Attribute.
AUTOMATIC Bit Automatic Attribute.
OPERATIONS Bit Operations Attribute.
AUDITOR Bit Auditor Attribute.
LOG Bit Logging on for most operations.
PRIVILEGED Bit Started task with privileged flag.
RACF Bit RACEF defined user flag.
ALTER Bit Alter authority flag.
CONTROL Bit Control authority flag.
UPDATE Bit Update authority flag.
READ Bit Read authority flag.
NONE Bit None authority flag.
GROUPLISTCONTAINS Bit Group list contents flag.
DATE Date RACINIT Date.
STCNAME Character Started task name.
TERMINAL Character Terminal ID.
DEFINEUSERS Bit Authorized to define users.
PROTECTDASD Bit Authorized to protect DASD.
PROTECTTAPE Bit Authorized to protect tape.
PROTECTTERMINALS Bit Authorized to protect Terminals.
APPLICATIONLEVEL Binary Application Level.
PORTOFENTRYLEVEL Binary Port of entry level.
PORTOFENTRYDATA Character Port of entry data.
CLASSAUTHORIZATIONS Binary Class authorizations.
APPLICATION Character Application name.

December 1999 Shadow Programming Guide 7-253

Host Application APl Function Calls

Fieldname Constant HCHIES E1F [REMAIEE Description
Data
APPLICATIONDATA Character Application data.
USERNAME Character User name field.
SURROGATEUSERID Character Surrogate userid.
GROUPLIST Group List A list of groups.

Return Values

Shadow/REX X does the following conversions depending on field format:

Binary fields are converted to signed decimal values without leading zeros or
blanks. The number zero is returned as 0.

Character fidds are returned asis, possibly truncated to the Shadow/REXX
defined maximum valid string length.

Date fields are converted to the form yyyy/mm/dd with |eading zeros kept (so
that the result is aways exactly ten non-blank characters). A zero datefieldis
returned asthe string **** [** [**

Bit fields are converted to a0 (FALSE or off) or a1l (TRUE or on).

The group list field inquiry is handled separately. The function returns a
integer count of the number of group entries found in the list. Each individual
group name is returned as a separate entry in the external data queue.

Requesting Security Product Information

To retrieve information about the security product itself (if any) on your system
using this form of the SDBECURE/SWSECURE function:

Coding Information Requests

| ssue the version of SDBECURE/SWSECURE shown below to retrieve informa-
tion about the security subsystem in use:

var = SDBECURE/ SWBECURE (' I, 'name’)

The name argument is required. Code one of the constant values shown below:

Name Constant

Returned Value

PRODUCT Return the name of the security product. (e.g. RACF, ACF2, or "UNKNOWN
SECURITY PRODUCT").
7-254 Shadow Programming Guide December 1999

Web Server REXX and SEF APIs

Name Constant Returned Value

MODE Returns the CA-ACF2 operating mode:

« QUIET
LOG
WARN
ABORT
OFF

This value is only valid for systems running CA-ACF2.

RELEASE Causes Shadow/REXX to return the release and version number of CA-ACF2,
CA-TOP SECRET, or RACF. For RACF and CA-TOP SECRET systems, this
is a three-character string of the form v.r where v is the version number and r is
the release number.

Return Values

The function returns a string with the requested information. If the information
cannot be obtained, aNULL string is returned.

Generalized Resource Rule Checks

You can reguest that the Effective Userid for a Web transaction be validated
against a security subsystem generalized resource rule.

Coding Generalized Resource Rule Checks

To request generalized resource rule validation, use this form of SODBECURE/
SWSECURE

var = SDBEOURE SWBEQURE (' R, cl ass, resour ce, r equest code)

Thisfunction call verifies that the current user has access to a generalized
resource. Code each argument as follows:

class The generalized resource class name (type name for ACF2). Note that SAF
processing is used for all resource rule checks. If your security subsystem is
ACF2, you must define the ACF2 resource type as a SAF class name.

resource The 1-to-39 byte resource entity name.

requestcode The requestcode argument specifies the type of access to be verified. If you
omit this argument, Shadow/REXX uses the default value R (Read access).
Systems. The request code can be specified as one of the following:

« Ato verify Alter access to a resource.
e Cto verify Control access to a resource.
« Rto verify Read access to a resource.
« U to verify Update access to a resource.

Returned Values

For any of the three security products, if the specified accessto the resourceis
allowed, Shadow/REXX returns the string ALLONVOtherwise,

December 1999 Shadow Programming Guide 7-255

Host Application APl Function Calls

Shadow/REX X returns an error message:

RESCURCE NOT' PROTECTED BY RACF
RESCURCE ACCESS DEN ED BY RACF

Validating a Userid and Password

Thisform of request causes the indicated Userid and password to be verified and
logged onto the system. If the userid and password are valid an ACEE is created
and made active for the current subtask. It remains active until explicitly reset, as
described in the warning box, below.

You can perform a SWSECURE |ogon operation without supplying apassword on
the request if al the following conditions are met:

The SWSECURE request is being made either by an /*ATH rule, or by a/
*WWW rule which is defined in the Master WWW Rul eset.

The WWWRUNAUTHFORMATS start-up parameter isset to "ALL".

The WWWRUNAUTHLOCATION start-up parameter is set to
"ANYWHERE" or "MASTERONLY".

You are not requesting that the password be changed (no new password is
specified for the SWSECURE request).

Note:

If the SWSECURE Password Validation request fails for any reason
(i.e. Userid unknown, password invalid, new password invalid, etc.)
the server's Web Transaction Default Userid isalways made
activefor the current task. This applies even if some other
userid was active before the failing password validation request.

When you successfully perform alogon operation from within a
web transaction task, the newly logged on Userid is handled as
though any other client logon, with the following exception: the
newly logged-on userid remains permanently in effect for the Web
transaction (even across all URL RESCAN operations) until
explicitly reset. The userid is only deactivated when:

Note, however, that logged-on userid will remain permanently in
effect for the web transaction (even across all URL RESCAN
operations) until explicitly reset. The userid is only deactivated
when:

e Another SWSECURE Password Validation request is performed.
e A/WWW rule is matched which has RUNAUTH(proxy-id).

¢ RUNAUTH(NONE) coded on the rule header.

e The web transaction ends.

7-256

Shadow Programming Guide December 1999

Web Server REXX and SEF APIs

Coding Password Validation Requests

To vaidate a userid and password, use thisform of the SODBECURE/SWSECURE
function:

var = SDBECURE/ SWBECQURE (' P, ' userid’,’ password’',’ newpassword’)

The arguments shown above, are coded as follows:

userid The Userid to be validated .
password The password associated with the Userid.
newpasswor d The new password value to be associated with the Userid.

If you omit the newpassword argument, SDBECURE/SWSECURE validates the
Userid and password. If you specify newpassword, SDBECURE/SWSECURE
changes the password.

Return Values

For all three security products, if the password was correct (and a new password
was assigned if specified), the returned value is the string ALLOW. Otherwise,
Shadow/REX X returns a message:

I N\VALI D SECUR TY ENVI RONMVENT
USER PRCFI LE NOT' DEFI NED TO RACF
PASSWIRD | S NOI' AUTHCR ZED
PASSWORD HAS EXPI RED

USER NOT' DEFI NED TO THE GROWP
REJECTED BY | NSTALLATICN EXIT
ACCESS HAS BEEN REVCKED

RACF 1S NOT' ACTI VE

GROUP AGCCESS HAS BEEN REVCKED
NOI' AUTHCR ZED TO USE TH S TERM NAL
I N\VALI D DAY CR TI ME CF DAY

TERM NAL CANNOT BE USED

NOI' AUTHCR ZED TO USE APPLI CATI ON

Note:

For CA-ACF2, invalid password attempt calls increase the invalid
password violation counter for the specified user ID.

December 1999 Shadow Programming Guide 7-257

Host Application APl Function Calls

SWSENQ Function

v

Can be used in Shadow/REXX.

Q

Can not be used from other REXX interpreters.

Q

No high-level language interface.

This function interacts with MV S's ENQ/DEQ services to serialize usage of
resources. Any REXX procedure using the SWSENQ function should use a SIG-
NAL ON SYNTAX statement to dequeue resources if the program fails to run
properly. (Leaving the resources queued can leave your system inoperable.)

Syntax

The general form for invocation of SWSENQ is:

var = SWBENQ func, major, mnor, type, scope, ret)
Valid Arguments

SWSENQ uses the following arguments:

func

This operand is required. Specify either

« Eto enqueue on a resource.
« Dtodequeue from a resource.

maj or

The major name of the resource, up to eight characters in length. The function
converts this value to upper case. The operand can be omitted, in which case
the valueS\WB2 is used.

minor

The minor name of the resource, containing up to 255 characters. The function
does not perform upper case conversion on this parameter value. If the
operand is omitted, the function supplied a value based upon the name of the
event procedure from which the request was issued.

type

This operand is optional for enqueue requests. If omitted, the enqueue service
request enclusive access to the resource. Valid values for this argument are:

* Efor exclusive encase
e Sfor shared enqueues.

The operand should be omitted for dequeue requests. If other operands follow,
code a comma to indicate its omission.

scope

This argument is optional. If omitted, the valf¥STEMis used by default. It
specifies the scope of the request, which can be:

e STEP for a jobstep-wide enqueue request

 SYSTEM for a system-wide enqueue request

* SYSTEMSfor a systems-wide enqueue request

7-258

Shadow Programming Guide December 1999

Web Server REXX and SEF APIs

ret The type of return value for the enqueue or dequeue request. Thisvalueisone
of the following:

» SpecifyHAVE to return control when the enqueue has been obtained.

* SpecifyNONE to return control when the enqueue has been obtained.

* SpecifyTEST to test whether the desired enqueue is available immedi-
ately but does not enqueue on the resource.

« SpecifyUSE to enqueue the desired resource only if it is available imme-
diately.

Return Values

The function returns a numeric value equivalent to the return code issued by the
underlying MV S service.

December 1999 Shadow Programming Guide 7-259

Host Application APl Function Calls

High-Level Language SWSGetQueue (SWCPQG)
Function

Q

Can not be used from other REXX interpreters.

o

No high-level language interface.

v

Can be used in Shadow/REXX.

SWSGetQueue is the Web Server API function used to read lines from the exter-
nal data queue associated with the current web transaction thread. The function
returns the next (FIFO order) queued dataline, if any, to abuffer in the applica
tion.

Normally, an externa data queue is allocated and used only when executing
Shadow/REX X procedures. However, a queue can now also be used from HLL
programs. For HLL program executions, an external data queue can be pre-allo-
cated by coding the QUEUESIZE() keyword. If one of the SWSxxxxxQueue
HLL functionsisinvoked, an external data queueis created dynamically, using
the default size, if one does not already exist.

CALL Arguments

The SWSGetQueue function takes four arguments, all of which are required.

HLL Argument Type
Arg I/O Description of Argument
C COBOL PL/I
1 HDBC Usage PTR Input The Web Server connection handle. The connection
Pointer handle is an opaque, four-byte address pointer. The
connection handleis currently not used, and must be
set to zero (NULL).

2 PTR PIC X(nnn) | CHAR(nnn) | Output This argument points to the data buffer which will be
filled with the next queued line, if any. The queued
lineistruncated if longer than the size of this area.
The areais binary-zero-padded on the right.

3 SDWORD | PIC S9(5) FIXED Input This argument gives the size of the data buffer

COMP BIN(31) pointed to by the 2nd argument.
4 SDWORD | PIC S9(5) FIXED Input This argument receives the actual queued data line
FAR* COMP BIN(31) size, regardless whether it was truncated during
retrieval.
7-260 Shadow Programming Guide December 1999

Web Server REXX and SEF APIs

Return Values
SWSGetQueue always sets a signed numeric return code value. Possible values

are:
Return Value Description
SWS SUCCESS The operation succeeded.
SWS ERROR A parameter validation or runtime error was encountered. Error

information is available using the SWSERROR function.

SWS ENVIRONMENT_ERROR The request could not be processed because of a runtime
environmental error. For instance, you invoked the APl service
outside of aweb transaction procedure, or from outside the Server's
address space. The Server may provide diagnostic information in the
wrap-around trace.

SWS SUCCESS WITH_INFO The queued line was longer than the data buffer provided and was
truncated.
SWS NO_DATA_FOUND No more lines are queued (queue is empty).
SWS INVALID_HANDLE The connection handleisinvalid. No error information is available.
Any Other Value The operation failed.
PL/I Example
DAL TGOWN PIR /* Connection Handl e */
DAL RC FI XED BI N(31); /* return code */
DL DVHX FI XED Bl N(31) BASED /* Dummy Handle field */
DAL BUFFER CHAR(752); [* Buffer area */
DCL BUFFLEN FI XED BIN(31) INT(752); /* Size of buffer */
DCL LINELEN FIXED BIN(31) INT(0); /* Actual line size */
ADDR(TOONN) - >DVHX = 0; /* dear Connection Handl e*/
CALL SWBGet Queue(TCONN /* read the queue */
BUFFER,
BUFFLEN,
LI NELEN);

RC = PLIRET\(); /* get return code */
| F RC = SW6_NO DATA FOUND THEN /* queue is enpty */
do sonet hi ng el se
| F RC "= SWs SUCCESS THEN [* exit programif bad RC‘/

EXT,

December 1999 Shadow Programming Guide 7-261

Host Application APl Function Calls

C Example
HDBC t Conn = NULL; /* Connection Handl e */
char tbuffer[752]; /* buffer area */
SDWRD thufflen = 752; /* buffer length */
SDWRD tLineLen = 0; /* actual line length */
| ong RG /* return code */
rc = SWBCGet Queue(&t Conn, /* query the queue */

& buf f er,

t buf f1 en,

& LineLen);

if (rc "= SW5 SUCCESS) return; [* exit programif bad RC */

COBOL Example

77 TOONN USACGE | S PO NTER
77 TBUFFER Pl C X(752).
77 TBUFFLEN Pl C S9(5) COWP VALUE 752.
77 TLINESI ZE Pl C S9(5) OGOWP VALLE 0.
CALL * SWOPQG USI NG TCONN,

TBUFFER,

TBUFFLEN,

TLI NESI ZE.

MOVE RETURN CCDE TO WS- SWAAPI - RETURN CCDE.
| F SW5- NO DATA- FOUND THEN
do sornet hi ng el se
END- | F.
I F NOT SWs- SUCCESS GOBACK.

7-262 Shadow Programming Guide December 1999

Web Server REXX and SEF APIs

SDBPARM/SWSPARM Function

Can be used in Shadow/REXX.

Can not be used from other REXX interpreters.

No high-level language interface.

You use the SDBPARM/SWSPARM function of Shadow/REXX to set or display
the values of Shadow Web Server product parameters.

Syntax
The general form for invocation of SWSPARM is:
m Todisplay parameters, use this format:
var = SWBPARM "SHOW, parmnane, "I NFO', "NAMES')
m To set parameters, use this format:
var = SWBPARM " SET', parnmane, newal ue)
Valid Arguments

The first two arguments are required parameters. Other arguments are optional .

parmname

Specifies the name of the product parameter (for example, "TRACEHTML")
to be displayed or set. This name can contain no more than 50 characters.

For the Show function, this argument can be coded as'GROUPS to have alist
of product parameters returned to the external data queue. You can also codea
product parameter group name (such as 'PRODWWW’) to display alist of the
individual parameters defined within the group.

newvalue

Specifiesthe new value you are assigning to a parameter when you use the Set
function. Thisargument is required for Set requests.

INFO

Use the INFO argument with the Show function to display the possible values
the parameter can have.

NAMES

Use the NAMES argument with the Show function to display the names and
modifiability of individua parameters.

Note:

I> The'INFO’ and 'NAMES' parameters must be coded on the
function call as parameters 3 and 4, respectively. Use commas to
indicate any omitted arguments which precede these two values.

December 1999

Shadow Programming Guide 7-263

Host Application APl Function Calls

Return Values

For al Show functions, SDBPARM/SWSPARM returns the results on the REXX
external data queue. The external data queue is not used for Set function requests.

You can retrieve the result lines from the external data queue using code such as:

DO WH LE QUEELED() > 0
PARSE PULL QLI NE
....performsone process agai nst each |ine

END
In addition, the SDBPARM/SWSPARM function always returns one of these
codes:

Return Value Description

0 The SDBPARM/SWSPARM function completed successfully.

4 Authorization check failed.

16 The Web Server Subsystemis not active.

20 The parameter new value is not valid.

48 The parameter name specified is not valid.

52 Some type of abend occurred while processing your request.
Examples
You can see this function code in action by referring to the supplied sample
PARMS Web Transaction.
Example 1

To display the address of amodule, invoke the SWSPARM function as follows:

Ret Code = SWEPARM " SHOW , " CPVWWYW\PR')
Say "SWBPARM) return code is:" RetCode
Do Wiile Queued() <> 0

Pul |l Data

Say Data

End

In response, the following information is displayed:

SVWEPARM) return code is: 0
ADDRESS OF MCDULE CPWWW\PR X 06E1B000’

7-264 Shadow Programming Guide December 1999

Web Server REXX and SEF APIs

Example 2
To display the current value of an individual parameter:

Ret Code = SWBPARM " SHOW , " TRACEHTM.")
Say "SWBPARM) return code is:" RetCode
Do Wiile Queued() <> 0

Pul | Data

Say Data

End

In response, the following information is displayed:

SWEPARM) return code is: 0
WEB TRANSACTI ON QUTPUT TRACE DEFAULT NO

Example 3

To display the current value of an individual parameter, along with additional
information:

Ret Code = SWBPARM " SHOW , " TRACEHTM.", " | NFQ " NAMES')
Say "SWBPARM) return code is:" RetCode

Do Wiile Queued() <> 0

Pul | Data

Say Data

End

In response, the following information is displayed:

SWEPARM) return code is: 0

VEB TRANSACTI ON QUTPUT TRACE DEFAULT NO
TRACEHTML Y PRCDWWV
FI ELD FORVAT BD

FI ELD LENGTH 013

FI ELD GROWP 016

FI ELD SUFFI X *

WEB TRANSACTI ON QUTPUT TRACE DEFAULT FLAG OFF NO

WEB TRANSACTI ON QUTPUT TRACE DEFAULT FLAG ON YES

Example 4

To display the address of a module with information and name, invoke SWS-
PARM asfollows:

Ret Code = SWBPARM " SHOW, " CPWWYWWPR', " | NFO', " NAMVES')
do while QUEUEDN() >0

pul | data

say data

end

December 1999

Shadow Programming Guide 7-265

Host Application APl Function Calls

In response, the following information is displayed:

ADDRESS CF MODULE CPWWWWPR
Pl TQWFU

FI ELD FCRVAT

FI ELD LENGTH

FI ELD GROP

FI ELD SUFFI X

MODULE CR G NAL ADDRESS
MODULE FI NAL ADDRESS

MODULE VECTCR TABLE ENTRY ADDRESS
MODULE S| ZE

MODULE PROTECT KEY

MODULE VERS| ON

MODULE PROGRAMVER NAMVE

MODULE ASSEMBLY DATE

MODULE ASSEMBLY TI ME

MODULE | S ELI G BLE FOR RELOAD

X 06E1B000’
N PRCDMODULES
ND

004

015

X 06E1B000’

X 06E1B000’

X 06F20390’
14160 BYTES
OE (2)

02. 01. 00

Al 38LRM

04/ 08/ 96

10. 04

YES

7-266

Shadow Programming Guide

December 1999

Web Server REXX and SEF APIs

High-Level Language SWSPutQueue (SWCPQP)
Function

Q

See QUEUE operation.

