B Y &8 T EMB | HL

This document is published by the NEON Systems, Inc. Technical Publications Department and appliesto
Shadow® Server™, Version 4, Release 5, Shadow® 0S/390 Web Server™, Version 4, Release 5, and Shadow®
Enterprise Server™ , Version 2, Release 6.

Copyright 1999 NEON Systems, Inc. All rights reserved. Printed in the U.S.A.

Licensee is granted permission to make a limited number of copies of the documentation for its internal business
purposes only. All such copies shall bear all copyright, trade secret, trademark and any other intellectual property
notices on the original copies. This limited right to reproduce for internal purposes only is not transferable.
Furthermore, this limited right DOES NOT include any license to distribute, modify, display or make derivative
works from the Copyrighted materials.

® indicates a trademark registered in the United States.
™ indicates a trademark that is not registered in the United States.

NEON and Shadow are registered trademarks and Activity Monitor, Affinities Server, Connection Facility,
Database Event Facility, Dynamic Index Facility, Halo, Halo SSO, NEON 24X7, PDF, RandomMax, REXX/
Tools, ShadowDirect, Shadow Enterprise Direct, Shadow Web Server, Speed Key, Speed Load, Speed Unload,
Support Module, SSL Support Module, and Transaction Server are trademarks of NEON Systems, Inc.

All other trademarks, service marks, and product or service names are the property of their respective owners.

This software/document contains proprietary information of NEON Systems, Inc.; it is provided under a license
agreement containing restrictions on use and disclosure and is also protected by copyright law. Reverse
engineering of the software is prohibited.

If this software/documentation is delivered to a U.S. Government Agency of the Department of Defense, then it
is delivered with Restricted Rights and the following legend is applicable:

Restricted Rights L egend

Use, duplication, or disclosure by the Government is subject to restrictions as set forth in
subparagraph (c)(1)(ii) of DFARS 252.227-7013, Rights in Technical Data and Computer
Software (October 1988).

If this software/documentation is delivered to a U.S. Government Agency not within the
Department of Defense, then it is delivered with “Restricted Rights,” as defined in
FAR 52.227-14, Rights in Data—General, including alternate (June 1987).

NEON Systems, Inc. does not warrant that this document is error-free. The information in this document is
subject to change without notice and does not represent a commitment on the part of NEON Systems, Inc. No
part of this document may be reproduced or transmitted in any form or by any means, electronic or mechanical,
including photocopying and recording, for any purpose without the express written permission of NEON
Systems, Inc.

Address inquiries to:

NEON Systems, Inc.
14100 SW Freeway, Suite 500
Sugar Land, Texas 77478

World Wide Web: http://www.neonsys.com

Phone: 1-800-505-6366
(281) 491-4200 (Corporate Sales, Technical Support)
Fax: (281) 242-3880

December 1999

Contents

About this Publication ... Xi

How thisPublicationisOrganized. i i e e e e Xi

CONVENTIONSottt et e e e e e e Xiii

Readers CommeNnts. i Xiii.

NEON Systems, InC. Products. i i i Xiv ...

Year 2000 Compliancy Statement. Xiv

Working with Technical Support. e e X\ .

Chapter 1: Shadow RPC Direct e 1-1

INErOdUCHION e 1-1

Product ArChiteCtUre e 1-2
Client Applications i e e, 1-2.

Host Applications 1:3.
Client-RPC INteraction e 14 ..

Host Execution ENVIFONMENT.ot 1-6. ..
Virtual Storage Utilization i 1-6...
RPC Libraries e 1-7.

Other DD Statements. e 1-7. ..
Data Transmission between the Client Application and the HostRPC 1-8

Using Host Data. i e e e e e . 1-8
DB . o e 1-8
IMS . e e e e 1-9
Writing a HoSt RPC. 1-9
RPC Debug SUPPOrt.o e 1-10

Client API Function Definitions 1-15..