\
v

Not available from other REXX interpreters.

HLL entry point name is SWCPQP.

SWSPutQueue is the Web Server API function used to write lines to the external
data queue associated with the current web transaction thread. The function writes
the next (FIFO order) queued data line from a buffer in the application.

Normally, an external data queue is allocated and used only when executing
Shadow/REX X procedures. However, a queue can now also be used from HLL
programs. For HLL program executions, an external data queue can be pre-allo-
cated by coding the QUEUESIZE() keyword. If one of the SWSxxxxxQueue
HLL functionsisinvoked, an external data queueis created dynamically, using
the default size, if one does not already exist.

CALL Arguments

The SWSPutQueue function takes three arguments, al of which are required.

HLL Argument Type
Arg I/O Description of Argument
C COBOL PL/I
1 HDBC Usage PTR Input The Web Server connection handle. The connection
Pointer handle is an opaque, four-byte address pointer. The
connection handleis currently not used, and must be
set to zero (NULL).

2 PTR PIC X (nhn) | CHAR(nnn) | Output This argument points to the data buffer from which
the queue line will be written. The data buffer length
can not exceed the maximum line size for queue
entries (752 bytesin thisrelease). The buffer datacan
beaNULL terminated string.

3 SDWORD | PIC S9(5) FIXED Input This argument gives the size of the data to be written

COMP BIN(31) to the queue. Specify SWS_NTSif the buffer
containsa NULL terminated string.

December 1999

Shadow Programming Guide

7-267

Host Application APl Function Calls

Return Values

SWSPutQueue always sets a signed numeric return code value. Possible values

are:
Return Value Description
SWS SUCCESS The operation succeeded.
SWS ERROR A parameter validation or runtime error was encountered. Error

information is available using the SWSERROR function.

SWS ENVIRONMENT_ERROR The request could not be processed because of a runtime
environmental error. For instance, you invoked the APl service
outside of aweb transaction procedure, or from outside the Server's
address space. The Server may provide diagnostic information in the
wrap-around trace.

SWS INVALID_HANDLE The connection handle isinvalid. No error information is available.
Any Other Value The operation failed.
PL/I Example
DCL TOONN PTR /* Connection Handl e */
DAL RC FI XED BI N(31); /* return code */
DCL DVHX FI XED Bl N(31) BASED, /* Dummy Handl e field */
DAL BUFFER CHAR(752) ; /* Buffer area */
DCL BUFFLEN FI XED BI N(31); /* Data length */
ADDR(TOONN) - >DVHX = 0; /* dear Connection Handl e*/
MOVE ' DATA TOWR TE to BUFFER /* put sone data there */
MOVE 13 to BUFFLEN /* set length of data */
CALL SWBPut Queue(TOCONN /* wite the data */
BUFFER,
BUFFLEN) ;
RC = PLIRETW(); /* get return code */
| F RC "= SWs SUCCESS THEN /[* exit programif bad RC*/
EXT,

7-268 Shadow Programming Guide December 1999

Web Server REXX and SEF APIs

C Example
HDBC t Conn = NULL; /* Connection Handl e */
| ong RC /* return code */
rc = SWEPut Queue(&t Conn, /* query the queue */
"Hello Wrld.",
SWE NTS);
if (rc "= SW5 SUCCESS) return; /* exit programif bad RC */

COBOL Example

77 TOONN USACGE IS PO NTER
77 TBUFFER Pl C X(752).
77 TBUFFLEN Pl C S9(5) CawP.

MOVE ' DATA TOWR TE TO TBUFFER
MOVE 13 to TBUFFLEN
CALL * SWOPQP USI NG TCONN,
TBUFFER,
TBUFFLEN

MOVE RETURN- CCDE TO WS- SWEAPI - RETURN- OCDE.
I F NOT SW&- SUCCESS QCBACK.

December 1999 Shadow Programming Guide 7-269

Host Application APl Function Calls

High-Level Language SWSQueryQueue
(SWCPQQ) Function

o

See QUEUED() built-in function.

e

Not available from other REXX interpreters.

v

HLL entry point name is SWCPQQ.

SWSQueryQueue is the Web Server API function used to query the external data
gueue associated with the current web transaction thread. The function returns
information about the overall queue size, maximum size of each line, and number
of queued lines.

Normally, an external data queue is allocated and used only when executing
Shadow/REXX procedures. However, a queue can now also be used from HLL
programs. For HLL program executions, an external data queue can be pre-allo-
cated by coding the QUEUESIZE() keyword. If one of the SWSxxxxxQueue
HLL functionsisinvoked, an external data queueis created dynamically, using
the default size, if one does not already exist.

CALL Arguments

The SWSQueryQueue function takes four arguments, all of which are required.

HLL Argument Type
Arg I/O Description of Argument
C COBOL PL/I
1 HDBC Usage PTR Input The Web Server connection handle. The connection
Pointer handle is an opaque, four-byte address pointer. The
connection handleis currently not used, and must be
set to zero (NULL).
2 SDWORD | PIC S9(5) FIXED Input This argument receives the maximum size of each
FAR* COMP BIN(31) queued line. The value returned is 752 in the current
release of the product.
3 SDWORD | PIC S9(5) FIXED Input This argument receives a count of the maximum
FAR* COMP BIN(31) possible lines allocated to the queue; both in-use and
freelines are included in the total.
4 SDWORD | PIC S9(5) FIXED Input This argument receives a count of the currently
FAR* COMP BIN(31) queued lines.
7-270 Shadow Programming Guide December 1999

Web Server REXX and SEF APIs

Return Values

SWSQueryQueue always sets a signed numeric return code value. Possible values

are:
Return Value Description
SWS SUCCESS The operation succeeded.
SWS ERROR A parameter validation or runtime error was encountered. Error

information is available using the SWSERROR function.

SWS ENVIRONMENT_ERROR The request could not be processed because of a runtime

wrap-around trace.

environmental error. For instance, you invoked the APl service
outside of aweb transaction procedure, or from outside the Server's
address space. The Server may provide diagnostic information in the

SWS INVALID HANDLE The connection handleisinvalid. No error information is available.
Any Other Value The operation failed.
PL/I Example
DCL TOONN PTR /* Connection Handl e */
DAL RC FI XED BI N(31); /* return code */
DAL DwHX FI XED Bl N(31) BASED, /* Dummy Handl e field */
DCL LINESIZE F XED BIN(31) INT(O0); /* Maxi mumLine S ze */
DCL MAXLINES FI XED BIN(31) INT(O); /* Total Lines */
DAL QUEUED FIXED BIN(31) INT(0); /* Queued Lines */
ADDR(TOONN) - >DVHX = 0; /* dear Connection Handl e*/
CALL SWsQuer yQueue(TOONN /* query the queue */
LI NES| ZE,
MAXLI NES,
QUEUED) ;
RC = PLIRETV); /* get return code */
| F RC "= SWs SUCCESS THEN /* exit programif bad RC */

EXT;

December 1999 Shadow Programming Guide

7-271

Host Application APl Function Calls

C Example
HDBC t Conn = NULL; /* Connection Handl e */
SDWRD tLineSize = 0; /[* Lines Size */
SDWRD t MaxLines = 0; /* Total |ines */
SDWCRD tQueued = O; /* Queued Lines */
| ong RC [* return code */
rc = SWsQuer yQueue(& Conn, /* query the queue */
& Li neSi ze,
& MaxLi nes,
& Queued);
if (rc "= SW5 SUCCESS) return; [* exit programif bad RC */

COBOL Example

77 TOOW USAGE | S PO NTER
77 TLINESS| ZE Pl C S9(5) COWP VALUE O.
77 TMAXLI NES Pl C S9(5) COWP VALUE O.
77 TQUEUED Pl C S9(5) COWP VALUE O.
CALL * SWPQQ US| NG TOOWN,

TLI NESI ZE,

TVAXLI NES,

TQUEUED.

MOVE RETURN- OCDE TO W& SWEAPI - RETURN- CCDE.
I F NOT SW&- SUCCESS GCBACK

7-272 Shadow Programming Guide December 1999

Web Server REXX and SEF APIs

SDBSMF/SWSSMF Function

/ Can be used in Shadow/REXX.
® Can not be used from other REXX interpreters.
® No high-level language interface.

This function enables SEF event procedures to create and write customized SMF
records.

Syntax

The general form for invocation of SDBSMF/SWSSMF is:
var = SWBSM-(subtype, data)

Valid Arguments

Both arguments to the SWSSMF function are required. The arguments are:

subtype A numeric value between 1000 and 32767. This value becomes the SMF
record subtype code.

data The data argument is the part of the SMF record following the standard
Shadow Web Server 40-byte header section. This data can contain at most 344
bytes. If records exceed thislimit, Shadow/REXX truncates them and issues
awarning message.

Return Values
The SDBSMF/SWSSM F function returns these values:

Return Value Description
0 The SMF record was successfully written.
4 Shadow/REXX received anon-zero return code from the SMFWTM

macro while trying to write the SMF record. This error can result
when al SMF data sets are full.

8 The product's SMFNUMBER parameter is set to zero, preventing
the product from creating SMF records.

December 1999 Shadow Programming Guide 7-273

Host Application APl Function Calls

SWSXMIT Function

Can be used in Shadow/REXX.

Can not be used from other REXX interpreters.

No high-level language interface.

A7, 07 2AS

See also SWSSEND Host Command Environment.

SWSXMIT isabuilt-in function used to transmit out-bound data to web server
clients from REXX-Language event procedures. SWSXMIT can only be used
from within WWW event procedures and will return an error if invoked from
other event procedure types.

Thisfunction is obsolete, although it will continue to be supported for the foresee-
able future. NEON Systems recommends you use the SWSSEND built-in func-
tion.

Syntax
The general form for invocation of SWSXMIT is:

zZ = SWBXMT(argl {, arg2 {, arg3 {, arg4 }}})
Valid Arguments

The SWSXMIT function takes from one to four arguments. The first argument is
aways required. All other arguments are optional.

The first argument always specifies the data to be transmitted to the web server
client. A NULL string can be passed as the first argument, or the argument can be
omitted entirely by coding asingle commain its place.

The second through fourth arguments are sel ected from the following string con-
stants:

LF Indicates that a Linefeed character should be appended to the data. This
operand can also be coded as the constant CRLF.

ASCII Indicates that the data should be translated from EBCDIC to ASCII before
transmission.

FLUSH Indicates that this data (and any data aready in the out-bound buffers) should
be written to the client immediately.

PURGE Indicates that all data currently un-transmitted within buffers should be

discarded.

7-274

Shadow Programming Guide December 1999

Web Server REXX and SEF APIs

The PURGE operand must not be coded in conjunction with any other arguments.

Return Values

The function returns a zero to the calling program if the function completed suc-
cessfully. A non-zero value indicates that the out-bound communications session
has failed.

Examples

Thefollowing call will buffer the HTML datafor out-bound transmission. A Line-
Feed character will be added following the data and the data will be trandated to
ASCII before transmission:

htmdata = "<h1>This i s a Header </ h1>"
z=SW&XM T(htmdata, 'LF, "ASAIl’)

Thefollowing call will place the datainto the out-bound buffer with no additional
processing:

Z=SWBXM T(gifdata)

The following call will buffer the HTML data for out-bound transmission. It will
then cause al buffered data to be sent to the client immediately.

htmdata = "<h1>This is a Header </ h1>"
z=SW&XM T(htmidata, 'ASAIl’, 'LF, 'FLUSH)

Thefollowing call will purge all previously buffered data. Datawhich was flushed
prior to this call, will have already been sent to the web client.

zZ=SVW&XM T(, ' PURCE)

December 1999

Shadow Programming Guide 7-275

Host Application APl Function Calls

7-276 Shadow Programming Guide December 1999

CHAPTER 8:

Shadow Enterprise Direct API Function

Calls

This chapter describes all Shadow Enterprise Direct Host Application Program Interface (API) func-
tions and applies specifically to Shadow Enterprise Direct.

Direct API

API Description

NEONBindCol

To bind columns for result set.

NEONDescribeParam

To describe passed parameter.

NEONEtrror To get error information.

NEONGetInfo To return information to ODBC CALL RPC.
NEONNumParams To access number of parameters.
NEONResetParam To reset parameters.

NEONReturnStatus To return status to client.

NEONThrow To return row to result set.

NEONTraceMsg To write message to trace browser.

December 1999

Shadow Programming Guide 8-1

Shadow Enterprise Direct API Function Calls

NEONBindCol

performs a bind column on behalf of an ODBC CALL RPC. Thiscall isused to
bind a column to return sets back to the client. The caller must provide informa-
tion, which is used to build a description of the result-set column.

Syntax

The general form for invocation of NEONBindCol is:

r c=NEON\Bi ndCol

Arguments

(NULL,
2

S’Q__C_IJEFAU_T,
SQ_| NTEGER
si zeof (int),

0

SQL_NULLABLE,

vl sr,
&al en,
"Val ue",

SQA_NTS);

The NEONBIindCol function can be called by any ODBC CALL RPC and accepts
the following arguments:

Input/ .

Arg. No. |Arg. Type | Arg. Name Output Arg. Description

1 LONG hstmt INPUT Statement handle. Since only one host RPC can execute at
atimefor each host session, thisvalueisignored and must
be zero.

2 LONG icol INPUT Column number of the result data. Columns are numbered
from the | eft, starting with 1.

3 LONG fCType INPUT C datatype of column data. Value must be
SQL_C DEFAULT at thistime. This means that C type
must match SQL type.

4 LONG fSql Type INPUT SQL datatype of column data.

5 LONG cbCol Def INPUT Precision of column. Thisvalueis primarily used for
decimal and character string data.

6 LONG ibScale INPUT Scale of column. Thisvalueis primarily used for decimal
data

7 LONG fnullable INPUT Indicatesif column can have null values. Possible values
are SQL_NO_NULLSand SQL_NULLABLE.

8 LONG rgbvalue INPUT Pointer to storage for data. Actual data must be at this
location when NEONThrow function is called to send a
row.

8-2 Shadow Programming Guide December 1999

Input/ o

Arg. No. |Arg. Type | Arg. Name Output Arg. Description

9 LONG pcbvalue INPUT Pointer to storage for length of column data. Lengthis
used when NEONThrow function is called to send arow.

10 CHAR* szcolname INPUT Pointer to storage containing column name. Column name
must be avalid DB2 column name.

11 LONG cbcolname INPUT Length of column name string. This must be avalid DB2
column name length.

Return Values

NEONBIndCol always sets a signed numeric return code value. Possible values

are:

Return Value

Description

SQL_SUCCESS

The operation succeeded. The specified operation was performed.

SQL_SUCCESS WITH_INFO

The operation partially succeeded. This return code value is set
when the returned error message text has been truncated.

SQL_ERROR

A parameter validation error was found.

SQL_INVALID_HANDLE

The connection handle argument isinvalid. No error information can
be returned using NEONEtrror.

Diagnostics

When NEONBIndCol returns SQL_ERROR or SQL_SUCCESS WITH_INFO,
an associated SQLSTATE value may be obtained by calling NEONError. The fol-
lowing table lists the SQL STATE values commonly returned by NEONBindCol
and explains each one in the context of this function. The return code associated
with each SQLSTATE value is SQL_ERROR, unless noted otherwise.

SQL State Error Description

SS1000 General error Invalid parameter list detected.

S1002 Invalid column number Column number is zero.

S1002 Invalid column number Column number exceeds maximum value.
S1010 Function segquence error Result set has already been started.

December 1999

Shadow Programming Guide 8-3

Shadow Enterprise Direct API Function Calls

Example
rc = NEONBI ndCol (NULL, /* null statenent handl e */
2, /* col umm nunber */
SQ_C DEFAULT, /* default Ctype */
SQA_CHAR, /* character SQ type */
si zeof (vlsr)-1, /* precision of col um */
0, /* zero scal e */
SQ_NULLABLE, /* colum is nullable */
vl sr, /* pointer to colum value */
&al en, /* pointer to colum length */
"Val ue", /* col um narre */
S@_NTS); /* length indicates null-
t erni nat ed */

8-4 Shadow Programming Guide December 1999

NEONDescribeParam

NEONDescribeParam is used to obtain information about a parameter passed
from the client to the host.

I> Note:

The client can pass parameters to the host using both parameter
markers (?) and parameter literals. Both types of client parameters
are treated the same way on the host.

Syntax

The general form for invocation of NEONDescribeParam:

r c=NECN\Descr i bePar am (NULL,
I,
&sqty,
&pr ec,
&scal ,
NULL,
&paty,
&daad,
&dal n);

CALL Arguments

The NEONDescribeParam function can be called by any ODBC CALL RPC and
accepts the following arguments:

Input/ o

Arg. No. |Arg. Type | Arg. Name Output Arg. Description

1 LONG hstmt Input Statement handle. Since only one host RPC can execute at
atimefor each host session, thisvaueisignored and must
be zero.

2 LONG ipar Input Parameter number. All parametersincluding literals are
numbered from the left starting at 1.00

3 LONG fSql Type Output SQL datatype of parameter data.

4 LONG pcbCol Def Output Precision of parameter. Thisvalueis primarily used for
decimal and character string data.

5 LONG pibScale Output Scale of parameter. Thisvalueis primarily used for
decimd data

6 LONG pfNullable Output Indicates whether or not parameter allows null values.

7 LONG pfparamtype Output Indicates input/output type of parameter. Parameters can
be used to send data to host (input), receive data from host
(output), or both (input/output).

8 LONG prgbValue Output Pointer to storage for parameter. Parameter can be
accessed and updated at this storage location.

December 1999 Shadow Programming Guide 8-5

Shadow Enterprise Direct API Function Calls

Input/ o
Arg. No. |Arg. Type | Arg. Name Output Arg. Description
9 LONG PcbValue Output Actual length of column. Length will be same as precision

except for

variable length fields (character and binary).

For variable length fields, length will be current length.
For al types, thisfield may contain SQL_NULL_DATA.