SCASCITOEDCIC. 1-16.
SCEDLCAICTOASCI . ..o v o e 1-18.
SCReadBuUffer 1-20.
SCWriteBUfer. e 1-22
SCWriteReadBuffer 24...1
Chapter 2: ODBC CALL RPCs e e 2-1

INErOdUCHION e e 2-1

ODBC CALL RPC EXamples e e e e 1...2-

Sample ODBC CALL RPC for VSAM e e e e 2-2

Other Sample RPCs e s e i e et 2:7
Writing RPCs that ACCess DB 2. e 2-7
Special Considerations for Cobol Il e 2-8
Special Considerations for Cobol for MVS and Other LE/370 Languages 2-10

1l

December, 1999 Shadow Programming Guide

Contents

Chapter 3: Running DB2 Stored Procedures 3-1
INErOUCHION 31
T S X . . oot 31
DB2 Stored ProCedUIESottt et e e 32

PreparingaDB2 Stored Pracedure oot e 33
Coding Cursorsin Return Result Sets.o e e 3-3
Troubleshooting DB2 Stored ProceduresSot e e 34

Chapter 4: Shadow IMS Direct 4-1

INErOUCHION 4-1

Product ArChiteCture. o 4-1
Single-Threaded Accessto IMS Databases and the MessageQueue 4-1
Multi-Threaded Accessto IMSDatabaseso oo 4-3
Installing Shadow IMS DIrecCtot e e e e 4-5
Configuring Shadow SerVero e e 4-5
Setting Parametersfor Single-Threaded ACCESS. oo i i i 4-5
Setting Parameters for Multi-Threaded ACCESS. oot e 4-6
Programming IMS Applicationsttt e e e e 4-8
Client APPlICaHIONS . .. oot 4-8
Client API Function Definitions o 4-9
SCCTOD L. vttt 4-10
SCCTODLIPESCa i e e e e e e e 4-17
SCPACKEAT OASCH . o v v vttt e e e 4-24
SCASCITOPaCKEdo 4-26
Sample IMS Batch Message ProgramCade e 4-27

Chapter 5: Transaction Server for IMS 5-1
INErOTUCTION o e e e e 51
Examplesof Using Shadow IMS 5-4

COB L . .ot e 5-4
VisUal BaSIC 3.0, .. oottt et 5-4
PowerBUilder 4.0.o 55
PEXECSQL .ttt 5-7

Chapter 6: Transaction Server for CICS 6-1
INErOTUCTION e e e e 6-1
Examplesof Using Shadow for CICS i e 6-2

COBO ..ottt e 6-2
VisUal BaSiC 3.0, ..ottt 6-2
PowerBUilder 4.0. oo 6-4
PEXECSQL .ttt 6-5

iv Shadow Programming Guide December, 1999

Contents

Chapter 7: Host Application API Function Calls 7-1
TheHigh-Level Language (HLL) Interface. i 7-4
NEON-Supplied Source Copy Members.ot e e 7-4
Layout of theHLL ReferencePages. e e 7-4
ODBC CALL HOSt APIS . . ettt e e e e e e e e 7-8
SQLBINDCOL (SDCPBC) FUNCHON« e e e e e e e e e e e e e 7-9
SQLDESCRIBEPARAM (SDCPDP) FUNCLIONottt 7-13
SQLNUMPARAMS (SDCPNP) FUNCHON o e ee e e e e e e e 7-17
SQLRESETPARAM (SDCPRP) FUNCLIONo 7-19
SQLRETURNSTATUS (SDCPRS) FUNCHON. . . . e eeeee e e e 7-21
SQLTHROW (SDCPTH) FUNCLION. . . .ottt et e e e e e 7-24

IM S A PP AP, .o e 7-27

High-Level Language Interface

SQLAPPCCONNECT (SDCPAC) or

SWSAPPCCONNECT (SWCPAC) FUNCION. . ..ot 7-28
SDBAPCON/SWSAPCON FUNCLIONot e e e 7-37
High-Level Language Interface

SQLAPPCDISCONNECT (SDCPAD) or

SWSAPPCDISCONNECT (SWCPAD) Functiont 7-41
SDBAPDIS/SWSAPDISFUNCHON . . . oottt e e 7-45
High-Level Language Interface

SQLAPPCRECEIVE (SDCPAR) or

SWSAPPCRECEIVE (SWCPAR) Function. 7-46
SDBAPRCV/ SWSAPRCY FUNCLiON.o e e 7-52
High-Level Language Interface

SQLAPPCSEND (SDCPAYS) or

SWSAPPCSEND (SWCPAS) FUNCLIONo e 7-54
SDBAPSND/SWSAPSND FUNCEION.o e 7-59
ClCS APIS L 7-61

High-Level Language Interface
SQLEXCICONNECT (SDCPEC) or

SWSEXCICONNECT (SWCPEC) FUNCLIONot 7-62
SDBEXCON/SWSEXCON FUNCLIONottt 7-67
High-Level Language Interface SQLEXCIDPLREQ (SDCPED) or