Return Values

NEONDescribeParam always sets a signed numeric return code value. Possible

values are;

Return Value

Description

SQL_SUCCESS

The operation succeeded. The specified operation was performed.

SQL_SUCCESS WITH_INFO

The operation partially succeeded. This return code value is set
when the returned error message text has been truncated.

SQL_ERROR

A parameter validation error was found.

SQL_INVALID_HANDLE

The connection handle argument isinvalid. No error information can
be returned using NEONError.

Diagnostics

When NEONDescribeParam returns SQL_ERROR or

SQL_SUCCESS WITH_INFO, an associated SQL STATE value may be obtained
by calling NEONError. The following table lists the SQLSTATE values com-
monly returned by NEONDescribeParam and explains each one in the context of
this function. The return code associated with each SQLSTATE valueis
SQL_ERROR, unless noted otherwise.

SQL State Error Description

SS1000 General error Invalid parameter list detected.
S1000 General error No room in buffer for column description.
$S100451002 SQL datatype out of range SQL datatypeisinvalid.

S1009 Invalid argument value Column name address not set.
S1009 Invalid argument value Column data length address not set.
S1009 Invalid argument value Column data address is not set.
S1090 Invalid string or buffer length Column name lengthisinvalid.
S1090 Invalid string or buffer length Column name length is not valid.
S1094 Invalid scale value Decimal scale vaueisinvalid.
S1099 Nullable type out of range Nullable status value isinvalid.

Shadow Programming Guide

December 1999

SQL State Error Description
S1104S1002 Invalid precision value Decimal precision valueisinvalid.
S1104S1002 Invalid precision value String or binary precision valueisinvalid.
S1C00Ss Driver not capable Datatypeisnot SQL_C DEFAULT.
Example
rc = NEQ\Descr i bePar an{ NULL, /[* null statement handl e */
i, /* col umm nunber */
&sqty, /* pointer to SQL type */
&prec, /* pointer to paraneter’s prec */
&scal , /* pointer to paraneter’s scale */
NULL, /* nullabl e status not requested*/
&paty, /* pointer to paraneter’s type */
&daad, /* data address (not used) */

&al n); /* data len address (not used) */

December 1999 Shadow Programming Guide 8-7

Shadow Enterprise Direct API Function Calls

NEONError

NEONError isthe API function used to fetch information pertaining to the last
Application Program Interface error detected for this transaction.

Syntax

The general form for invocation of NEONEtrror is:

rc = NEONError (NULL, NULL, NULL,

NULL,
&er cd,

(UCHAR FAR *),
si zeof (erny),

NULL)

CALL Arguments

The NEONEtrror function call requires eight arguments. None may be omitted
from the function call.

Arg. No.

Arg. Type

Arg. Name

Input/
Output

Arg. Description

HENV

henv

INPUT

The Web Server environment handle. The environment
handle is an opaque, four-byte address pointer. The
environment handle is currently not used, and must be set
to zero (NULL).

HDBC

hdbc

INPUT

The connection handle. The connection handleis an
opaque, four-byte address pointer. The connection handle
is currently not used, and must be set to zero (NULL).

HSTMT

hstmt

INPUT

The Web Server statement handle. The statement handleis
an opaque, four-byte address pointer. The statement
handleis currently not used, and must be set to zero
(NULL).

UCHAR*

szSql State

OUTPUT

This argument should specify a character string buffer of
at least 6 bytesin length. A state value, compatiblein
format with the ODBC specification is returned in this
area, asanull terminated string.

SDWORD*

pfNativeError

OUTPUT

The 'native’ error code is returned within thisarea. Thisis
some value that describes the error condition.

UCHAR*

szErrorMsg

OUTPUT

The buffer area which receives the error message text.
Note that the error message text will aways be null-
terminated. Room for the trailing null must be provided.

SDWORD

cbErrorMsgMax

INPUT

The total size of the error message buffer area supplied by
the sixth argument. The error message will be truncated if
it does not fit into this buffer, including room for the
trailing null terminator.

Shadow Programming Guide December 1999

Input/

Output Arg. Description

Arg. No. |Arg. Type | Arg. Name

8 SDWORD* | pcbErrorMsg OUTPUT The API returnsthe total size of the error message
(excluding the null terminator). The returned size value
will be larger than the buffer size if the error message has
been truncated.

Return Values

NEONError always sets a signed numeric return code value. Possible values are:

Return Value Description
SQL_SUCCESS The operation succeeded. The return values have been set.
SQL_SUCCESS WITH_INFO The operation partially succeeded. This return code value is set
when the returned error message text has been truncated.
SQL_ERROR A parameter validation error was found.
SQL_INVALID_HANDLE One of the handle argumentsisinvalid.
Example
rc = NEONError (NULL, NULL, NLL,/* null env, conn, stnt handles */
NULL, /* not interested in SQL state */
&er cd, /* native error code */
(UCHAR FAR *), /* error nessage buffer */
sizeof (ermg), /* size of error nessage buffer */
NULL) /* not interested in real nsg |en*/

December 1999 Shadow Programming Guide 8-9

Shadow Enterprise Direct API Function Calls

NEONGetInfo

NEONGetInfo isthe API function used to fetch information about the current
transaction execution environment and return it to the caller.

Syntax
The general form for invocation of NEONGetInfoiis:

rc = NEONGet | nf o(& Conn,
SWS_CET_| PADDRESS,
&Buff[0],
si zeof (sBuf f),
&RTSZ);

CALL Arguments

The NEONGetInfo function takes five arguments. All five arguments must be
specified on the call.

Arg. No.

Input/

Arg. Type | Arg. Name Output

Arg. Description

HDBC hdbc Input The connection handle. The connection handleis an
opague, four-byte address pointer. The connection handle
is currently not used, and must be set to zero (NULL).

UDWORD | fInfoType Input A four-byte binary integer indicating the information item
to be returned by the function. Specify any one of the
manifest constants, shown in the table below, to indicate
the dataitem to be fetched.

UCHAR * rgbinfoValue Output The data buffer to receive the fetched information.
Depending on the value of the second argument, the
returned data may be a null-terminated string; a 16-bit
integer value, a 32-bit flag-word value, or a 32-bit signed
or unsigned integer.

SDWORD | chinfoValueMax | Input The size of the data buffer area given by the third
argument.

SDWORD * | pcbinfoValue Output Return areareceiving the total size, in bytes, of the
reguested information value, regardless of whether the
fetched value could be compl etely stored within the buffer
area. For character format dataitems, which are null
terminated, this value does not include the null
termination byte.

For requests which return character data: If the total size
of the requested information is greater than or equal to the
size of the data buffer the returned character string is
truncated, and anull terminationbyteis placed into the last
available of the buffer area.

For requests which return any other data type: The value
given by the forth argument isignored. The size of the
return buffer areais assumed to be at least four bytes.

8-10

Shadow Programming Guide December 1999

Return Values
NEONGetInfo always sets a signed numeric return code value. Possible values

are:
Return Value Description
SQL_SUCCESS The operation succeeded. The requested data has been fetched and
placed into the buffer area. The actual size of the dataiis set into the
sixth argument.
SQL_SUCCESS WITH_INFO The return buffer area was not large enough to store the fetched
item. The fetched item was truncated. The size of the fetched item,
before truncation, is returned to the sixth argument. For character
data, anull termination byte is always placed into the last buffer
position.
SQL_ERROR A parameter validation error was found.
SQL_INVALID HANDLE The connection handle argument isinvalid. No error
information can be returned using NEONGetInfo.
Example
HDBC sConn = NULL; /* Connection Handle */
char sBuf f [256] ; /* Return Buffer Area */
SDWCRD sSRTSZ; /* Return itemsize */
| ong RC /* return code */

rc = NEONGet | nf o(& Conn,
SWS_CET_| PADDRESS,
&Buff[0],
si zeof (sBuf f),
&RTSZ);

December 1999 Shadow Programming Guide 8-11

Shadow Enterprise Direct API Function Calls

NEONNumParams

NEONNumParams is used to obtain the number of parameters passed from the
client to the host. Thisvalue will be zero or greater.

Note:

I> The client can pass parameters to the host using both parameter
markers (?) and parameter literals. Both types of client parameters
are treated the same way on the host.

Syntax

The general form for invocation of NEONNumParamsis.

r c=NECN\NNunPar ans (&st,
&pacn)

CALL Arguments

The NEONNumParams function can be called by any ODBC CALL RPC and
accepts the following arguments:

Input/ o
Arg. No. |Arg. Type | Arg. Name Output Arg. Description
1 LONG hstmt Input Statement handle. Since only one host RPC can execute at
atime, for each host session, this value isignored and
must be zero.
2 LONG pcpar output Number of RPC parameters passed to host from client.
This argument is a pointer to a signed four-byte integer.

Return Values

NEONNumParams always sets a signed numeric return code value. Possible val-
ues are: The connection handle argument isinvalid. No error information can be
returned using NEONGetInfo.

Return Value Description
SQL_SUCCESS The operation succeeded. The specified operation was performed.
SQL_SUCCESS WITH_INFO The operation partially succeeded. This return code value is set

when the returned error message text has been truncated.

SQL_ERROR

A parameter validation error was found.

SQL_INVALID HANDLE The connection handle argument isinvalid. No error information can

be returned using NEONETrror.

8-12

Shadow Programming Guide December 1999

Diagnostics

When NEONNumParams returns SQL_ERROR or

SQL_SUCCESS WITH_INFO, an associated SQL STATE value may be obtained
by calling NEONError. The following table lists the SQLSTATE values com-
monly returned by NEONNumParams and explains each one in the context of this
function. The return code associated with each SQLSTATE valueis

SQL_ERROR, unless noted otherwise.

SQL State Error Description
SS1000 General error Invalid parameter list detected.
S1009S Invalid argument value Parameter count address not set.

Example

r c=NECN\NNunPar ans (&st,
&pacn)

December 1999

Shadow Programming Guide 8-13

Shadow Enterprise Direct API Function Calls

NEONResetParam

NEONResetParam is used to reset the length of a parameter passed from the client
to the host.

Note:

I> The client can pass parameters to the host using both parameter
markers (?) and parameter literals. This routine can only be used
with parameter markers.

In practice, thisroutine is really only used to change null parameters to non-null
parameters and vice versa.

Syntax
The general form for invocation of NEONResetParam is:

r c=NECN\Reset Par am (hst nt,
rgbMsgText,
cbMsgText,
f Qotion)

CALL Arguments

The NEONResetParam function can be called by any ODBC CALL RPC and
accepts the following arguments:

Input/ o

Arg. No. |Arg. Type | Arg. Name Output Arg. Description

1 LONG hstmt Input Statement handle. Since only one host RPC can execute at
atimefor each host session, thisvalueisignored and must
be zero.

2 LONG ipar Input Parameter number. All parametersincluding literals are
numbered from the |eft starting at 1.

3 LONG cbValue INput New parameter |ength value. Parameter becomes null if
new valueis SQL_NULL_DATA. Parameter becomes
NON_NULL if new valueis not SQL_NULL_DATA.

Return Values

NEONResetParam always sets a signed humeric return code value. Possible val-
ues are:

Return Value Description

SQL_SUCCESS The operation succeeded. The specified operation was performed.

SQL_SUCCESS WITH_INFO The operation partially succeeded. This return code value is set
when the returned error message text has been truncated.

8-14

Shadow Programming Guide December 1999

Return Value Description

SQL_ERROR A parameter validation error was found.

SQL _INVALID HANDLE The connection handle argument isinvalid. No error information can
be returned using NEONETrror.

Diagnostics

When NEONResetParam returns SQL_ERROR or

SQL_SUCCESS WITH_INFO, an associated SQL STATE value may be obtained
by calling NEONError. The following table lists the SQL STATE values com-
monly returned by NEONResetParam and explains each one in the context of this
function. The return code associated with each SQLSTATE valueis
SQL_ERROR, unless noted otherwise.

SQL State Error Description
SS1000 General error Invalid parameter list detected.
S1000 General error Trace message construction failed.
S1000 General error Invalid option value detected.
S1009S Invalid argument value M essage area address not set.
S1009 Invalid argument value Trace message insertion failed.
S1090S1002 Invalid string or buffer length Message arealengthisinvalid.
S1090 Invalid string or buffer length Message text length is not valid.
Example
r c=NECN\Reset Par am (hst nt,
rgbMsgText,
cbMsgText,
f Qotion)

December 1999 Shadow Programming Guide 8-15

Shadow Enterprise Direct API Function Calls

NEONReturnStatus

NEONReturnStatus is used to return status information to the client from an
ODBC CALL RPC. The status data determines the return code from the SQLEX-
ECDIRECT, SQLPREPARE, or SQLEXECUTE function that started the RPC.
The client application can retrieve the status data (message and native code) by
calling NEONEtrror.

The actual return code returned to the ODBC application will be

SQL_SUCCESS WITH_INFO if this routine provides a positive return code and
SQL_ERROR if thisroutine provides a negative return code. The return code pro-
vided by this routine is returned to the client application as the native error code

(see the NEONETrror function description in the ODBC programmer’s reference
manual, not the NEONETrror function description here).

Syntax
The general form for invocation of NEONReturnStatus is:

r c=NECN\Ret ur nSt at us (NULL,

er ny,
si zeof (erny),
ercd);

CALL Arguments

The NEONReturnStatus function can be called by any ODBC CALL RPC and
accepts the following arguments:

Input/ o

Arg. No. | Arg. Type | Arg. Name Output Arg. Description

1 LONG hdbc Input Connection handle. Since only one host RPC can execute
at atime for each host session, this value isignored and
must be zero.

2 CHAR* rgbMsgText Input Address of message text to be returned. Text must be set
before function is called.

3 LONG cbMsgText Input Length of message text to be returned. Value can be an
actua length or can be specified as SQL_NTSif the
message text isNULL_TERMINATED.

4 LONG fNativeError Input Native error code. If value is negative, client return code
will be SQL_ERROR. If value is positive, client return
code will be SQL_SUCCESS WITH_INFO. Thisfield
must not be zero.

8-16 Shadow Programming Guide December 1999

Return Values

NEONReturnStatus always sets a signed numeric return code value. Possible val-

ues are:

Return Value

Description

SQL_SUCCESS

The operation succeeded. The specified operation was performed.

SQL_SUCCESS WITH_INFO

The operation partially succeeded. This return code value is set
when the returned error message text has been truncated.

SQL_ERROR

A parameter validation error was found.

SQL_INVALID_HANDLE

The connection handle argument isinvalid. No error information can
be returned using NEONETrror.

Diagnostics

When NEONReturnStatus returns SQL_ERROR or

SQL_SUCCESS WITH_INFO, an associated SQL STATE value may be obtained
by calling NEONError. The following table lists the SQL STATE values com-
monly returned by SQL ReturnStatus and explains each one in the context of this
function. The return code associated with each SQLSTATE valueis

SQL_ERROR, unless noted otherwise.

SQL State Error Description

SS1000 General error Invalid parameter list detected.
S1000 General error Invalid native error code detected.
S1009S Invalid argument value M essage area address not set.
S1090S1002 Invalid string or buffer length Message arealength isinvalid.
S1090 Invalid argument value Message text length is not valid.

Example
NECNRet ur nSt at us(NULL,
erny,
si zeof (erny),
ercd);

/* null statenent handl e */
/*error message buffer */
[*size of error nmessage buffer */
/* error message */

December 1999

Shadow Programming Guide 8-17

Shadow Enterprise Direct API Function Calls

NEONThrow

NEONThrow is used to send arow from the host ODBC call RPC back to thecli-
ent.

Note:
One or more columns must be bound before this routineis called.

NEONThrow is called for each row in the result set. When populating the result

set, NEONThrow is called with a parameter of SQL_ THROW_ROW. Once the

result set is populated and you wish to send the result to the client, NEONThrow
is called once again with a parameter of SQL_THROW_DONE.

Syntax
The general form for invocation of NEONThrow is:

rc= NECONThr ow(NULL,
SQ._THRON DONE) ;

CALL Arguments

The NEONThrow function can be called by any ODBC CALL RPC and accepts
the following arguments:

Input/ o
Arg. No. |Arg. Type | Arg. Name Output Arg. Description
1 hstmt INPUT Statement handle. Since only one host RPC can execute at
atimefor each host session, thisvalueisignored and must
be zero.
2 fOption INPUT Top of operation needed. This value is used to indicate
that row is being provided or that result set is complete.

Return Values

NEONThrow always sets asigned numeric return code value. Possible values are:

Return Value Description
SQL_SUCCESS The operation succeeded. The specified operation was performed.
SQL_SUCCESS WITH_INFO The operation partially succeeded. This return code value is set

when the returned error message text has been truncated.

SQL_ERROR

A parameter validation error was found.

SQL_INVALID HANDLE The connection handle argument isinvalid. No error information can

be returned using NEONETrror.

8-18

Shadow Programming Guide December 1999

Diagnostics

When NEONThrow returns SQL_ERROR or SQL_SUCCESS WITH_INFO, an
associated SQLSTATE value may be obtained by calling NEONError. The fol-
lowing tableliststhe SQL STATE va ues commonly returned by NEONThrow and
explains each one in the context of this function. The return code associated with
each SQLSTATE valueis SQL_ERROR, unless noted otherwise.

SQL State Error Description
SS1000 General error Invalid parameter list detected.
S1000S General error Invalid option value detected.
S1000 General error Null data specified for anon-null column.
S1000 General error Maximum row count limit has been reached.
S1001 Memory allocation failure Buffer space allocation failed.
S1010S1002 Function sequence error Result set has aready been completed.
24000 Invalid cursor state No columns have been bound so far.
Example
rc = NEONThr ow(NULL, /* null statenent handl e */
SQ_THROW ROW ; /* throwthe rowto client */

December 1999 Shadow Programming Guide 8-19

Shadow Enterprise Direct API Function Calls

NEONTraceMsg

NEONTraceMsg is used to write a message into the wrap-around trace browse
dataset. The message can contain any text desired. |f the message istoo long to fit
within atrace browse record, it is truncated. Truncation is not considered an error.

Syntax
The general form for invocation of NEONTraceMsg is:

rc = NEONTraceMsg(&t Conn,
t Dat a,
SWE_NTS,
0);

CALL Arguments

The NEONTraceM sg function takes four arguments. All four arguments must be
specified on the call.

Arg. No.

Arg. Type | Arg. Name

Input/

Output Arg. Description

henv Input The connection handle. The connection handleis an
opague, four-byte address pointer. The connection handle
is currently not used, and must be set to zero (NULL).

rgbMsgText Input The data value which is to be written to the trace browse
wrap-around dataset. You may specify anull terminated

string, or explicitly provide the value length via the third
argument.

The maximum useable length for a trace browse record is
approximately 730 bytes.

SDWORD | chMsgText Input The size of the data value given by the second argument

which is to be written to the trace record.

UDWORD | fOption Input This argument is currently not used, but may bein future

releases. You must specify azero value.

Return Values

NEONTraceM sg always sets a signed numeric return code value. Possible values
are:

Return Value Description

SQL_SUCCESS The operation succeeded. The specified data was written to the
product’s wrap-around trace.

SQL_INVALID HANDLE The connection handleisinvalid. No error information is available.

SQL_ERROR A parameter validation or write error was encountered.

Any Other Value The operation failed.

8-20

Shadow Programming Guide December 1999

Example

HDBC t Gonn = NULL; /* Connection Handl e */
char tData[] = "Null-termnated!"; [* Text string definition*/
| ong RG /* return code */
rc = NEONTraceMsg(& Conn, /* output trace nessage */

t Dat a,

SWE_NTS,

0);

December 1999 Shadow Programming Guide 8-21

Shadow Enterprise Direct API Function Calls

8-22 Shadow Programming Guide December 1999

CHAPTER 9:

Transaction Level Security (TLS)

This chapter covers Transaction Level Support (TLS). TLS was created to support the new and unique
security requirements of Internet applications, while operating in the traditional enterprise computing
environment. With TLS, web applications that access 0S/390 data and transactions can be used by
people who do not have mainframe userids. TL S can also be used with non-Internet applications. This
chapter will provide abrief overview of TLS, aswell asitsimplementation.

This chapter appliesto Shadow Direct only.

What is TLS?

TLSisamechanism that provides protection for business transactions on the
Internet by allowing two entities to conduct atransaction with privacy and authen-
tication.To accomplish this, TLS creates a separate, temporary security environ-
ment for each transaction that is sent over a connection from a middle-tier Web
server or Application server to Shadow Direct on the host. The transaction is typi-
cally an RPC/stored procedure and the connection is a network session.

The Transaction Level Security environment can also be used to control accessto
the RPC, as well as perform such tasks as logging, tracing, auditing, etc.

Why use TLS?

The development of TLS grew from the need to replace traditional OS/390,
UNIX, and NT security architecture, since it could not adequately handle the
larger volumes of data associated with Internet applications and used by mil-
lions of people. In addition, traditional userids have become too costly to
create and administer, and use too many machine resources required for
logging onto the Internet.

TLS s based on the following assumptions:

m Connections. TLS assumes that each middle-tier Application Server (AS) or
Web Server will initialize a small number of permanent connections to the
host server.

m Connection/Session/Thread Reuse. TLS assumes that each of therdatively
small number of connections will be shared across all of the Internet
connections. Each connection can be serially reused an arbitrary number of
times by a different Internet user each time.

s Control Userids. Given the lack of any relationship between the identity of
an Internet user and host userid, and the continuous reuse of each of the
pooled host connections, TLS assumes that all of the connections will be

December 1999

Shadow Programming Guide 9-1

Transaction Level Security (TLS)

established with a control userid that has sufficient resource access for all of
the applications running on the AS/\Web Server.

m Transaction Security. Because each connection is serialy reused, each
transaction for a given connection can be executed for adifferent Internet
user. This means that each transaction must have a separate security
environment associated with it, and must be appropriate for Internet
application.

m Performance. It must be possible to establish and access a transaction
security environment with essentially no or negligible overhead.

m Resource Access. The transaction security data must be available on the host
side to control resource access on an application specific, selective basis. The
transaction security data must also be available for auditing, logging, tracing,
tracking, etc.

Implementing TLS

Shadow Direct implements TLS with a host of related new facilities. Together
each of these facilitiesis an answer to the above assumptions.

All of thefacilities are based on two new IDs;

s GenericlD
Extended ID

These two IDs are provided in addition to the traditional userids supported by
Shadow Direct. They are optional and can be used either together or separately.

In addition, the Generic and Extended ID values can be used for application
debugging, logging, tracing, and auditing purposes. In many respects, they are
similar to the User Parameter that can be set as part of the ODBC connection ini-
tialization, however, they have the advantage that they can be set and/or reset as
many times as needed for each connection.

Generic ID

The Generic ID isan 8-byte string, which is automatically converted to uppercase
and padded with blanks on the right. The Generic ID is made available to host
applications, and is used for auditing, logging, tracing, tracking, etc. It is specified
as an ASCII string on the client and is automatically converted to EBCDIC for
host processing.

Extended ID

The Extended ID isavariable length 128 byte string. This string is passed from
the client (ODBC) environment to the host. On the host side thisID is made avail-
ableto host applications and is used for auditing, logging, tracing, tracking, etc.
The Extended ID is assumed to contain some type of application specific user
identifier such as an email address, Social Security Number, Login Name, Access
ID, etc. Likethe Generic ID, the Extended ID is specified as an ASCII string on

9-2

Shadow Programming Guide December 1999

Implementing TLS

the client and is automatically converted to EBCDIC for host processing. This
means that the Extended ID can not contain binary data such as adigital certifi-
cate.

Client Side Support

The Generic ID and the Extended ID are supported on the client side using the
ODBC SQL SetConnectOption function. Thisfunction can be called at any timeto
set either value.

The option value for setting these IDsis as follows:

= Generic ID: SQL_NEON GENER C_USER! D,
= Extended ID: SQL_NECN_EXTENDED USER D.

Note:
Separate calls are required to set each value.

Examples

Generic ID
The following C example shows how the Generic ID values are set.

rc = S@Set Connect Ot i on(hdbc, SQ@_NECON GENER C USERI D,
(UDWORD) “AI38KPQ");
if (rc '= SQL_SUCCESS &&
rc = SQL_SUCCESS_WITH_INFO)
goto exib;

Extended ID
The following C example shows how the Extended 1D values are set.

rc = SQLSetConnectOption(hdbc, SQL_NEON_EXTENDED_ USERID,
(UDWORD) “l am not a digital certificate”);
if (rc '= SQL_SUCCESS &&
rc = SQL_SUCCESS_WITH_INFO)
goto exib;

Both the Generic ID and Extended ID values are only transmitted over the net-
work when they are set for the first time or when they are changed.

The Generic ID and/or Extended ID can only be used with arecent (as of 1999/06/
02) build of the ODBC driver.

Note:
No new ODBC driver configuration is needed to use these new IDs.

December 1999

Shadow Programming Guide 9-3

Transaction Level Security (TLS)

Host Side Support

The Generic ID and the Extended ID are supported on the host side using severa
different mechanisms. Each of these mechanismsis optional and any can be used
together. Several of these mechanisms are intended for application security, audit-
ing, logging, tracing, tracking, etc. The choice of which host side mechanisms are
used will be installation and application specific.

The host mechanisms are:

APIs

SMF Per-Transaction Recording
Logging

Trace Browse

Remote Users

APIs.

The SQL GetInfo function can be used in host RPCs to access (but not update) the
Generic ID and the Extended ID. The type values for the information are as fol-
low:

= C: SQL_GET GENER O D and SQ_GET_EXTENDED D

= Cobol: SQL- GET-GENER O D and SQ.- GET- EXTENDEDI D
= ASM: CDSQE GV CDSQA EX

Both are returned as null-terminated string values.

I> Note:

The output area for the Generic ID should be large enough for the 8-
byte string and the one-byte null terminator. The output area for the
Extended 1D should be large enough for the 128-byte string and the
one-byte null terminator.

SMF Per-Transaction Recording

Shadow Direct supports SMF recording on a per-transaction basis using SMO6
records. These records contain information about the current Generic and
Extended 1Ds. The SMF Per-Transaction Recording is activated by setting the
SMFTRANSACT parameter to YES.

Note:

I> The Extended ID areain the SMO6 record has room for only the
first fifty bytes of the Extended ID. A new record format will be
provided if the entire Extended ID is needed in the future.

9-4 Shadow Programming Guide December 1999

Passing Generic ID to SAF

Logging

Shadow Direct supports logging of SQL/transactions on a per-SQL basisusing a
DB2 table. The default table name for per-SQL logging is SHADOW.SQL -
SOURCE, however this default can be changed using the LOGSOURCETABLE
product parameter. Per-SQL logging is activated by setting the LOGSQL -
SOURCE product parameter to YES. The Generic ID is stored in the
GENERIC_USERID column and the Extended ID is stored in the
EXTENDED_USERID column.

Note:
The EXTENDED_USERID column only has room for the first 254
bytes of the of Extended ID

Trace Browse

If aGeneric ID exists, it will be contained in the USERID column of Trace
Browse for SQL/RPC operations. The Generic ID replaces the standard userid in
Trace Browse if the Generic ID has been set to a non-blank, non-zero value. This
information is only provided for debugging, tracking, tracing, auditing, etc.

Note:

The standard userid will be stored in Trace Browse for non-SQL/
RPC operations (such as network 1/O) even if the Generic ID is set.
This means that both the Generic ID and the standard userid will
normally appear in Trace Browse for one session.

Remote Users

The Remote Users display includes two new columns for the Generic ID and the
Extended ID. These columnswill contain their respective valuesif they have been
Set.

Passing Generic ID to SAF

Generic IDs can be passed to SAF to create an MV S security environment for run-
ning an RPC. To do this, the following requirements must be applied:

m The Generic IDs must be valid host userids.
s TheIMPLEMENTTLS product parameter must be set to YES.

Note:

l> Setting IMPLEMENTTLSto YES will only affect the SAF
processing of Generic IDs. All of the other features and facilities
can be used even if theIMPLEMENTTLS s set to NO.

December 1999

Shadow Programming Guide 9-5

Transaction Level Security (TLS)

The MV S security environment created by passing the Generic ID to SAF is
maintained for the duration of RPC execution and will influence what resources
the RPC can access.

Note:

The Generic ID MV S security environment will have no impact
on SQL execution authority. The DB2 security environment is
initialized when the DB2 thread is created and is not
subsequently modified.

The Generic ID security environment will be used to determine the following:
m If theclient is alowed to execute an RPC.

= If RPC authority checking has been activated by setting the
CHECKRPCAUTHORITY product parameter to Y ES. RPC authority
checking uses RACF Class/Entity Rules or ACF2 Generalized Resource
Rulesto determineif a client is authorized to execute an RPC.

Note:
RPC authority checking can be used with or without Generic ID
SAF processing and vice versa.

For performance reasons, the MV S security environments created by passing
Generic IDsto SAF are cached. In other words, each Generic ID is passed to SAF
only once and the MV S security environment is cached at the address space level.
This approach allows use/reuse of Generic ID security environment with negligi-
ble overhead. Security environment caching isimplemented by forcing the
SHARERUNAUTHACEES product parameter to Y ES. As a consequence, this
product parameter does not have to be set.

Note:

Thereis no SEF processing of LOGONSsfor Generic IDs even if
ATH Rulesfor LOGON have been enabled. The Generic ID
MV S security environments are maintained in the cache until
the main product address space terminates.

There is a possible security exposure associated with using Generic IDs with the
IMPLEMENTTLS parameter set to YES. In this case, an MV S security environ-
ment will be created without a password. In addition, client applications will be
able to use the Generic ID MV S security environment without providing a pass-
word. This meansthat only carefully controlled applications (running inside an
Application Server/Web sever) should be allowed to connect to a copy of Shadow
Direct that has IMPLEMENTTLS set to YES. Thisrestriction can be enforced
several ways including LOGON ATH Rules.

9-6

Shadow Programming Guide December 1999

Passing Generic ID to SAF

Note:

IMPLEMENTTLS defaultsto NO and can only be set to YES
using the Shadow Direct initialization script. IMPLEMENTTLS
can not be set to Y ES after the main product address space
initialization has been completed.

December 1999

Shadow Programming Guide 9-7

Transaction Level Security (TLS)

9-8 Shadow Programming Guide December 1999

CHAPTER 10:

SOQOLProcedure and SQLProcedure

Columns

This chapter discusses how to create apseudo DB2 stored procedure that contains necessary Meta data
for input and output fields, aswell as other required parameters for accessing CICS and IMS

transactions.

This chapter appliesto Shadow Direct only.

Introduction

Syntax

Third party software that uses SQL Procedure and SQL ProcedureColumnsto
invoke remote Stored Procedures can access IMS and CICS transactions. With
Shadow, a user can define the necessary input and output for aCICS or IMS trans-
action and any necessary parameters that are required to execute the transaction
and storethisinformation in the DB2 catalog. Thistakesthe form of aDB2 stored
procedure definition. This pseudo-DB2 stored procedure enables a simpler and
more flexible call for clients like Crystal Reports and Powerbuilder.

The syntax for invoking this pseudo-procedure is as follows:
Call CICS.procedure-name(parmi,parm2,...) or

Call IMS.procedure-name(parml,parm2,...)

Where

CICSor IMS
refersto the type of system on which the transaction will be executed.
This constant is stored asthe PROC_OWNER for the procedure.

Procedure-name
is the previously defined pseudo-procedure name that will invoke the
transaction. This procedure is defined using the Shadow TSO I SPF
interface.

Parm1,Parm2
are the parameters that are to be passed to the CICS or IMS
transaction. These parms are defined using the map extraction
procedure in the Shadow TSO ISPF interface. These parm
descriptions are passed to the client program viathe
SQL ProcedureColumns function call.

December 1999

Shadow Programming Guide 10-1

SQLProcedure and SQLProcedure Columns

This syntax matches the IBM SQL stored procedure naming convention.

Stored Procedures

Although you can access CICS and IM S transactions with the Shadow CICS and
Shadow_IMS calls, these methods require the ability to supply parametersrelated
to connecting to the desired CICS or IMS address space. Thisis no problem when
using Visual Basic or C++ to code the call. However, this pseudo-stored proce-
dure method becomes useful when these extra parameters cannot be supplied to a
third party package that would otherwise be a useful client.

Also, if the user needs to supply complex input data types, this method allows the
input to be mapped to pre-extracted definitions. Thus, the full range of datatypes
supported by mainframe high level languages can be supported such as small inte-
ger, large integer, packed decimal and floating point.

In addition to this chapter, please see Chapter 3, “Running DB2 Stored Proce-
dures” in this Guiddor related information on stored procedures.

Preparing a Stored Procedure to Execute a CICS or
IMS Transaction

The following steps must be completed to create a pseudo-stored procedure that
can be used to execute a CICS or IMS transaction.

1. Define the DB2 table SHADOW.PROCEDURES, as instructed in optional
Step 12 in Chapter 1 of the Shadow Installation Guide. Make sure that you
specify a catalog prefix of SHADOW on your ODBC data source definition in
order to access this table.

2. Create the input and output maps, using option 10.1, Map Extract, from the
Shadow Primary Options Menu. For CICS programs, select Map
ExtraCOBOL or PL/I. For IMS, select MFS. CICS maps are created from a
compile listing from the CICS program that is to be executed. IMS maps are
created directly from MFS source. For more information about this option,
see Chapter 9, “Shadow Data Mapping Facility,” in the Shadow Server Users
Guide.

3. Create the pseudo-stored procedure. This is done using the Stored Procedure
option, option 10.8 from the Shadow Primary options menu. An example of
this panel is shown in the following figure:

10-2 Shadow Programming Guide December 1999

Preparing a Stored Procedure to Execute a CICS or IMS Transaction

COMMANMD ===3

————————— Shadow Serwver Stored Procedure Generation ————————= Subsystem S5DBR

Project . . .
Group

Type

Enter EMD to EXIT

HMap Dataset Library:

Other HMap Dataset Hame:
Data Set Mame. . .

Input Hap HMame . .
Output Map Hame. .
Interface Type . . .
DEZ Subsystem. . .
DEZ Flan Hame. . .

Table Mame _ . . .
Procedure Mame . .
Camments . _ . . .

'CE50.ATSS. SYRA@S@@. SOEE._ DATA . MAPS '

. MEOHI
. HEOHO
e (I = IMS, C = CICS)
. OE2E CICS Transackion ID: EXCI
. SDEC1@1@ CICS Program Mame: AAFAYDL

- SHADOMW.PROCEDLURES
- HEOQOHMPART
- STORED PROCEDURE FOR CICS PAVYI

d.

Figure 10-1.

Specify a procedure name. This will be written to the DB2 table —
SHADOW.PROCEDURES.

Use transaction EXCI for CICS. This is used to communicate with the
CICS address space.

Specify the name of the CICS program to be invoked. This program must
have a valid PPT entry defined to CICS. For IMS, no transaction or
program name is used. The MFS map must specify the IMS transaction or
it must be entered in thé Tield of the map.

Specify the input and the output maps that were created in step 1.

The connection hame and the target CICS or IMS address space are the
default Shadow startup parameters. Related parms are:

For CICS: EXCICONNECTIONAME

For IMS: IMSPARTNERLU, IMSLOCALLU, IMSMODENAME, and
IMSSECURITYTYPE

For more information, please see the Shadow Started Task Parameters in the
Shadow Server and Shadow OS/390 Web Server Users’ Guides.

4. To make the procedure active use the Refresh option, option 10.5 on the
Shadow Mapping Facility options menu.

This pseudo-stored procedure name will now be returned by the ODBC function
call SQLProcedures when directed at the Shadow address space. The Meta Data it
contains will be returned by SQLProcedureColumns so that a SQLExecute can be
used to invoke the procedure. Shadow will map all application parameters as
mapped by the previous extract and pass them to the IMS or CICS program. All
output will be passed back according to the previously mapped output map.

December 1999

Shadow Programming Guide 10-3

SQLProcedure and SQLProcedure Columns

10-4 Shadow Programming Guide December 1999

APPENDIX A:

Shadow REXX

This appendix provides information about Shadow REX X, including its comparison to Standard
REXX, its execution limits, elements, considerations, instructions, interfaces, and compiler error

messages.

What Is Shadow/REXX?

Shadow/REX X is aproprietary implementation of standard REXX, an SAA-
compliant programming language. A REXX-based approach was used in
deveoping the original prototype of the Shadow OS/390 Web Server because of
the many advantages the REX X language has over compiled and 4GL interpretive
languages.

Shadow/REX X provides a simple but capable high-level language in which to
write Web Server Transactions. Users who are completely unfamiliar with
programming on a Mainframe platform can quickly learn to program in Shadow/
REXX.

Shadow/REX X differs only dightly from standard REXX. Only those differences
are explained here.

For more detailed information about standard REX X, refer to:

m Modern Programming Using Rexx by Robert P. O'Hara and David Roos
Gomberg (Prentice Hall). This book includes many practical examples of
REXX programming.

IBM Hursley REXX Page (http://rexx.hursley.ibm.com/rexx/rexx.htm)
REXX Language Associate Home Page (http://www.pvv.ntnu.no/RexxLA/)

Why Shadow/REXX?