SWSEXCIDPLREQ (SWCPED) FUNCLION.ot 7-69
SDBEXDPL/SWSEXDPL FUNCHION.\t 7-75

High-Level Language Interface

sglexciinitusr (SDCPEI) or

SWSEXCIINITUSR (SWCPEI) Functiont 7-78
SDBEXINI/SWSEXINI FUNCLiON.o e e 7-82
High-Level Language Interface

SQLEXCIDISCONN (SDCPEL) or

SWSEXCIDISCONN (SWCPEL) FUNCLIONo e 7-84
SDBEXDIS/SWSEXDISFUNCHONo e 7-88
Web Server Specific APISo 7-90

December, 1999 Shadow Programming Guide \

Contents

High-Level Language Interface

SWSSEND (SWCPSN) FUNCLION . . . oo 7-91

SWSSEND FUNCLION e e e e 7-94

High-Level Language Interface

SWSRESP (SWCPRE) FUNCLION.t e e e 7-96

SWSRESP FUNCLION . ..o e 7-100

High-Level Language Interface

SWSFILE (SWCPFI) FUNCHION. o e e ettt 7-102

SWSFILE FUNCHON . . . ot e e e 7-113

The SWSFILE Function with Other REXX-language Interpreters. 7-124

High-Level Language Interface

SWSSET (SWCPSO) FUNCHION.ot 7-130

SWSSET FUNCLION. . . . oottt 7-140

High-Level Language Interface

SWSWTO (SWCPWT) FUNCLION e e e et e e 7-142

SWSWTO FUNCLION. . . ettt e e e e e e 7-145
RPC DireCt HOSt APIS . . .o e 7-146

SUCPIf FUNCLION ... e 7-147

SACPMQ FUNCHION et e e e e 7-150

SUCPId FUNCHIONo e e e 7-152

SOCPWIE FUNCHION . .o e e e e e e e 7-154
General APIS .. 7-156

High-Level Language Interface

SQLERROR (SDCPSE)

SWSERROR (SWCPSE) FUNCLION.ot e i 7-157

SDBERROR/SWSERROR FUNCLION 7-161

High-Level Language Interface

SQLGETINFO (SDCPGI)

SWSINFO (SWCPGI) FUNCLION oo e e it 7-162

SDBINFO/SWSINFO FUNCEION oo et i 7-167

High-Level Language Interface

SQLTRACEMSG (SDCPTM)

SWSTRACEMSG (SWCPTM) FuNCtion. e e 7-169

SDBTRACE/SWSTRACE FUNCLION.t 7-172

High-Level Language Interface

SDBALLOC (SDCPAL)

SWSALLOC (SWCPAL) FUNCLION.ottt e e 7-173

SDBALLOC/SWSALLOC FUNCLION oot e 7-188

High-Level Language Interface

SDBFREE (SDCPFR)

SWSFREE (SWCPFR) FUNCLION.ot e 7-199

SDBFREE/SWSFREE FUNCLIONo e e e 7-204

High-Level Language Interface

SDBVALUE (SDCPVL)

SWSVALUE (SWCPVL) FUNCHIONo e e e e e 7-207

vi

Shadow Programming Guide December, 1999

Contents

SDBVALUE/SWSVALUEFUNCION 7-213

High-Level Language Interface
SQLTOKEN (SDCPTK)

SWSTOKEN (SWCPTK) FUNCHIONottt et 7-219
SDBTOKEN/SWSTOKEN FUuNnCtion e e 7-225
High-Level Language Interface

SDBCONCT (SDCPCC)

SWSCONCT (SWCPCC) FUNCHION . . oottt et et et e 7-229
SDBCONCT/SWSCONCT FUNCHON . . .o e e ettt e 7-232

High-Level Language Interface
SDBDECON (SDCPDC)