TSO/E REXX was hot used for the implementation, because:

m Shadow/REXX is specially enabled for processing within an OLTP
environment. The Shadow/REXX interpreter contains facilities for limiting
the overall resource utilization of any one procedure. Thisisimportant
because the Shadow OS/390 Web Server may be executing hundreds of
transactions simultaneously.

m Shadow/REXX isenabled for use in cross-memory environments. As the
functionality of the Shadow OS/390 Web Server is extended into other areas,
we can rely on it's ability to handle more complex operational environments.

December 1999

Shadow Programming Guide A-1

Shadow REXX

m The Shadow/REXX interpreter runs faster than the TSO EXEC command for
similar programs. When you use Shadow/REXX in the Web Server
environment, all the code is pre-interpreted to speed processing.

Similarities Between Shadow/REXX and Standard
REXX

Both Shadow/REX X and the standard REXX language:

= Enable you to issue commands to various host environments.
m Offer symbolic substitution that is simpler than that for other high-level
languages.

The current version of Shadow/REXX supports these standard REXX features:
m All REXX programming structures.

m All standard SAA REXX functions with the exception of the I1/O functions
(CHARIN, CHAROUT, CHARS, LINEIN, LINEOUT, and LINES).

= Numberswith decimal points and exponents, as well as numeric digitswith a
precision up to 20 (default 9).

= Strings containing as many as 32,000 characters, including strings.

Differences Between Shadow/REXX and Standard
REXX

There are several important differences between Shadow/REXX and standard
REXX. Theseinclude:

PULL

m REXX.WhenaPULL instruction is executed and the external data queueis
empty, a read is done from the “default character input stream.”

m Shadow/REXX. In Shadow Rexx, this is not practical. Within an event
procedure, the only possible default character input stream is the Web Client
program. It is not possible to prompt the browser program for input. This
means a PULL on an empty external data queue results in a NULL (zero
length) line being returned.

PUSH

= Shadow REXX. The PUSH instruction is not implemented in Shadow/
REXX, but rather, returns the REXX error result number 64, the
unimplemented feature error. However, the QUEUE instruction is
implemented and can generally be used to accomplish the same results.

A-2 Shadow Programming Guide December 1999

Shadow/REXX Execution Limits

Shadow/REXX Execution Limits

Resource Use Monitoring

When Shadow/REXX executes a REXX program, it checksto see that a program
does not consume an excessive amount of resources. This check is especially

important for executing Web Transactions, since runaway procedures can degrade
system performance significantly, causing poor response time and other problems.

Specifically, Shadow/REXX monitors:

Program execution time.

How many REXX clauses executed.

How many REXX SAY instructions executed.

How many host commands were issued.

How many output lines the external data queue contains.

Parameters that Set Limits

Shadow OS/390 Web Server product parameters set limits for the execution
values listed above. For any SEF Event Procedure:

This Parameter

Sets This Limit......

SEFMAXSECONDS Specifies the maximum time in seconds that an event procedure can execute for agiven
event.

SEFMAXCLAUSES Specifies the maximum number of REXX clauses that a procedure can execute for a
given event.

SEFMAXSAYS Specifies the maximum number of SAY instructions that an event procedure can execute
for agiven event.

SEFMAXCOVIVANDS Specifies the maximum number of host commands that an event procedure can execute
for agiven event.

SEFMAXQUEUE Specifies the maximum number of lines that a procedure can have in the external data
queue for agiven event. Thislimit can be overridden within an individual WWW
transaction procedure using the QUEUESIZE() parameter.

SEFSI ZE Specifies the amount of storage an individual procedure can use for storage of REXX

variable names and values, and evaluation and other work areas. This limit can be
overridden within an individual WWW transaction procedure using the WORK SIZE()
parameter.

Overriding Execution Limits

Shadow/REX X event procedures can override most of the execution limits
by issuing the REXX OPTIONS instruction. However, once the the execution
of aREXX program has begun, the maximum size of the external data

gueue and the amount of working storage space cannot be overridden. See
WORKSIZE for a description of overrides allowed for WWW procedures.

December 1999

Shadow Programming Guide A-3

Shadow REXX

Elements of Shadow/REXX
REXX Elements that Shadow/REXX Supports

Shadow/REX X implements all of the elements of the SAA standard REXX
language except for the following:

OPTIONS ETMODE
PUSH
The input/output functions CHARIN, CHAROUT, CHARS, LINEIN,
LINEOUT, and LINES

s SCAN portion of TRACE.

Implementation Limits

Thetable below describes the minimum limits that SAA imposes and the
maximum limits that Shadow/REXX imposes on REXX elements:

Item SAA Shadow/REXX

Literal Srings 100 Bytes 32000 Bytes

Symbol (variable name) length | 250 Bytes 250 characters for local symbols; 50 characters
for global symbols; 32 characters for function
and routine name labels

Nesting control structures 100 Limited only by available stack space

Call Arguments 20 10

MIN and MAX function 20 20

arguments

Queueentries 100 Controlled by product parameter; defaultsto
3000

NUMERIC DIGITSvalue 1000 No maximum limit

Notational exponent value 999 999 999 999 999 999

Hexadecimal strings 250 bytes 32000 bytes

C2D input string

Limit is either 250 or the NUMERIC
DIGITSvalue, divided by 2,
whichever is smaller

4 (must be a positive number)

D2C output string Limit is either 250 or the NUMERIC | 256
DIGITS value, divided by 2,
whichever is smaller

X2D output string Limit is either 500 or the NUMERIC | 32000

DIGITS value minus 1

A-4

Shadow Programming Guide

December 1999

Shadow/REXX Considerations

Constants in Shadow/REXX

Shadow/REX X supports character strings up to 32,000 characters long. Numeric
values can include decimal points and exponential notation.

Symbols in Shadow/REXX

Local symbols can contain up to 250 characters; global symbols, up to 50
characters, and labels used in function or subroutine calls, up to 32 characters.

Variable Values

Variables containing character strings can contain no more than 32000 bytes (or a
lower value set by the REXXMAXSTRINGLENGTH parameter). This limitation
also applies to intermediate results.

Compound Symbols

The limits on the symbol name (pre-substitution) and the derived name (post-
substitution) of acompound symbol and on the value that a compound symbol
takes are the same as the limits for the name and value of aregular variable.

You must treat the Web server product’s environmental variables as
compound symbols. For example, if you have defined the variable USER in
aprocedure and you refer to WWW.USER elsewhere, the USER part of
WWW.USER is interpreted as the content of the previously defined
variable of the same name.

Arithmetic Values and Operators

Shadow/REX X supports floating point arithmetic. Although you can set
NUMERIC DIGITS higher than 9, higher values can impair performance.

Shadow/REXX Considerations

Before using Shadow/REX X, consider the following points.

m Shadow/REXX usesthe following search order to locate external functions as
it compiles a program:

a Built-in functions.

b. Contents of the Event Procedure library in which the calling procedure
resides.

c. The SYSEXEC library concatenation.

d. A LOAD issued for a module with the name of the external reference
(that is, the standard MV S load module search mechanism is used).

December 1999 Shadow Programming Guide A-5

Shadow REXX

Avoid using “SWS” as the first characters of the names of REXX functions
that you create.

Shadow/REXX Instructions

The following briefly explains the differences between Shadow/REXX
instructions and those of standard REXX.

INTERPRET Instruction

Shadow/REXX supports INTERPRET instructions under these conditions:

An INTERPRET instruction finds an external function or a load module only
if another instruction refers to that function or module. Most product supplied
built-in functions are dynamically located.

When an INTERPRET instruction refers to global variables (for example, x =
GLOBAL.A), the global variable stem must be used directly in another
instruction (not another INTERPRET instruction) elsewhere in the program.
You can use global variables accessed via the SWSVALUE function in an
interpreted instruction.

The total length of an interpreted string is limited by number of separate
clauses to be executed and the amount of stack space availaeteeral,
you should not attempt to execute an INTERPRET statement which must
interpret more than a few clauses.

OPTIONS Instruction

The OPTIONS instruction under Shadow/REXX accepts the keywords shown
below:

CPTI ONS MAXTI ME=seconds | NOVAXTI ME
MAXSECONDS=seconds | NOVAXSECONDS
MAXCLAUSES=c| auses | NOMAXCLAUSES
MAXSAYS=count | NOVAXSAYS
MAXCMDS=count | NOVAXCMDS
MAXCOMVANDS=count | NCVAXCOWANDS
MAXSTRI NG=byt es | NOVAXSTRI NG

Use..... To.....
MAXTIM E=seconds or To change the limit on execution time.
MAXSECONDS=seconds
NOMAXTIME or To skip monitoring of execution time.
NOMAXSECONDS
MAXCLAUSES=clauses To change the limit on clauses executed.
NOMAXCLAUSES To skip monitoring of clause execution.
A-6 Shadow Programming Guide December 1999

Shadow/REXX Instructions

Use..... To.....

MAXSAY S=count To change the limit on how many SAY instructions executed.
NOMAXSAYS To skip limit checking for SAY instructions.

MAXCM DS=count or To change the limit on host commands executed.
MAXCOMMANDS=count

NOMAXCMDS or To skip monitoring of host command execution.
NOMAXCOMMANDS

MAXSTRING=bytes To set maximum string length for all strings. (8)
NOMAXSTRING To use the default maximum string length of 32000.

Format for OPTIONS Statements

Enclose all arguments except for variable names in single or double quotation
marks. This prevents Shadow/REX X from parsing subclauses (such as
MAXSAY S=5) before passing them to the OPTIONS statement processor.

Duration of OPTIONS Settings

Subroutines called by a REXX program inherit the OPTIONS settings, but the
settings do not apply to any calling programs. If a subroutine changes alimit or
skips monitoring, the previous limit isreinstated when the subroutine returnsto its
caler.

If you use multiple keywords referencing the same OPTIONS setting within the
same REXX statement, Shadow/REXX uses the last keyword. For example,
Shadow/REX X does not limit the number of host commands if you code this
instruction:

OPTIONS “MAXCOMMANDS=100 NOMAXCMDS”

Sample Uses of OPTIONS

Example 1:

The following demonstrates using the OPTIONS instruction to override default
execution limits for REXX programs:

CLAUSES = 30000
OPTIONS "MAXCLAUSES="CLAUSES

Example 2:

When inserted at the beginning of a REXX program, the following enables you to
skip monitoring all execution limitsin the program:

OPTIONS “NOMAXCLAUSES NOMAXTIME NOMAXSAYS NOMAXCMDS”

December 1999

Shadow Programming Guide A-7

Shadow REXX

Shadow/REXX Built-in Functions

Shadow/REXX offers both standard REXX functions and a set of built-in
functions designed for the Web Server environment. Refer to the Web Server API
Function Index (either online or in the NEON Programming Guide) for more
information.

Shadow Event Facility (SEF) Global Variables

Global variables are variables that can be shared by multiple SEF rules, Shadow/
REXX programs, or both running in different address spaces.

Global variables are also compound symbols with any of the following stems:

GLCBAL.
A@BALn. (The nis a single digit or letter.)

Use global variables as you would any other Shadow/REXX variable.

Shadow/REXX Interfaces
Shadow/REXX Interface with TSO - ADDRESS

SO

Shadow/REX X can be executed as a stand-alone command processor outside the
Web Server main address space. It isused in thisway to implement portions of the
I SPF control interface. When used as a stand-alone command processor in a TSO/
E address space, Shadow/REXX passes ADDRESS TSO commands to the local
Termina Monitor Program (TMP) for execution.

However, when executing Shadow Event Facility (SEF) procedures, each event is
processed within the Shadow 0OS/390 Web Server address space. The Shadow OY
390 Web Server does not initialize itself asa TMP (Terminal Monitor Program).
Therefore, TSO/E is not available within the Shadow OS/390 Web Server's
address space

Shadow/REX X implements an intercept which gains control when any command
isissued to the ADDRESS TSOhost command environment. This means all
commands issued viathe ADDRESS TSO environment are invalid, except the
EXECIO host command. Shadow OS/390 Web Server implementsits own version
of EXECIO as an ADDRESS TSO host command. Therefore, you can use
EXECIO, as documented for TSO/E REXX, in a Shadow/REXX program.
Shadow/REX X’s version of EXECIO:

Does not support the LIFO option.

Checks the syntax of the stem name.

Prohibits use of global variable stems with the STEM option.

Supports DISKRU only for true sequential data sets. You cannot use DISKRU
against a partitioned data set member.

A-8

Shadow Programming Guide December 1999

Shadow/REXX Interfaces

To compensate for thislack of TMP-based functionality within the ADDRESS TSO
environment, Shadow REXXTOOLS is distributed as a separately licensed
feature of the Shadow OS/390 Web Server. Shadow REXXTOOL S contains
support for many functions which are not directly available from the ADDRESS
TSO environment such as Dynamic Allocation requests.

A new feature of the Shadow OS/390 Web Server alows you to schedule TSO
command procedures into an out-board TSO server address space using the
ADDRESS TSOSRV host command environment.

Shadow/REXX Interface To Out-board TSO
Servers - ADDRESS TSOSRV

TSO/E services are required when cusdtomers want to export their application as
Web transactions. For this reason, the ADDRESS TSOSRV command environment
was built. It passes TSO/E commandsto a set of TSO server address spaces
started and monitored by the main Web Server product.

WWW transaction procedures may execute TSO/E commands, within an out-
board TSO/E address space by directing them to the ADDRESS TSOSRV command
environment. The output of the TSO/E command is routed by the Web Server to
the external data queue specified by the original WWW REXX procedure.

Example

/*WW /LI STA
1 * REXX

ADDRESS TSOSRV
“LISTA" f* This command routed to out-board Server*/

IF RC <> 0 THEN DO /* Time out or other scheduling error?*/
... take some recovery action
END

ADDRESS SWSSEND * Build HTTP Response */
“HTTP/1.0 200 OK”
“Content-type: text/plain”

DO WHILE QUEUED() >0 /* While more result lines *

PARSE PULL LINE /* Get result data line */
ADDRESS SWSSEND
LINE f*Sendresultline astext */

END

Refer to Using TSO/E for Web Transaction Processing for information on the out-
board TSO server facility.

December 1999

Shadow Programming Guide A-9

Shadow REXX

Shadow/REXX Interface with SEF - ADDRESS
SEF

You can use the ADDRESS SEF statement to pass host commands to the Shadow
Event Facility (SEF). For example, the following statement tells SEF to enable the
rule named WEBQUEST from a ruleset named WWW.

ADDRESS SEF
“ENABLE WWW.WEBQUEST”

Shadow/REXX Interface For Web Data Output -
ADDRESS SWSSEND

You can use the ADDRESS SWSSEND environment to pass host data directly into
an output buffer for transmission to a Web client’s browser program. Host
“commands” presented to tA®ODRESS SWSSEND environment become part of
the data stream transmitted to Web Clients when the Web transaction ends.

This facility is availableonly within a Shadow/REXX language *WWW
transaction definition:

/ *WW / SAMPLEDATA
/ * REXX

ADDRESS SWESEND
“HTTP/1.0 200 OK”
“Content-type: text/html”

“<HTML><BODY>"
"<P>This is the response to a web transaction request.”
"</body></html>"

Refer to the SWSSEND Host Command Environment for more information.

Compiler Error Messages

When the Shadow/REXX compiler finds syntax errorsin an Shadow/REX X
program or an SEF rule, the compiler generates a numbered error message.
Because Shadow/REX X isan implementation of standard REXX, Shadow/REXX
generates standard REX X error codes.

Non-Standard REXX Error Numbers used by
Shadow/REXX

Code Message Results

64 UNIMPLEMENTED FEATURE.

A-10 Shadow Programming Guide December 1999

Compiler Error Messages

Code

Message Results

69

FUNCTION HAS TOO FEW ARGS.

70

FUNCTION HASTOO MANY ARGS.

71

INCOMPATIBLE SHADOW/REXX CTL BLOCKS.

78

USER FUNCTION FAILED (CODE IN RC)

80

PULL FOUND EMPTY QUEUE.

86

INVALID SYMBOL.

91

INVALID OR MISPLACED OPTIONS STATEMENT
The keyword(s) specified in the OPTIONS statement
contain an error.

93

GLOBAL VARIABLE WORKSPACE OVERFLOW
(size)

The maximum amount of storage reserved for global
variables (the value set by the GLOBALMAX parameter)
was exceeded.

94

OVER seconds SECONDS USED FOR EXECUTION
The program exceeded the maximum execution time for
SEF rules (set viathe SEFMAXTIME parameter) or
REXX programs (set viathe REXXMAXTIME
parameter).

95

OVER count HOST COMMANDS ISSUED
The program issued the maximum number of host
commands for SEF rules or REXX programs.

96

OVER count "SAY" CLAUSES EXECUTED
The program executed the maximum allowed SAY
instructions for SEF rules or REXX programs.

97

Note:

OVER count CLAUSES EXECUTED
The program executed the maximum allowed number of
clauses for SEF rules or REXX programs.

The OPTIONS statement for an Shadow/REXX program can also
generate error codes 94 through 97.

More Errors Detected: Because Shadow/REXX is a semi-compiler rather
than a pure interpreter, its compile phase detects errors which other
versions of REXX do not catch at execution time. Thisis especialy true
when converting programs to Shadow/REX X; you may encounter errors at
compiletimein supposedly error-free code. This can happen because many
REXX interpreters do not detect errorsin statements that do not execute.

December 1999

Shadow Programming Guide A-11

Shadow REXX

Standard REXX Error Numbers Used by

Shadow/REXX
Code Message Results
4 PROGRAM INTERRUPTED
5 MACHINE RESOURCES EXHAUSTED
6 UNMATCHED “/*" OR QUOTE
7 WHEN OR OTHERWISE EXPECTED
8 UNEXPECTED THEN OR ELSE
9 UNEXPECTED WHEN OR OTHERWISE
10 UNEXPECTED OR UNMATCHED END
11 CONTROL STACK FULL
12 CLAUSE TOO LONG
13 INVALID CHARACTER IN PROGRAM
14 INCOMPLETE DO/SELECT/IF
15 INVALID HEXADECIMAL CONSTANT
16 LABEL NOT FOUND
17 UNEXPECTED PROCEDURE
18 THEN EXPECTED
19 STRING OR SYMBOL EXPECTED
20 SYMBOL EXPECTED
21 INVALID DATA ON END OF CLAUSE
22 INVALID CHARACTER STRING
24 INVALID TRACE REQUEST
25 INVALID SUB-KEYWORD FOUND
26 INVALID WHOLE NUMBER
27 INVALID DO SYNTAX
28 INVALID LEAVE OR REITERATE
29 ENVIRONMENT NAME IS TOO LONG
30 NAME OR STRING TOO LONG
31 NAME STARTS WITH NUMBER OR “.”
33 INVALID EXPRESSION RESULT
34 LOGICAL VALUENOTOOR 1

A-12

Shadow Programming Guide

December 1999

Compiler Error Messages

Code Message Results

35 INVALID EXPRESSION

36 UNMATCHED “(" IN EXPRESSION

37 UNEXPECTED “,” OR “)”

38 INVALID TEMPLATAE OR PATTERN

39 EVALUATION STACK OVERFLOW

40 INCORRECT CALL TO ROUTINE

41 BAD ARITHMETIC CONVERSION

42 ARITHMETIC OVERFLOW/UNDERFLOW
43 ROUTINE NOT FOUND

44 FUNCTION DID NOT RETURN DATA

45 NO DATA SPECIFIED IN FUNCTION RETURN
48 FAILURE IN SYSTEM SERVICE

49 INTERPRETATION ERROR

December 1999

Shadow Programming Guide A-13

Shadow REXX

A-14 Shadow Programming Guide December 1999

APPENDIX B:

MVS Client Support

This appendix covers the ODBC interface in a COBOL client program.