SWSDECON (SWCPDC) FUNCLIONttt 7-234
SDBDECON/SWSDECON FUNCLIONot et e e 7-237
Web Server REXX and SEF APIS. i e e 7-238
High Level Language SWSClearQueue (SWCPQL) Function 7-239
SWSCLEDQ FUNCHION e et et et et et et et 7-242
High-Level Language Interface
SDBECURE (SDCPSC)
SWSECURE (SWCPSC) FUNCtion. e e e e e 7-243
The SDBECURE/SWSECURE FUNCLIONo et 7-251
SWSENQ FUNCHION e e e e e e e 7-258
High-Level Language SWSGetQueue (SWCPQG) Function. 7-260
SDBPARM/SWSPARM FUNCLION ettt 7-263
High-Level Language SWSPutQueue (SWCPQP) Function 7-267
High-Level Language SWSQueryQueue (SWCPQQ) Function. 7-270
SDBSMF/SWSSMF FuNCtion.o e 7-273
SWSXMIT FUNCHIONo e e et 7-274
Chapter 8: Shadow Enterprise Direct APl Function Calls 8-1
NEONBINACOL. . . .o e e e e 8-2
NEONDescribeParam e 8-5
NEON T Or . . . e e 8-8
NEONGELINTOo e e 8-10
NEONNUMPEIramSo e e e e e e 8-12
NEONResetParam. e e e e e 8-14
NEONREIUMNSIBIUS o ottt e e e e e e e e e e e e 8-16
NEONTIOW . . .o e e e e e e e e 8-18
NEONTrACEM ST . . o ottt e e e e e e e e e 8-20
Chapter 9: Transaction Level Security (TLS) 9-1
What IS T S ? . o e et e et e e 9-1
Wy USE TL S . o e e e e e e 9-1
IMplementing TLS. i e e e e 9-2
Client SIde SUPPOIT . . . oo 9-3

December, 1999 Shadow Programming Guide vii

Contents

HOSt Side SUPPOI . . oo 9-4
Passing GeneriCc 1D 10 SAF o e 9-5
Chapter 10: SQLProcedure and SQLProcedure Columns 10-1
INErOAUCTION . . o e e e e e e e e e 10-1
Y1 10-1
StOred PrOCEAUIES. oottt e e e e et e e 10-2
Preparing a Stored Procedure to Executea CICS or IMS Transaction 10-2
Appendix A: Shadow REXX ... A-1
What 1S ShadowW/REX X2 . . . oot e e e e e e e e A-1
Why Shadow/REX X 2 . . e e e e A-1
Similarities Between Shadow/REXX and Standard REXX., A-2
Differences Between Shadow/REXX and Standard REXX A-2
Shadow/REXX EXeCUtiON LimitSottt A-3
Resource USe MONItONiNgo oottt et et et A-3
Parametersthat Set LImitS. ot e A-3
Overriding Execution Limits.o e e e e A-3
Elements of Shadow/REXX. o A-4
REXX Elements that Shadow/REXX SUPPOItS A-4
Implementation Limitso i e e A-4
Constantsin Shadow/REX X oo e e e A-5
Symbolsin Shadow/REX Xo e A-5
Variable Values. A-5
Compound SymbOIS e A-5
Arithmetic Valuesand Operatorsttt et et et et et A-5
Shadow/REXX ConSIAErationso vttt e ettt et e e e A-5
Shadow/REXX INSIFUCLIONS. oo e e e A-6
INTERPRET INStrUCtioNo e e et e et A-6
OPTIONS INStIUCHION . . . oot e e e e e e et et e e A-6
Shadow/REXX BUilt-inFUNCtions A-8
Shadow Event Facility (SEF) Globa Variables A-8
ShadowW/REX X INterfaces A-8
Shadow/REXX Interface with TSO- ADDRESSTSOoiiiiiiiann, A-8
Shadow/REXX Interface To Out-board TSO Servers- ADDRESSTSOSRV.......... A-9
Shadow/REXX Interface with SEF - ADDRESSSEF A-10
Shadow/REXX Interface For Web Data Output - ADDRESSSWSSEND A-10
Compiler ErrOr MESSagES. . . . ottt A-10
Non-Standard REXX Error Numbers used by Shadow/REXX. A-10
Standard REXX Error Numbers Used by Shadow/REXX A-12
Appendix B: MVS Client SUPPOrt ... B-1
Using the ODBC Interface InaCOBOL ClientProgram, B-1

viii Shadow Programming Guide December, 1999

Contents

GlOSSarY oo Glossary-1

INA X Index-1

December, 1999 Shadow Programming Guide iX

Contents

X Shadow Programming Guide December, 1999

About this Publication

This book contains programming information for Shadow Direct, Shadow OS/390 Web Server, and
Shadow Enterprise.