Using the ODBC Interface In a COBOL Client

Program

The ODBC interface provided by NEON iswritten in the C language and executes
using the MV S C /LE runtime environment. The MV S LE runtime environment
must be available on the host machine where the COBOL application is
executing.

For this reason, in order to use the ODBC client interface from a MV S host
COBOL application program, the execution environment of the COBOL program
must first be determined.

If the COBOL program is compiled using COBOL MV S and usesthe LE
environment, then the client COBOL program must be statically linked with the
SDBODBC module. If the execution environment is not LE, then the client
COBOL program must be statically linked with SDBSQLI. SDBSQLI provides
the entry points required by the COBOL program and in addition calls CEEPIPI
(an IBM supplied module) to establish the LE environment for the SDBODBC
module. Please note that SDBSQLI is hot reentrant at this time and precautions
must be taken accordingly.

The following table describes the available ODBC function calls and the entry
point name that must be used to perform the function from a high level language.

ODBC Function Entry Point Description

SQLAIllocEnv

SDODAE Allocates memory for the environment handle and
initializesthe ODBC call level interface for use by the
application.

SQLAIllocConnect

SDODAC Allocates memory for a connection handle with the
environment identified by the environment handle passed.

SQLAIllocStmt SDODAS Allocates memory for a statement handle and associates
the statement handle with the connection specified by the
connection handle passed.

SQL DriverConnect SDODDC Loads adriver and establishes a connection to adata
source.

SQL ExecDirect SDODED Executes a preparable statement.

SQLFetch SDODFT Fetches arow of datafrom the result set.

December 1999

Shadow Programming Guide B-1

MVS Client Support

ODBC Function Entry Point Description
SQLGetData SDODGD Returns the result data for a single unbound column in the
current row.
SQLDisconnect SDODDI Closes the connection associates with a specific
connection handle.
SQLFreeStmt SDODFS Frees a statement handle and all associated memory.
SQL FreeConnect SDODFC Frees a connection handle and all associated memory.
SQLFreeEnv SDODFE Frees the environment handle and all associated memory.
A detailed description of the ODBC API can be found in the Microsoft ODBC 2.0
Programmer’s Reference and SDK Guligeilable from Microsoft Press. The
parameter list provided to the ODBC interface are all pointers by referenceto
alow callsto be made from COBOL.
For example, to call the SQLAIllocEnv ODBC function, the following would be
coded in the COBOL application:
WIRKI NG STCRAGE SECTI ON
01 WS-HENV PIC S9(08) COMP VALUE +0.
PROCEDURE DIVISION.
CALL 'SDODAE' USING WS-HENV.
A complete COBOL example program may be found in
NEON.SV040100.SAMP, member ODBC#LE. A COBOL copybook, named
SDBODCP, isaso found in NEON.SV040100.SAMP. This copybook provides
for constant values associated with the ODBC API.
Data Type Picture Clause
HDBC PIC S9(08) COMP or USAGE IS POINTER
HDBC FAR * PIC S9(08) COMP or USAGE IS POINTER
HENV PIC S9(08) COMP or USAGE IS POINTER
HENV FAR * PIC S9(08) COMP or USAGE IS POINTER
HSTMT PIC S9(08) COMP or USAGE IS POINTER
HSTMT FAR * PIC S9(08) COMP or USAGE ISPOINTER
HWND PIC S9(08) COMP
PTR PIC S9(08) COMP or USAGE IS POINTER
SDWORD PIC S9(08) COMP

B-2

Shadow Programming Guide December 1999

Using the ODBC Interface In a COBOL Client Program

Data Type Picture Clause
SDWORD FAR * PIC S9(08) COMP or USAGE IS POINTER
SWORD PIC S9(04) COMP
SWORD FAR * PIC S9(08) COMP or USAGE ISPOINTER
UCHAR FAR* PIC S9(08) COMP or USAGE ISPOINTER
UWORD PIC S9(04) COMP
UWORD FAR * PIC S9(08) COMP or USAGE IS POINTER

December 1999 Shadow Programming Guide B-3

MVS Client Support

B-4 Shadow Programming Guide December 1999

Glossary

The following list is compilation of some of the terms you will find used in NEON’s documentation. If
you do not find the term you are looking for, the best reference to turn to is the IBM publication:
Dictionary of Computing (SC20-1699). You may also want to check the glossaries of the manuals

listed in “Related Publications.”

ACB

ACEE

ACF

ADABAS

address space

AMODE

APF

API

APPC

application group name

Access Control Block. A control block that links an application
program (for example, a CICS system) to an access method (for
example, VSAM or VTAM). In communication with DL/I, an
ACB is used only when the underlying access method is VSAM.

Access Control Environment Element. (CICS for MVS only.)

In RACF, a control block containing details of the current user,
including user ID, current connect group, user attributes, and
group authorities. An ACEE is constructed during user
identification and verification.

Advanced Communication Function. A group of IBM licensed
programs that uses the concepts of Systems Network Architecture
(SNA) including distribution of function and resource sharing.

Adaptable Database System. A type of database provided by
Software AG.

The range of addresses available to a computer program; the area
of virtual storage available to a particular job or started task.

Addressing M ode. An attribute in MVS and MVS/XA program
that refers to the address length that a program is prepared to
handle upon entry. In MVS/370, an addresses can be 24 bits in
length. In the MVS/XA program, addresses can be 24 bits or 31
bits in length.

Authorized Program Facility. A security feature of the MVS
operating system that restricts the running of programs that make
use of privileged machine instructions.

Application Program Interface. A set of routines provided in
libraries that extends a language’s functionality

Advanced Program-to-Program Communication. The general
facility characterizing the LU 6.2 architecture and its various
implementations in products.

In IMS/VS, a name that represents a defined group of resources
(program specification blocks, transaction names, and logical
terminal names).

December 1999

Shadow Programming Guide Glossary-1

Glossary

APPN

ASCH
Auto-HTML

Block Connection

BMP

BMS

CAF

CCTL

CDRM

Advanced Peer-to-Peer Networking. An extension to Systems
Network Architecture (SNA). Extendsthe LU 6.2 peer orientation
for end-user servicesto network control and supports multiple LU
types, including LU 2, LU 3,and LU 6.2

Application Scheduler. MV S application scheduler.
See Web Enabling.

A logical connection in which the connection resources (i.e.,
network session, threads etc.) are held for the lifetime of the
connection and in which SQL operations may be grouped. Multiple
sends may be issued on a physical network session. Each send is
one or more SQL operations (a group). Thistype of connectionis
very efficient in network usage (only one connection made and
network 1/0s are reduced), efficient in CPU utilization (no
overhead for multiple connections) but holds mainframe resources
(TCBs, threads and TCP/IP sessions) over relatively long periods
of time. The number of connectionsis limited by the number
allowed for the scarcest resource.

Batch Message Processing. InIMS/VS, abatch processing
program that has access to online databases and message queues.

Basic Mapping Support. Provides most of the input and output
facilities required by application programs; allows you to separate
the tasks of display design and CICS application programming.
BMS interprets generalized application program output commands,
and generates data streams for specific output devices. (Such data
streams are said to be device dependent.) Conversely, it transforms
incoming data streams to a form acceptable to application
programs. It obtainsinformation about the format of the data
stream for the terminal from the terminal control table terminal
entry (the TCTTE) for the task, not from the application program.
The same BM S input or output commands in an application
program can be used with different kinds of device.

Call Attachment Facility. The component of DB2 used by
application programs in any address space to connect the
application to DB2.

Coordinator Control Subsystem. (CICSfor MVSonly.) InIMSY
ESA, the transaction management subsystem that communicates
with the DRA, which in turn communicates with DBCTL. Ina
CICS-DBCTL environment, the CCTL isCICS. Thetermisused
in anumber of IMS operator commands that apply to DBCTL, and
in the IMS manuals.

Cross Domain Resource Manager. The functions of the system
services control point (SSCP) that control initiation and
termination of cross-domain sessions.

Glossary-2

Shadow Programming Guide December 1999

Glossary

CGl

CICS

client/server

CMOS

COBOL

COMMAREA

CORBA

CP

CPI-C

CPU

CS

CTDLI

Common Gateway I nterface. Aninterface between aclient (web
browser) and internet connection server that receivesinput data
from standard input, parses the data and transl ates the escaped
characters back into real characters, performs any business process
required, and sends a response to the client.

Customer Information Control System. A transaction processing
extension to the operating system of IBM mainframe computers
that makes it easier to write programs that enter, retrieve, and
update data interactively from remote terminal services.

An application architecture where a remote system (the client)
accesses data on alocal system (the server).

Complementary M etal-Oxide Semiconductor. A technology
that combines the electrical properties of n-type semiconductors
and p-type semiconductors.

Common Business-Oriented Language. High-level
programming language based on English, and used for business
applications.

Communication Area. A CICS areathat is used to pass data
between tasks that communicate with agiven terminal. The area
can aso be used to pass data between programs within a task.

Common Object Request Broker Architecture. A standard for
distributed objects being developed by the Object Management

Group. Provides the mechanisms by which objects transparently

make requests and receive responses as defined by OMG’s ORB.
The CORBA ORB is an application framework that provides
interoperability between objects built in different languages,
running on different machines in heterogeneous distributed
environments.

Control Program. A computer program designed to schedule and
supervise the execution of programs of a computer system.

Common Programming I nterface for Communications. A type
of APl interface for LU 6.2.

Central Processing Unit. A processing unit. The part of a
computer that includes the circuits controlling the interpretation
and execution of instructions.

Cursor Sability. An option used with block fetch allowing data
changes to take place between the time the data is extracted and the
time that it is actually used by the application.

A routine provided by IMS that processes DL/I calls from
programs written in the C language.

December 1999

Shadow Programming Guide Glossary-3

Glossary

DASD

DB

DB/DC

DB2

DBA

DBCTL

DBMS

DBRM

DDF

ddname

DES

DFP

DL/I

DMF

Direct Access Storage Device. A devicein which accesstimeis
effectively independent of the location of the data.

Database. A collection of datawith a given structure for
accepting, storing, and providing, on demand, data for multiple
users.

DATABASE/Data Communication. Type of IMS system that
supports database as well as data communication access.

DATABASE 2. An IBM relational database management system.
See DBMS.

Database Administrator. The person who maintains the database
management system. Database Administration. The act of
maintaining a database management system.

Database Control. (CICSfor MVSonly.) An interface between
CICSfor MVSand IMS/ESA that allows accessto IMS DL/I full-
function databases and to data entry databases (DEDBS) from one
or more CICS systems without the need for data sharing. It also
provides release independence, virtual storage constraint relief,
operational flexibility, and failure isolation.

Database M anagement System. System software for storing,
accessing and removing information. A relational DBMS, such as
DB2, permits awide variety of views of the stored information
without customer programming.

Database Resource Manager (for example, DB2, IMS, Oracle,
etc.)

Distributed Data Facility. The component of DB2 used to access
databases and tables on remote nodes in the network.

Data Definition Name. The name of a data definition statement
that corresponds to a data control block containing the same name.

Data Encryption Sandard. The National Institute of Standards
and Technology Data Encryption Standard, adopted by the US
Government, allowing only hardware implementations of the data
encryption algorithm.

Data Facility Products. A group of IBM supplied access methods
and utilities.

DataLanguagel. InIMS/VS, the data manipulation language that
provides acommon high-level interface between auser application
and IMS/VS. InVSE and CICS/VS, a database access language.

Data M apping Facility. A feature of Shadow Direct that allows
mapping from various sources. Data maps are created via a series

Glossary-4

Shadow Programming Guide December 1999

Glossary

DNS

DRDS

DSNAME

DSA

DSN command

DTS

DTSG

EBCDIC

ECF

EOV

ESTAE

event

of I1SPF panels that allow the user to specify a dataset containing a
listing of a program that contains a data definition.

Domain Name Server. In TCP/IP, a server program that supplies
name-to-address translation by mapping domain names to internet
addresses.

Dynamic Reconfiguration Data Set. In VTAM, adata set used

for storing definition data that can be applied to a generated
communication controller configuration at the operator’s request,
or can be used to accomplish dynamic reconfiguration of NCP,
local SNA, and packet major nodes.

Dataset Name. The term or phrase used to identify the data set.

Dynamic Storage Area. (CICS/VSE only.) System initialization
parameter that pre-allocates the CICS dynamic storage area at
system initialization.

Data sour ce (definitions); a DB2-supplied TSO command used to
run DB2-based application programs and issue commands to DB2.

Dynamic To Satic Conversion Facility. Also known as the Plan-
Based Static SQL Conversion Facility. DTS converts dynamic SQL
to plan-based static SQL. DTS fully supports plan-based security
and is not subject to any restrictions with respect to COMMIT and
ROLLBACK (including holding locks across a COMMIT or
ROLLBACK).

A utility developed by NEON System’s UK office that provides an
easier to use, graphical front end to the Dynamic to Static Analyzer
(DSA) program. DTSG was developed using Visual Basic Version
4.0.

Extended Binary-Coded Decimal Interchange Code. A coded
character set of 256 8-bit characters.

Enterprise Control Facility. A management tool that is installed
with the Enterprise Server and used to define monitoring and
control parameters for the local Enterprise Server or any other
Enterprise Server on the network.

End Of Volume.

Extended Specify Task Abnormal Exit. An MVS

macroinstruction that provides recovery capability and gives
control to the user-specified exit routine for processing, diagnosing
an abend, or specifying a retry address.

A site-defined action, such as a SQL statement, or CICS, IMS or
0S/390-MVS application program.

December 1999

Shadow Programming Guide Glossary-5

Glossary

EXCI

EXEC

Fast L ogon

FTP

Group

GUI

HFS

HTML

HTML Extension Facility

External CICSInterface. Used by SHADOW_CICS to connect
to the specified CICS region and execute the specified program.

A TSO command for running REXX programs; a REXX program.

A connection startup process where handshaking is kept to a
minimum to reduce the number of network 1/0s (from 2 to 1).
Since assumptions are made about the level of code at each end,
code level dependencies exist. If these assumptions are incorrect,
the connection will fail.

File Transfer Protocol. A protocol used to request and receive
files and file system directory information from another computer.

A sequence of SQL operationsthat is collected and sent together as
one block. A group is terminated by aresultset returning SQL
operation (i.e.,, SELECT or CALL) or alogical unit of work
termination (i.e., COMMIT - note: aROLLBACK will causethe
operationsto be discarded). Only INSERTSs, DELETESs and
UPDATESs may be grouped. The maximum grouping allowed is
determined at initialization time.

Graphical User Interface. A type of computer interface
consisting of avisual metaphor of areal-world scene, often of a
desktop.

Hierarchical File System. A disk-based filing system built on a
hierarchy of special files called directories or folders. Descends
from amain directory, called the root. Each lower level isa
subsidiary.

Hypertext Markup Language. a simple markup language used to
create hypertext documents that are platform independent. HTML
documents are SGML (Standard Generalized Markup Language)
documents with generic semantics that are appropriate for
representing information from a wide range of domains. HTML
markup can represent hypertext news, mail, documentation, and
hypermedia; menus of options; database query results; simple
structured documents with in-lined graphics; and hypertext views
of existing bodies of information.

A run-time tailoring facility supported by Shadow OS/390 Web
Server for text format datafiles. Provides extremely flexible and
easy-to-use support for the creation of customized HTML forms
and web pages. You make use of the HTML Extension Facility by
including HTML -like statements directly within your source file.
When the source file is to be transmitted out-bound, the Shadow
0S/390 Web Server evaluatesthe HTML Extension statements and
customizes the information that is actually sent.

Glossary-6

Shadow Programming Guide December 1999

Glossary

HTTP

IDMS

IMS

I nternet

I ntranet

IP

|P Address

/0

IPCS

| SPF

1SO

lUcv

JCL

Hypertext Transfer Protocol. Protocol used by the World Wide
Web. It allows the retrieval of virtually any digital file, in aformat
suitable for later rendering the file inits original text, audio, or
visual media presentation form.

Type of database management system supplied by Computer
Associates.

Information M anagement System. AnIBM hierarchical database
management system.

A wide area network connecting many networksto allow the free
flow of information between otherwise unconnected and often very
incompatible computer systems.

A closed subnetwork, based on Internet technology. It operates the
same way asthe global Internet, but usually exists within the
confines of a single organization using private communication
pathways. An intranet is used to disseminate information to
"authorized" users, such as those within the organization, while
preventing some or all access from outside the organization.

Internet Protocol. A protocol used to route data from its source to
its destination in an Internet environment.

Internet Protocol Address. A two part address, used by TCP/IPto
route information packets from one node in the network to another.
Within a TCP/IP network | P addresses must be unique.

Input/Output. Pertaining to input, output, or both; or pertaining to
adevice, process, or channel involved in datainput, data output, or
both.

Inter active Problem Control System. A component of VM
(virtual machine) that permits online problem management,
interactive problem diagnosis, online debugging for disk-resident
CP abend dumps, and problem tracking and reporting.

Interactive System Productivity Facility. An IBM-licensed
program that serves as a full-screen editor and dialogue manager;
used for writing application programs, it provides a means of
generating standard screen panels and interactive dialogues
between the application programmer and terminal user.

International Standards Organization.

Inter-User Communications Vehicle. An APl used by Shadow
Server to communicate with IBM TCF/IP.

Job Control Language. A control language used to identify ajob
to an operating system and to describe the job’s requirements.

December 1999

Shadow Programming Guide Glossary-7

Glossary

LAN

L PA

LRECL

LU

LUG.2

LUOW

LZ

M essage Connection

MFS

MIB

MIME

Local Area Network. A computer network located on a user’s
premises within a limited geographical area.

Link Pack Area. An area of main storage containing re-enterable
routines from system libraries. In OS/VS2, an area of virtual
storage containing re-enterable routines that are loaded at IPL time
and can be used concurrently by all tasks in the system.

Logical Record Length. In CICS/VS, the length of a logical
record, which is a data record sent by one transaction program to
another. In VSAM, the length of a unit of information normally
pertaining to a single object.

Logical Unit. A type of network accessible unit that enables end
users to gain access to network resources and communicate with
each other.

Logical Unit 6.2. An SNA defined protocol for communication
between two applications.

Logical Unit Of Work. In IMS/VS, the processing unit that a
program performs between synchronization points.

Lempel Ziv. A type of compression based on repeated characters
in the data.

A logical connection in which the connection resources (i.e.,
network session, threads etc.) are held for the duration of a LUOW
in which SQL operations may be grouped. Only one send may be
issued on a physical network session. Each send must be a LUOW.
INSERTs, DELETES and UPDATESs cannot be mixed with
SELECTs or CALLs without intervening COMMITs or
ROLLBACKS.). This type of connection increases network usage
(multiple connections) and CPU utilization (multiple connections)
but releases mainframe resources (TCBs, threads and TCP/IP
sessions) after relatively short periods of time. This is the most
efficient mode as far as holding of mainframe resources is
concerned. The network usage is greater than or equal to that for
Transblock mode due to sessions being terminated after each send.
The number of connections may exceed the number of actual
resources.

Message Format Services. In IMS/VS, an editing facility that
allows application programs to deal with simple logical messages
instead of device-dependent data, thus simplifying the application
development process.

Management Information Block.

Multimedia Internet Mail Extension. A type of Internet file
supported by Shadow OS/390 Web Server.

Glossary-8

Shadow Programming Guide December 1999

Glossary

MQ Series

MRO

MTS

MUNIX

MVS

NDS

NLS

NT
ocC

ODBC

OE
OLTP

0S/2

PCB

Middleware which focuses on reliable and guaranteed delivery by
continually retrying to send the message even if there has been
gateway failure or a network outage. It even survives arestart of
the queue manager.

Multiregion Operation. Communication between CICS systems
in the same processor without the use of SNA network facilities.

Multithreaded Server. A type of transactional and object broker
server.

Combination of UNIX and 0S/390-MV S knowledge.

Multiple Virtual Storage. An operating system for IBM System
370 hardware. Each user of the system is provided a"virtual"
address space equal in size to the addressing limit of the machine.
Also shorthand notation for MVS/XA (MV S/Extended
Architecture) and MVS/ESA (MV SEnterprise Systems
Architecture).

NEON Data Stream. An ODBC-optimized protocol, implemented
between the driver and the server components. NDS interactswith
the network at the transport layer, thus avoiding the overhead
inherent in higher-level network APIs. It also enhances
performance in avariety of ways, including compressing the data,
minimizing the number of client-to-server round trips, and
increasing the network buffer size.

National L anguage Support. The modification or conversion of a
US English product to conform to the requirements of another
language or country.

Network Terminal.
Open Client. Type of API. Not supported by Shadow Direct.

Open Database Connectivity. An API created by Microsoft that
allows applications to access datain database management systems
(DBMS) using SQL as a standard. This interface was designed to
alow asingle application to access many different database
management systems.

Open Edition.
Online-Transaction-Processing.

Operating System/2. An IBM supplied operating system for IBM
personal computers; has many features, such as multitasking,
similar to those of mainframe operating systems.

Program Communication Block. AnIMS control block that
describes an application program’sinterface to and view of an IMS

December 1999

Shadow Programming Guide Glossary-9

Glossary

PDS

Per manent Connection

PGP

PL/I

PO

Port

PSB

PTF

PU

database or, additionally for message processing and batch
message processing programs, to the source and destinations of
messages. PCBs are defined by the user during PSB generation.

Page Data Set. A method of storing several programs, such as
REXX programs, as members of asingle data set. In System/370
virtual storage systems, a data set in external page storage in which
pages are stored.

A logical connection in which the connection resources (i.e.,
network session, threads etc.) are held for the lifetime of the
connection and each SQL operation is transmitted and executed
separately (i.e., no grouping). Multiple sends may beissued on a
physical network session. Each send is an individual SQL
operation. Thistype of connection is efficient in network usage
(only one connection made) and CPU utilization (no overhead for
multiple connections) but holds mainframe resources (TCBS,
threads and TCP/IP sessions) over relatively long periods of time.
The number of connectionsislimited to the number allowed for the
scarcest resource.

Pretty Good Privacy. Allows companies to perform Electronic
Data Interchange (EDI) over the Internet with privacy,
authentication, and convenience; combines the convenience of the
Rivest-Shamir-Adleman (RSA) public key cryptosystem with the
speed of conventional cryptography, message digests for digital
signatures, data compression before encryption, good ergonomic
design, and sophisticated key management.

Programming L anguage One. A programming language
designed for numeric scientific computations, business data
processing, systems programming and other applications.

Partitioned Organized. Type of dataset organization.

A 16-bit number used along with IP address to uniquely identify an
application on a node within a TCP/IP network.

Program Specification Block. The control block that describes
databases and logical message destinations used by an application
program. A PSB consists of one or more PCBs.

Program Temporary Fix. A temporary solution or by-pass of a
problem diagnosed by IBM as resulting from a defect in a current
unaltered release of the program.

Physical Unit. The component that manages and monitors the
resources associated with a node, as requested by an SSCP viaan
SSCP-PU session. Thisterm appliesto type 2.0, type 4 and type 5
nodes only.

Glossary-10

Shadow Programming Guide December 1999

Glossary

QMF Query Management Facility.

RACF Resource Access Control Facility. AnIBM-licensed program
that provides for access control by identifying and verifying the
users to the system, authorizing access to protected resources,
logging the detected unauthorized attemptsto enter the system, and
logging the detected accesses to protected resources.

RC Return Code. A code used to influence the execution of
succeeding instructions; avalue returned to a program to indicate
the results of an operation requested by that program.

RDBMS Relational Database M anagement Systems. A type of database
management system that stores information in tables — rows and
columns — and conducts searches by using data in specified
columns of one table to find additional data in another table.

RDT Resour ce Definition Table. In VTAM, a table describing the
characteristics of each node available to VTAM, and associating
each node with a network address.

REXX Restructured Extended Executor. An interpretive language used
to write command lists.

RFC Request for Comments.

RPC Remote Procedure Calls. Allows a client to execute a program on

a server, with the program being remote to the client.

RR Repeatable Read. An option used with block fetch, allowing many
more pages to be locked for update, especially if the number of
rows normally extracted by the query is small.

RSA Rivest-Shamir-Adleman. A scheme for public key cryptography.
RSP Remote Stored Procedures.
SAA Systems Application Architecture. A set of guidelines promoted

by IBM for standardizing the design of large pieces of software. It
includes a set of user interface guidelines called Common User
Access (CUA), as well as guidelines for data communications,
programming languages, and procedure libraries.

SAF System Authorization Facility. An MVS facility for routing
authorization requests to RACF or equivalent system security
packages.

SAM Shadow Activity Monitor. Provides a workstation-based tool for

viewing and reporting the Shadow Server logs. SAM functions as a
standard Shadow Direct ODBC client.

December 1999 Shadow Programming Guide Glossary-11

Glossary

SDF

SEF

SID

SMF

SNA

SNMP

SPUFI

SQL

SRB

SRM

SSL

Table

TCB

TCPIP

Shadow Diagnostic Facility. An | SPF-based application, allowing
the administrator to view summary and detail information related
to connectivity and to take actions to correct connectivity
problems. All of the diagnostic, monitoring, and control
information can be accessed and updated through the SDF.

Shadow Event Facility. A comprehensive and flexible mechanism
for controlling the overal Shadow Direct client/server
environment; allows each installation to tailor the execution
characteristics of Shadow Direct to whatever level of detail (per-
user, per-group, by time-of-day, etc.) is required.

Site ID.

System Management Facility. Anoptional control program
feature of OS/V S that provides the means for gathering and
recording information used to evaluate system usage.

Systems Network Architecture. A layered scheme for
communication between devices and applicationsin a network.
Applies mainly to IBM networks.

Simple Network Management Protocol.

SQL Processor Using File Input. An interactive component of
DB2, used to query and maintain DB2 databases.

Sructured Query Language. A non-procedural language for
creating, querying, and maintaining relational databases.

Service Request Block. (CICS for MVSonly.) AnMVS
dispatchable unit.

System Resources Manager. A group of programs that controls
the use of system resources in order to satisfy the performance
objectives of the installation.

Security Socket L ayers. Encryption for the highest client/server
security standard in practical use today.

A named DB2 object, consisting of a specific number of columns
and zero or more unordered rows of data.

Task Control Block. In CICSfor MVS, an MV S control block. A
TCB iscreated for each MV Stask. Several TCBs are created for
CICS management programs. All CICS application programs and
al non-reentrant CICS code run under a single quasi-reentrant
TCB.

Transmission Control Protocol/Internet Protocol. A protocol
specifically designed to facilitate communications between
heterogeneous networks.

Glossary-12

Shadow Programming Guide December 1999

Glossary

Thread

TIB

TMP

TNUF

TP

TPL

Transaction Connection

TransBlock Connection

TSO

TSS

Anindividual unit of work in OS/390-MV S used for authorization,
data access, transaction access, monitoring and control.

Terminal Information Block.

Terminal Monitor Program. In TSO, aprogram that accepts and
interprets commands from the terminal and causes the appropriate
command processors to be scheduled and executed.

Table Name Utilization Facility. A feature of Shadow Direct that
alows on-the-fly modification of table names on a user-by-user
basis.

Transaction Program. A program that processes transactionsin
an SNA network.

Transport Parameter List. An APl used by Shadow Server to
communicate with Interlink TCP/IP,

A logical connection in which the connection resources (i.e.,
network session, threads, etc.) are held for the duration of each
LUOW and each SQL operation is transmitted and executed
separately (i.e., no grouping). Multiple sends may be issued on a
physical network session. Each send is an individual SQL
operation. The physical network connect isterminated at the end of
aLUOW (i.e, COMMIT or ROLLBACK). Thistype of
connection increases network usage (multiple connections) and
CPU tilization (multiple connections) but releases mainframe
resources (TCBs, threads and TCP/IP sessions) after relatively
short periods of time. The number of connections may exceed the
number of actual resources.

A logical connection in which the connection resources (i.e.,
network session, threads etc.) are held for the duration of each
LUOW and in which SQL operations may be grouped. Multiple
sends may be issued on aphysical network session. Each send is
one or more SQL operations (a group). This type of connection
increases network usage (multiple connections) and CPU
utilization (multiple connections) but rel eases mainframe resources
(TCBs, threads and TCP/IP sessions) after relatively short periods
of time. The network usage is less than or equal to that for
Transaction mode due to grouping of sent data. The number of
connections may exceed the number of actual resources.

Timesharing Option. Theinteractive timesharing component of
the MV S operating system that supports timesharing terminals.

Time Sharing System. A programming system that provides users
with conversational online access to a computing system with one
or more processing units and simultaneously processes batched
jobs.

December 1999

Shadow Programming Guide Glossary-13

Glossary

UbP

UNIXD

URL

VCF

Virtual Storage

VM

VSAM

VTAM

Web Enabling

WLM

WWW

Work Sation

User Datagram Protocol. In TCP/IP, a packet-level protocol built
directly on the Internet protocol layer. Used for application-to-
application programs between TCF/IP host systems.

An operating system developed by Bell Laboratories that features
multiprogramming in a multi-user environment. The UNIX
operating system was originally developed for use on
minicomputers but has been adapted for mainframes and
microcomputers.

Uniform Request L ocator.

Virtual Connection Facility. Allows sharing of OS/390-MV S
connectivity resources across alarger user population by
transparently switching connections between “real” and “virtual”
as the application shifts from active to idle, and vice versa.

An operating system technique for providing more addressable
storage to programs than is actually available on the hardware.

Virtual Machine. A virtual data processing system that appears to
be at the exclusive disposal of a particular user, but whose
functions are accomplished by sharing the resources of a real data
processing system.

Virtual Storage Access Method. A type of data set maintained by
TSO's Access Method Services program. VSAM datasets may be
accessed sequentially and randomly.

Virtual Telecommunications Access Method. IBM mainframe
software that implements portions of the Systems Network
Architecture (see SNA).

The execution of online IMS transactions and commands converted
by Shadow OS/390 Web Server into HTML format.

Work Load Manager. A component of the OS/390 operating
system, first introduced in MVS/ESA 5.1. It is a policy driven
manager system of resources that is intended to allow a user to
define system performance goals in the same terms that would be
used in a service level agreement.

World Wide Web.

A powerful microcomputer typically used for scientific and
engineering calculations. A workstation typically has more than
four megabytes of RAM, more than 100 megabytes of disk
capacity, and a screen with graphics resolution of at least 800 by
1000. Examples are the Sun Sparcstation and IBM RS/6000.

Glossary-14

Shadow Programming Guide December 1999

Glossary

Wrap-Around Trace Facility A Shadow Server tool, designed to record critical eventsin thelife
of each individual transaction process. In addition, the tool is
designed to record critical internal information which can be used
to debug and correct problems within the Server itself. The wrap-
around trace consists of alarge block of virtual storage, which can
optionally be backed by adata-in-virtual linear dataset. This block
of virtual storageis sub-divided into a status area, a configurable
number of event blocks, and a series of vector tables.

December 1999 Shadow Programming Guide Glossary-15

Glossary

Glossary-16 Shadow Programming Guide December 1999

Index

Symbols
/*EXECSQL
using ODBC CALL RPCs 2-17

A

Address 7-6
Application Program Interface (API) functions 7-8, 7-27,
7-61, 7-90, 7-146, 7-156, 7-238

B

BIND 3-2
Buffer Area 7-6

C

CALL RPC 2-2
CEEEUOPT 2-11
CEEWUOPT 2-11
CICS examples
[*EXECSQL 6-5
PowerBuilder 4.0 6-4
Visual Basic 3.0 6-2
CICSHost APIs 7-61
SDBEXCON 7-67
SDBEXDIS 7-88
SDBEXDPL 7-75
SDBEXINI 7-82
SQLEXCICONNECT (SDCPEC) 7-62
SQLEXCIDISCONN (SDCPEL) 7-84
SQLEXCIDPLREQ (SDCPED) 7-69
SQLEXCIINITUSR (SDCPEI) 7-78
SWSEXCICONNECT (SWCPEC) 7-62
SWSEXCIDISCONN (SWCPEL) 7-84
SWSEXCIDPLREQ (SWCPED) 7-69
SWSEXCIINITUSR (SWCPEI) 7-78
SWSEXCON 7-67
SWSEXDIS 7-88
SWSEXDPL 7-75
SWSEXINI 7-82
Client API Function Definitions 1-15
Client Applications 1-2
Client-RPC Interaction 1-4
COBOL
Specia Considerations 2-8
COBOL for MVS
specia considerations 2-10
coding cursors 3-3
Coding SWSCLEDQ 7-242
COMMIT 3-4
COMMIT_ON_RETURN 3-4
CursorsinReturnSets 3-4

D

Data Transmission 1-8

DB2 1-8

DB2 stored procedures 3-1
SYSPROC 3-1

DD Statements 1-7

DESCSTAT 3-2

DSNTIJUZ 3-2

DSNZPARM 3-2

DUMMYPSB 4-33

E

Enterprise Direct APIs
NEONBIndCol 8-2
NEONDescribeParam 8-5, 8-7
NEONError 8-8
NEONGetInfo 8-10
NEONNumParams 8-12
NEONResetParams 8-14
NEONReturnStatus 8-16
NEONThrow 8-18
NEONTraceMsg 8-20

Enterprise Direct MVS Client B-1

ESPIE 1-4

ESTAE 1-4

F

Flag-Word 7-6
Fullword 7-6

G

General Host APIs 7-156
SDBALLOC 7-188, 7-198
SDBALLOC (SDCPAL) 7-173
SDBCONCT 7-232
SDBCONCT (SDCPCC) 7-229
SDBDECON 7-237
SDBDECON (SDCPDC) 7-234
SDBERROR 7-161
SDBFREE 7-204
SDBFREE (SDCPFR) 7-199
SDBINFO 7-167
SDBTOKEN 7-225
SDBTRACE 7-172
SDBVALUE 7-213
SDBVALUE (SDCPVL) 7-207
SQLERROR (SDCPSE) 7-157
SQLGETINFO (SDCPGI) 7-162
SQLTOKEN (SDCPTK) 7-219
SQLTRACEMSG (SDCPTM) 7-169
SWSALLOC 7-188, 7-198

December 1999

Shadow Programming Guide Index-1

Index

SWSALLOC (SWCPAL) 7-173
SWSCONCT 7-232

SWSCONCT (SWCPCC) 7-229
SWSDECON 7-237

SWSDECON (SWCPDC) 7-234
SWSERROR 7-161

SWSERROR (SWCPSE) 7-157
SWSFREE 7-204

SWSFREE (SWCPFR) 7-199
SWSINFO 7-167

SWSINFO (SWCPGI) 7-162
SWSTOKEN 7-225

SWSTOKEN (SWCPTK) 7-219
SWSTRACE 7-172
SWSTRACEMSG (SWCPTM) 7-169
SWSVALUE 7-213

SWSVALUE (SWCPVL) 7-207

H

High-Level Language Interface
SDBALLOC (SDCPAL) 7-173
SDBCONCT (SDCPCC) 7-229
SDBDECON (SDCPDC) 7-234
SDBECURE (SDCPSC) 7-243
SDBFREE (SDCPFR) 7-199
SDBVALUE (SDCPVL) 7-207
SQLAPPCCONNECT (SDCPAC) 7-28
SQLAPPCDISCONNECT (SDCPAD) 7-41
SQLAPPCRECEIVE (SDCPAR) 7-46
SQLAPPCSEND (SDCPAS) 7-54
SQLERROR (SDCPSE) 7-157
SQLEXCICONNECT (SDCPEC) 7-62
SQLEXCIDISCONN (SDCPEL) 7-84
SQLEXCIDPLREQ (SDCPED) 7-69
SQLEXCIINITUSR (SDCPEI) 7-78
SQLGETINFO (SDCPGI) 7-162
SQLTOKEN (SDCPTK) 7-219
SQLTRACEMSG (SDCPTM) 7-169
SWLAPPCDISCONNECT (SDCPAD) 7-41
SWSALLOC (SWCPAL) 7-173
SWSAPDIS 7-45
SWSAPPCCONNECT (SWCPAC) 7-28
SWSAPPCDISCONNECT (SWCPAD) 7-41
SWSAPPCRECEIVE (SWCPAR) 7-46
SWSAPPCSEND (SWCPAS) 7-54
SWSClearQueue (SWCPQL) 7-239
SWSCONCT (SWCPCC) 7-229
SWSDECON (SWCPDC) 7-234
SWSECURE (SWCPSC) 7-243
SWSERROR (SWCPSE) 7-157
SWSEXCICONNECT (SWCPEC) 7-62
SWSEXCIDISCONN (SWCPEL) 7-84
SWSEXCIDPLREQ (SWCPED) 7-69
SWSEXCIINITUSR (SWCPEI) 7-78
SWSFILE (SWCPFI) 7-102
SWSFREE (SWCPFR) 7-199
SWSGetQueue (SWCPQG) 7-260
SWSINFO (SWCPGI) 7-162