How this Publication is Organized
This book contains the following chapters:

m Chapter 1, “Shadow RPC Direct,” provides information about Shadow RPC
Direct, its product architecture, host data, and client API function definitions.

s Chapter 2, “ODBC CALL RPCs,” provides ODBC CALL RPC examples,
sample ODBC CALL RPCs for VSAM, and other sample RPCs.

m Chapter 3, “Running DB2 Stored Procedures,” includes information about
executing, preparing and troubleshooting a DB2 Stored Procedure.

m Chapter 4, “Shadow IMS Direct,” details Shadow IMS Direct, its product
architecture, installation, programming, client API function definitions, and
sample IMS batch message program code.

m Chapter 5, “Transaction Server for IMS,” provides information about
SHADOW_IMS, including examples of using Shadow for IMS.

m Chapter 6, “Transaction Server for CICS,” includes information about
SHADOW_CICS RPC, and examples of using Shadow for CICS.

m Chapter 7, “Host Application API Function Calls,” includes a listing and
detailed description of the following:
s ODBC CALL RPC APIs

IMS/APPC APIs

CICS APIs

Web Server Specific APIs

General APIs

Web Server REXX and SEF only APIs

RPC Direct APIs

m Chapter 8, “Shadow Enterprise Direct API Function Calls,” provides a listing
and description of Shadow Enterprise Direct API calls.

m Chapter 9, “Transaction Level Security (TLS),” covers TLS, which was
created to support the new and unigue security requirements of Internet
applications, while operating in the traditional enterprise computing
environment.

m Chapter 10, “SQLProcedure and SQLProcedure Columns,” discusses how to
create a pseudo DB2 stored procedure that contains necessary Meta data for

December 1999 Shadow Programming Guide Xi

About this Publication

input and output fields, as well as other required parameters for accessing
CICS and IMS transactions.

Appendix A, “Shadow/REXX,” provides information about Shadow REXX,
including its comparison to Standard REXX, its execution limits, elements,
considerations, instructions, interfaces, and compiler error messages.

Appendix B, “MVS Client Support,” covers the ODBC interface in a COBOL
client program.

“Glossary,” lists and defines terms and acronyms that appear in NEON
Systems, Inc. publications.

Xii

Shadow Programming Guide December 1999

Conventions

Conventions

This book contains the following highlighting conventions:

BOLD CAPS
Identifies commands. For example:

Usethe KEY S command to ...

Text enclosed in single quotes denotes library, data set, and DD names.
For example:

‘SLDSYSIN’ ‘PLUSIN’ ‘RESLIB’

Monospace
Identifies code examples, screen prompts, and messages, aswell as
directory paths. For example:

/ISTEPO10 EXEC PGM=NDBA2400

Monospace Italics
Identifies information you must provide at a screen prompt or in a
text field. For example:

PARM=PARMLIBzour. parnti b
<KEY> Identifiesthe key to press. For example:
<ENTER>

NEON Systems, Inc. uses Release.\Version to identify software packages. For
example, Product 4.1, denotes the fourth release, first revision of the software.

Reader’'s Comments

At NEON Systems, Inc. we are always looking for good ideas. If you have any
comments or suggestions regarding any of our publications, please complete the
Reader’'s Comment form (located at the back of this book) and return it to NEON,
Attention: Technical Publications Department.

Mailing Address:. NEON Systems, Inc.
14100 SW Freeway, Suite 500
Sugar Land, Texas 77478

Fax Number: (281) 242-3880

You can also send comments to directly to our Technical Publications department
via the following e-mail addresdpocumentation@neonsys.com.

Thank you!

December 1999

Shadow Programming Guide Xiii

About this Publication

NEON Systems, Inc. Products

For acomprehensive list of the products currently marketed by NEON Systems,
Inc., visit our World Wide Web site at: http://www.neonsys.com.

Note:
You can also access and download all of the current NEON publications
from this Web site.

Year 2000 Compliancy Statement

The following products from NEON Systems, Inc., are Year 2000 readly.

m Enterprise Security Management Products
m Enterprise Subsystem Management Product Family
= Shadow® Product Family and Add-On Components

The mainframe code for the Shadow Product Family, Version 3.1 and all
subsequent versions, are Y 2K ready.

All versions of the client code associated with Shadow® Direct™ and Shadow
Enterprise Direct® are Y 2K ready.

These products use four-digit year values both internally and externally
(although, in afew cases, two-digit year values are displayed while four-digit
year values are maintained internally).

D Note:

While Shadow Direct, Shadow® OS/390 Web Server ", and Shadow
Enterprise Direct are Y 2K ready, customers should be aware that these
products can provide access to data sources that may not be Y 2K ready.