SWSPutQueue (SWCPQP) 7-267
SWSQueryQueue (SWCPQQ) 7-270
SWSRESP (SWCPRE) 7-96
SWSSEND (SWCPSN) 7-91
SWSSET (SWCPSO) 7-130
SWSTOKEN (SWCPTK) 7-219
SWSTRACEMSG (SWCPTM) 7-169
SWSVALUE (SWCPVL) 7-207
HLL Interface 7-4
cal by reference 7-5
compiling and linking application programs 7-4
layout of HLL references pages 7-4
HLL Interface terminology 7-6
address 7-6
buffer area 7-6
flagword 7-6
fullword 7-6
manifest constant 7-6
null-terminated string 7-6
signed integer 7-7
unsigned integer 7-7
Host API Function Calls
CICs 7-61
General 7-156
IMS/APPC 7-27
ODBC CALL 7-8
RPC Direct 7-146
Web Server 7-90
Web Server REXX and SEF 7-238
Host Applications 1-3
Host RPCs 1-3

IMS 1-9

IMS/APPC Host API's
SWSAPPCCONNECT (SWCPAC) 7-28

IMS/APPC Host APIs 7-27
SDBAPCON 7-37
SDBAPDIS 7-45
SDBAPRCV 7-52
SDBAPSND 7-59
SQLAPPCCONNECT (SDCPAC) 7-28
SQLAPPCDISCONNECT (SDCPAD) 7-41
SQLAPPCRECEIVE (SDCPAR) 7-46
SQLAPPCSEND (SDCPAS) 7-41
SQLAPPCSSEND (SDCPAS) 7-54
SWSAPCON 7-37
SWSAPDIS 7-45
SWSAPPCDISCONNECT (SWCPAD) 7-41
SWSAPPCRECEIVE (SWCPAR) 7-46
SWSAPPCSEND (SWCPAS) 7-54
SWSAPRCV 7-52
SWSAPSND 7-59

installation 3-2

L

LE/370 Language
special considerations 2-10

Index-2 Shadow Programming Guide

December 1999

Index

M

Manifest Constant 7-6
monospace fonts Xiii

N

NEONBiIndCol 8-2
NEONDescribeParam 8-5, 8-7
NEONError 8-8
NEONGetInfo 8-10
NEONNumParams 8-12
NEONResetParam 8-14
NEONReturnStatus 8-16
NEONThrow 8-18
NEONTraceMsg 8-20
Null-terminated String 7-6

o

ODBC CALL Host APIs
SQLBINDCOL (SDCPBC) 7-9
SQLDESCRIBEPARAM (SDCPDP) 7-13
SQLNUMPARAMS (SDCPNP) 7-17
SQLRESETPARAM (SDCPRP) 7-19
SQLRETURNSTATUS (SDCPRS) 7-21
SQLTHROW (SDCPTH) 7-24

ODBC CALL RPC samples 2-2

ODBC CALL RPCs
using in /*EXECSQL 2-17
using in Powerbuilder 2-15
using in Visual Basic 2-14

output parameters 3-2

P

PCB type 4-33
PKLIST 3-3
Powerbuilder
using ODBC CALL RPCs 2-15

R

Reader’'s Comment form xiii
ResultSets 3-2
retrieving column names 3-2
samples 3-2
RPC access to VSAM 2-2
RPC Direct Host APIs 7-146
sdcpif 7-147
sdcpmg 7-150
sdcprd 7-152
sdcpwr 7-154

S

sample RPC 2-7
SCAsciiToEbcdic 1-16
HDBC 1-16

PTR 1-16
SDWORD 1-16
SQLSTATE

01000 1-16
08003 1-16
S1009 1-16
S1090 1-16
Visual Basic environment 1-17
SCCToDLI 4-10, 4-34
Accessing and updating PCB fields 4-14
DUMMYPSB 4-35
HDBC 4-10
PCB list structure 4-13
PTR 4-10
SDWORD 4-10
Sending DL/l requests to the host 4-15
SQLSTATE
08003 4-11
08S01 4-11
S1000 4-11
S1009 4-11
SCCToDLIPascal 4-17, 4-35
DL/l requests 4-22
HDBC 4-17, 4-24, 4-26
PCB fields 4-21
PCB list structure 4-20
PTR 4-17
SDWORD 4-17
SQLSTATE
01000 4-18, 4-25
08003 4-18, 4-25
08S01 4-18, 4-25
S1000 4-18, 4-25
S1009 4-18, 4-25
SCEbcdicToAscii 1-18
HDBC 1-18
PTR 1-18
SDWORD.0 1-18
SQLSTATE
01000 1-18
08003 1-18
S1009 1-18
S1090 1-18
Visual Basic environment 1-19
SCReadBuffer 1-20
HDBC 1-20
PTR 1-20
SDWORD 1-20
SDWORD FAR* 1-20
SQLSTATE
01000 1-20, 8-3, 8-6, 8-13, 8-15, 8-17, 8-19
08003 1-20, 8-7, 8-13, 8-15, 8-17, 8-19
08S01 1-20, 8-6, 8-15, 8-17, 8-19
22003 1-21, 8-7
S1009 1-21
S1090 1-21
SCWriteBuffer 1-22
HDBC 1-22
PTR 1-22
SDWORD 1-22
SQLSTATE
01000 1-22

December 1999

Shadow Programming Guide Index-3

Index

08003 1-22
08301 1-23
S1009 1-23
S1090 1-23
SCWriteReadBuffer 1-24
HDBC 1-24
PTR 1-24
SDWORD 1-24
SDWORD FAR* 1-24
SQLSTATE
01000 1-25
08003 1-25
08301 1-25
22003 1-25
S1009 1-25
S1090 1-25
SDBALLOC (SDCPAL) Function 7-173
SDBALLOC Function 7-188, 7-198
SDBAPCON 7-37
SDBAPDIS 7-45
SDBAPDIS Function 7-45
SDBAPRCV Function 7-52
SDBAPSND Function 7-59
SDBCONCT (SDCPCC) Function 7-229
SDBCONCT Function 7-232
SDBDECON (SDCPDC) Function 7-234
SDBDECON Function 7-237
SDBECURE (SWCPSC) Function 7-243
SDBECURE Function 7-251
SDBERROR Function 7-161
SDBEXCON Function 7-67
SDBEXDIS Function 7-88
SDBEXDPL Function 7-75
SDBEXINI Function 7-82
SDBFREE (SDCPFR) Function 7-199
SDBFREE Function 7-204
SDBINFO Function 7-167
SDBPARM Function 7-263
SDBSMF Function 7-273
SDBTOKEN Function 7-225
SDBTRACE Function 7-172
SDBVALUE (SDCPVL) Function 7-207
SDBVALUE Function 7-213
sdepif 7-147
sdcpmg 7-150
sdcprd 7-152
sdcpwr 7-154
Shadow 1-3
Shadow IMS Direct 4-1
Client API function definitions
SCCToDLISee SCCToDLI 4-10
Client API Functions
SCCToDL|Pascal See SCCToDLIPascal 4-17
Client applications 4-8
Configuration 4-5
Multithreaded access 4-3, 4-6
IMSCLASS 4-7
IMSDDNAME 4-6
IMSDSNAME 4-7

IMSFPBUFFERS 4-7
IMSFPOVERFLOW 4-7
IMSFUNCLEVEL 4-6
IMSGROUPNAME 4-7
IMSID 4-6
IMSMAXTHREADS 4-6
IMSMINTHREADS 4-6
IMSNBABUFFERS 4-7
IMSSUFFIX 4-6
IMSTIMEOUT 4-7
IMSUSERID 4-6
IMSWAITTIME 4-6
ODBC.LIB 4-9
PCB type 4-33
Product architecture 4-8
product architecture 4-1
Sample BMP code 4-27
DUMMYPSB 4-33
SSA string 4-33
SCCToDLI
Sending DL/I requeststo the host 4-15
SCODBC.LIB 4-9
SCODBCTSDLL 4-9
SCODBCTS.LIB 4-9
scpghd.h 4-9
Setting parameters for single-threaded access
BMPNAME 4-5
IMSBPTIMEOUT 4-5
Single-threaded access 4-1, 4-5
BMPPARM 4-5
Supported languages 4-8
Shadow RPC Direct
Client API functions
SCEbcdicToAscii 1-18
SCReadBuffer 1-20
SCWriteBuffer 1-22
SCWriteReadBuffer 1-24
Client-RPC interaction 1-4
Compression/decompression 1-8
Data transmission between client application and
host RPC 1-8
DBCTL API 1-9
DBCTL IMSinterface 1-9
DBCTL interface 1-4
DD statements 1-7
Host APIs 1-4
Host execution environment 1-6
Host RPCs 1-3, 1-4
Overview 1-1
plan name 1-8
Problem and Supervisor state considerations 1-6
Product architecture 1-2
Client applications 1-2
Host applications 1-3
Reentrancy considerations 1-6
RPC libraries 1-7
SCAsciiToEbedic 1-16
SCODBC.LIB 1-3
SCODBCTSDLL 1-3

Index-4 Shadow Programming Guide

December 1999

Index

SDBRPCLB DD statement 1-7
Static and dynamic SQL 1-5, 1-8
Supported languages 1-1, 1-2
Use of 24 and 31-bit code 1-6
Use of ESTAE and ESPIE 1-4
Useof TCBs 1-6
Using DSNALI 1-9
Using host data 1-8
DB2” 1-8
IMS 1-9
Writing a host RPC using DBCTL API 1-9
Writing a host RPC using VSAM 1-10
Virtual storage 1-6
Shadow_IMS examples
FEXECSQL 5-7
PowerBuilder 4.0 5-5
Visual Basic 3.0 5-4
SHADOW_IMS RPC 6-1
ShadowIMSDirect
ClientAPIfunctions 4-9
Shared Storage 2-11
shared storage considerations 2-12
Signed Integer 7-7
SQLAPPCCONNECT (SDCPAC) 7-28
SQLAPPCDISCONNECT (SDCPAD) 7-41
SQLAPPCDISCONNECT (SDCPAD) Function 7-41
SQLAPPCRECEIVE (SDCPAR) Function 7-46
SQLAPPCSEND (SDCPAS) 7-54
SQLBINDCOL (SDCPBC) 7-9
SQLDESCRIBEPARAM (SDCPDP) 7-13
SQLDriverConnect 4-34
SQLERROR (SDCPSE) Function 7-157
SQLEXCICONNECT (SDCPEC) Function 7-62
SQLEXCIDISCONN (SDCPEL) Function 7-84
SQLEXCIDPLREQ (SDCPED) Function 7-69
SQLEXCIINITUSR (SDCPEI) Function 7-78
SQLGETINFO (SDCPFI) Function 7-162
SQLNUMPARAMS (SDCPNP) 7-17
SQLRESETPARAM (SDCPRP) 7-19
SQLRETURNSTATUS (SDCPRS) 7-21
SQLTHROW (SDCPTH) 7-24
SQLTOKEN (SDCPTK) Function 7-219
SQLTRACEMSG (SDCPTM) Function 7-169
SSA string 4-33
STATS function 7-117
StoredProcedures
Preparing 3-3
ResultSets 3-2
Subfunctions
SWSFILE (SWCPFI) 7-110
support, technical xv
SWSALLOC (SWCPAL) Function 7-173
SWSALLOC Function 7-188, 7-198
SWSAPCON 7-37
SWSAPDIS 7-45
SWSAPDIS Function 7-45
SWSAPPCCONNECT(SWCPAC) 7-28
SWSAPPCDISCONNECT (SWCPAD) 7-41

SWSAPPCDISCONNECT (SWCPAD) Function 7-41

SWSAPPCRECEIVE (SWCPAR) Function 7-46
SWSAPPCSEND (SWCPAS) 7-54
SWSAPRCYV Function 7-52
SWSAPSND Function 7-59
SWSClearQueue (SWCPQL) Function 7-239
SWSCLEDQ Function 7-242
SWSCONCT (SWCPCC) Function 7-229
SWSCONCT Function 7-232
SWSDECON (SWCPDC) Function 7-234
SWSDECON Function 7-237
SWSECURE 7-257
SWSECURE Function 7-251
SWSECURE(SWCPSC) Function 7-243
SWSENQ Function 7-258
SWSERROR (SWCPSE) Function 7-157
SWSERROR Function 7-161
SWSEXCICONNECT (SWCPEC) Function 7-62
SWSEXCIDISCONN (SWCPEL) Function 7-84
SWSEXCIDPLREQ (SWCPED) Function 7-69
SWSEXCIINITUSR (SWCPEI) Function 7-78
SWSEXCON Function 7-67
SWSEXDIS Function 7-88
SWSEXDPL Function 7-75
SWSEXINI Function 7-82
SWSFILE (SCPFI)

subfunction 7-110
SWSFILE (SWCPFI) 7-102
SWSFILE Arguments 7-128
SWSFILE Function 7-113
SWSFILE function with other REXX-language

interpreters 7-124

SWSFREE 7-204
SWSFREE (SWCPFR) Function 7-199
SWSFREE Function 7-204
SWSGetQueue (SWCPQG) Function 7-260
SWSGetQueue (SWCPQP) Function 7-267
SWSINFO (SWCPGI) Function 7-162
SWSINFO Function 7-167
SWSPARM Function 7-263
SWSQueryQueue (SWCPQQ) Function 7-270
SWSRESP (SWCPRE) 7-96
SWSRESP Function 7-100
SWSSEND 7-91
SWSSEND Function 7-94
SWSSET (SWCPSO) Function 7-130
SWSSET Function 7-140
SWSSMF Function 7-273
SWSTOKEN (SWCPTK) Function 7-219
SWSTOKEN Function 7-225
SWSTRACE Function 7-172
SWSTRACEMSG (SWCPTM) Function 7-169
SWSVALUE 7-213
SWSVALUE (SWCPVL) Function 7-207
SWSVALUE Function 7-213
SWSXMIT Function 7-274
Syntax

DB2StoredProcedures 3-1
SYSIBM.SYSPROCEDURES 3-3

December 1999

Shadow Programming Guide

Index-5

Index

T

technical support xv
troubleshooting stored procedures 3-4

U

Un-signed Integer 7-7
Using DBCTL API 1-9
Using Host Data 1-8

Vv

VBA4.0 program 3-2
VBDEMO 2-2
Visual Basic
using ODBC CALL RPCs 2-14
VSAM 1-10

w

Web Server REXX and SEF Host APIs
SDBECURE 7-251
SDBECURE (SDCPSC) 7-243
SDBPARM 7-263
SDBSMF 7-273
SWSClearQueue (SWCPQL) 7-239
SWSCLEDQ 7-242
SWSECURE 7-251
SWSECURE(SWCPSC) 7-243
SWSENQ 7-258
SWSGetQueue (SWCPQG) 7-260
SWSPARM 7-263
SWSPutQueue (SWCPQP) 7-267
SWSQueryQueue (SWCPQQ) 7-270
SWSSMF 7-273
SWSSXMIT 7-274

Web Server Specific APIs 7-90
SWSFILE 7-113
SWSFILE (SWCPFI) 7-102
SWSFILE Function with other REXX-language

interpreters 7-124

SWSRESP 7-100
SWSRESP (SWCPRE) 7-96
SWSSEND 7-94
SWSSEND (SWCPSN) 7-91
SWSSET 7-140
SWSSET (SWCPS0O) 7-130

WITHHOLD 3-4

WITHRETURN 3-4

Writing aHost RPC 1-9

Writing RPCs that access DB2 2-7

Index-6 Shadow Programming Guide

December 1999

Reader’'s Comment Form

At NEON Systems, Inc. we are always looking for good ideas. If you have a suggestion or comment
regarding any of our publications, please complete thisform, and mail or fax it to us at the following

address. Thank you.

Please complete the following information, or attach your business card here.

Your Name:

Phone Number :

Your Company:

Address:

Publication Name:

Version and Edition Number s (see page ii):

Suggestion/Request:

Please mail or fax this page to:

NEON Systems, Inc.
14100 SW Freeway, Suite 500
Sugar Land, Texas 77478, U. S. A.

Fax Number: (281) 242-3880

Reader’'s Comment Form

	About this Publication
	How this Publication is Organized
	Conventions
	Reader’s Comments
	NEON Systems, Inc. Products
	Year 2000 Compliancy Statement
	Working with Technical Support

	Shadow RPC Direct
	Introduction
	Product Architecture
	Host Execution Environment
	Using Host Data
	RPC Debug Support
	Client API Function Definitions

	ODBC CALL RPCs
	Introduction
	ODBC CALL RPC Examples
	Sample ODBC CALL RPC for VSAM
	Other Sample RPCs

	Running DB2 Stored Procedures
	Introduction
	The Syntax
	DB2 Stored Procedures

	Shadow IMS Direct
	Introduction
	Product Architecture
	Installing Shadow IMS Direct
	Programming IMS Applications
	Sample IMS Batch Message Program Code

	Transaction Server for IMS
	Introduction
	Examples of Using Shadow_IMS

	Transaction Server for CICS
	Introduction
	Examples of Using Shadow for CICS

	Host Application API Function Calls
	The High-Level Language (HLL) Interface
	ODBC CALL Host APIs
	IMS/APPC APIs
	CICS APIs
	Web Server Specific APIs
	RPC Direct Host APIs
	General APIs
	Web Server REXX and SEF APIs

	Shadow Enterprise Direct API Function Calls
	Transaction Level Security (TLS)
	What is TLS?
	Why use TLS?
	Implementing TLS
	Passing Generic ID to SAF

	SQLProcedure and SQLProcedure Columns
	Introduction
	Syntax
	Stored Procedures
	Preparing a Stored Procedure to Execute a CICS or IMS Transaction

	Shadow REXX
	What Is Shadow/REXX?
	Why Shadow/REXX?
	Similarities Between Shadow/REXX and Standard REXX
	Differences Between Shadow/REXX and Standard REXX
	Shadow/REXX Execution Limits
	Elements of Shadow/REXX
	Shadow/REXX Considerations
	Shadow/REXX Instructions
	Shadow/REXX Interfaces
	Compiler Error Messages

	MVS Client Support
	Using the ODBC Interface In a COBOL Client Program

	Glossary
	Index