Xiv Shadow Programming Guide December 1999

Working with Technical Support

Working with Technical Support

NEON Systems, Inc. provides a number of ways for you to obtain assistance for
our products. All product support inquiries are handled by the same support
group, regardlessif you are atrial or alicensed customer. The following are
available support options:

Support How to Access How it Works This Option is Best for:

Option

E-mail To contact Technical Support via Email goesto the support queue, | This type of support is excellent
e-mail: which is continuously monitored | for low to medium priority

by a staff of cross-functional requests. It is a proven method
suppor t @eonsys. com technical experts. It isanswered | for providing further information
Email isavailable for receipt 24 hours in the order it isreceived. It is on critical problems that may
aday, 7 days aweek and is answered logged in the support database | have been phoned in. Email isa
between 9AM-7PM CST Monday and assigned a trouble ticket convenient way of sending us a
through Friday. number for tracking purposes. list of lower priority itemsyou
have collected at atimethat is
convenient for you.

Phone To contact Technical Support, During normal working hours This type of support is best for
please call: you will be transferred to high priority requests and initial
1-800-505-6366 (U. S. and Canada) someonewho can usually answer | installation questions. Use this
1-281-491-4200 (outside North your question on the first call. option for any obvious system
America) You may berequired to pagea | errors or anytime you need the

support person viaour phone most rapid reply to your
mail system after hours. question.

Internet To access Internet support, please Simply visit our Web site. This option providesimmediate
visit our Web site at: NEON Systemsworksto keep | accessto documentation,

current, relevant materialson our | updated client-side drivers, and

VI NEonsys. com Web site to support our trial and | our product Knowledge Base.

licensed customers. The Knowledge Baseisa
collection of questions answered
by support. Use this option to
answer your own questions or to
get a better understanding of
what customers ask on an
ongoing basis.

Account To contact your NEON Systems Sales | Your Sales Representative is Contact your Sales

M anager Representative, please call: your account manager. This Representative for pricing

1-800-505-6366 (U. S. and Canada)
1-281-491-4200 (outside North
America)

person is ultimately responsible
for your complete satisfaction
with NEON Systems, Inc.

information, contract details,
password renewal or if you feel
your needs are not being met.

December 1999

Shadow Programming Guide

XV

About this Publication

Xvi Shadow Programming Guide December 1999

CHAPTER 1:

Shadow RPC Direct

This chapter covers programming information for Shadow RPC Direct, acomponent of Shadow Direct
which allows a client application to invoke and communicate with an RPC running on the host.
linformation includes product architecture, using host data, and client API function definitions.

This chapter specifically appliesto Shadow Direct.

Introduction

Shadow RPC Direct works with any client application supported by Shadow
Direct. The currently supported platforms for client applications include:

Windows
Windows 95
Windows NT
0S/2

UNIX.

Client applications can be written in C, or any other language that can call DLL
entry points. Shadow RPC Direct provides both a client and host API. The client
API includes entry points for the following:

Establishing connections to the host.

Initiating host RPCs.

Synchronously and asynchronously sending datato and from the host.
Terminating host connections.

Data conversion and other support functions (for example, the ability to
access and update fieldsin an IMS PCB).

Sending data to and receiving data from aclient program.

Obtaining information about the current environment.

Setting environmental information (DB2 plan name).

Writing messages to the Trace Browse log.

The host RPCs invoked by the client are standard MV S programs that can access
and update DB2 tables, IMS databases, VSAM files, partitioned data sets, etc.
Host RPCs can be written in any high level language or in assembly language. In
al cases, host RPCs use the same host APl to communicate with the Shadow
Direct environment.

Host RPCs execute as tasks or threads in the main product address space. A
separate thread is created for every client session. This approach provides the
highest degree of flexibility for the host RPCs and guarantees the maximum
degree of independence between the threads. Each thread can perform whatever
work it needs without any conflicts between itself and other threads.

December 1999

Shadow Programming Guide 11

Shadow RPC Direct

Product Architecture

Using Shadow RPC Direct always involves two separate programs:

m A client application.
= AnMVSRPC.

The client application initiates the host RPC. After the host RPC has been started,
the client application and the host RPC can send messages back and forth, either
synchronously or asynchronously. These messages or data buffers are defined
entirely by the client application and the host RPC. The format, content, and
sequence of these buffersis determined by the application programmers who
create the client and host components. The client and host component must agree
exactly on al aspects of the data flow between them.

Note:

There is no requirement that any data actually flow back and forth
between the client application and host RPC, and zero length
messages are supported.

No conversions are performed on the data buffers sent between the client
application and the host RPC. Either the client, the host RPC, or both, must take
responsibility for any conversions that are required. The Shadow RPC Direct
client API includes entry points for performing some of these conversions.
However some conversions (of non-message data) are performed on behalf of the
client. For example, the optional OS parameter string passed to the host RPC is
automatically converted from ASCII to EBCDIC (but is not converted to
uppercase).

Client Applications

Shadow RPC Direct client applications are programs written in any one of several
languages that use the Shadow Direct API to invoke and communicate with host
RPCs. These applications are normally written in C or C++, however, these
applications can be written in any language that can call DLL entry points
including Visual Basic (VB), PowerScript, Pascal, COBOL, etc. In practice,
amost any client application programming language can be used to invoke the
Shadow RPC Direct API.

The Shadow RPC Direct API isimplemented as:

s A DLL for Windows, Windows NT and OS/2.

m A shared library for UNIX environments (SunOS, etc.) supporting shared
libraries.

s Anarchivefilefor other UNIX environments.

1-2

Shadow Programming Guide December 1999

Product Architecture

Shadow RPC Direct applications must be linked using one of the two following
import libraries supplied with Shadow RPC Direct:

s SCCDBC. LI B, used with SCCDBC. DLL.
s SCCDBCTS. LI B, used with SOCDBCTS. DLL.

Since the SOCDBCTS. DLL contains numerous diagnostic, debugging, and support
tools, it should be used for al application development purposes. However,
because the SCCDBCTS. DLL is substantially larger and slower than its production
counterpart SCCDBC. DLL, production applications that have been fully debugged
should be switched to the SCCDBC. DLL for improved performance. .

Note:

CDBC. LI Bmust not be used with Shadow RPC Direct applications.
The architecture of Shadow RPC Direct does not support passing
calls from a Shadow RPC Direct application to the Shadow RPC
Direct DLL viathe Microsoft driver manager (CDBC. DLL).

Shadow RPC Direct applications written in C must include the scpghd. h header
file. Thisfile declares all Shadow RPC Direct structures and API entry points, and
must be included in all Shadow RPC Direct client application functions. It can be
used with both ANSI and non-ANSI C compilers, however, it is strongly
recommended that ANSI C be used for compiling and building Shadow RPC
client application programs. This header file will also work in al client
environments including Windows, OS/2, and UNIX.

Host Applications

Host RPCs can be written in any high-level language or 370 assembler. PL/I,
COBOL, FORTRAN and C are all supported. Host RPCs can be any AMODE
and/or any RMODE. To conserve 24-bit memory, RMODE ANY and AMODE 31
are strongly preferred, however, RMODE 24 and AMODE 24 are supported. Data
areas passed to and from the host RPCs can, in all cases, be either above or below
the 16 MB line.

Note:

There are certain special considerations for some languages, which
will be discussed below in detail.

Host RPCs

Host RPCs execute in the main Shadow address space as ordinary load modules.

In other words, host RPCs can use normal programming procedures to access and
update VSAM data sets, flat files, PDSs, etc. Host RPCs are not subject to any of
the restrictions that are normally associated with the CICS or IM S environments.

As previously mentioned, host RPCs can use standard programming constructs to
access and update host data. In addition, host RPCs can use APIs provided by
Shadow to perform certain additional functions.

December 1999

Shadow Programming Guide 1-3

Shadow RPC Direct

These APIsinclude facilities for:

Sending and receiving data buffers as large as 30 kilobytes.

Inserting messages into Shadow Server’s Trace Browse log.
Obtaining information about the current execution environment.
Updating information about the current environment.

Host RPCs can also access and update IMS databases using the DBCTL interface.
This interface allows host RPCs to communicate with either an IMS DB/DC
control region or a DBCTL limited function control region. In either case, the

same APl is used to execute DL/I calls. This API is almost identical to the API
used to execute IMS calls in the CICS environment. A host RPC starts by
scheduling a PSB and then uses the PCB list returned by the PSB schedule
operation to access and update IMS data.

A separate PRB is always created for each host RPC. This approach provides an
additional degree of isolation for the RPC. Specifically, the host RPC can use
ESTAE and ESPIE, as need be, to intercept and recover from abends and program
checks. There is no requirement that a host RPC establish an ESTAE or an ESPIE
of its own. Shadow Server will always establish an ESTAE to catch all abend
errors that occur while host RPC is executing. If Shadow Server does intercept an
abend while the host RPC is executing, the host RPC will be terminated and all
database changes (DB2, IMS) will be rolled back.

Client-RPC Interaction

Figure 1-1, Shadow RPC Direct Product Architecture, shows how client
applications interact with the MVS-based RPCs.

MVS Host
2
Shadow Server DB2
Windows/OS/2/UNIX Address Space
IMS
@ . User-Written
_User-Wn_tten_ RPCs - VSAM
Client Application A
PDSs
TCP/IP or

TCP/IP or

LU 6.2 TCP/IP or Flat Files
LU 6.2 < = | 3] LUG2

Figure 1-1. Shadow RPC Direct Product Architecture

1-4

Shadow Programming Guide December 1999

Product Architecture

1. Theclient application uses the Shadow RPC Direct API to establish either a
TCP/IP or LU 6.2 session with the host. The host RPC is initiated as part of
the session establishment process. A new host thread (or TCB) is always
created for each new session started using the Shadow RPC Direct API.

2. Thehost RPC starts execution in the Shadow Server address space. The host
RPC and client application can then communicate back and forth either
synchronously or asynchronously.

3. Thehost RPCs can access any number of different types of dataincluding
DB2,IMS, VSAM, PDSs, and flat files. DB2 data can be accessed using static
or dynamic SQL, although static SQL isthe preferred choice in most cases.
User-specified plans and packages can be used to access DB2 data, and all
DB2 security will be handled using the userid and password provided by the
client. IMS datais accessed using standard DL/I calls. For example:

The PLITDLI function can be used in PL/I programs.
COBTDLI can be used in COBOL programs.

CTDLI can be used in C programs.

ASMTDLI can be used in 370 assembler programs.

The supported DL/I calsinclude all DL/I callsthat can normally be used in
the CICS environment. Thisincludesall DL/I callsfor accessing and updating
databases, but excludes all DL/I callsfor accessing and updating the IMS

message queue.

VSAM files, PDSs, and flat files can also be accessed by the host RPC using
normal high-level language programming procedures.

As previously mentioned, the data flow between the client application and RPC is

entirely under the control of the client application and the host RPC. These

programs can be designed to send any combination of data buffers back and forth.

For exampl e, the client application might send one data buffer to the host RPC and

get one response back. Alternatively, agreat many data buffers might be sent back

and forth constituting an extended “conversation”. In other cases, there may be no
exchange of any data buffers between the client application and the host RPC.

I> Note:

Once the client application program sends a message to the host to
initiate execution of the host RPC, Shadow Server responds to the
client before starting execution of the host RPC. In other words, the
client application program will resume execution before the host
RPC starts execution. This means that the client application cannot
determine if the initiation of the host RPC has been successful or
not. This approach must be used to allow the client application to
regain control so that the client application and the host RPC can
send messages back and forth.

December 1999

Shadow Programming Guide 1-5

Shadow RPC Direct

Host Execution Environment

Host RPCs execute in avery specific environment. All host RPCs run as separate
TCBsinthe main product address space. A separate TCB is created for each client
session with the host. If a client application creates multiple sessions with one
copy of the product running on the host, multiple TCBswill be created on behal f
of that client. As aconsequence of the TCB processing architecture, host RPCs
are compl etely independent of each other and are executed in an environment very
similar to a TSO application or batch program.

Host RPCs run in problem, not supervisor, state for the following reasons:

s Host RPCsallowed to run in supervisor state could compromise the integrity
of the Shadow Server address space or perhaps even the system as awhole.

m Several high-level languages (PL/I, C) will not execute properly if they are
invoked in supervisor state.

Therestriction that all host RPCs execute in problem state should not restrict
which applications can be implemented using host RPCs. Host RPCs will always
executein KEY 8. Thisisthe standard protection key for al problem programs,
such as TSO applications or batch programs. Once again, this design does not
restrict which applications can be implemented using Shadow Server.

Although non-reentrant programs are supported, RPCs should be designed and
implemented as reentrant programs, if at al possible. Thiswill allow all users of
an RPC application to share one copy of the object code. This approach will
dramatically reduce memory utilization requirementsin many cases. If the
application runsin RMODE 24, reentrance is even more important due to the fact
that the storage below the 16 MB lineis scarce in many installations. The Shadow
Server address space itself uses no storage below the 16 MB line.

The client application can optionally pass a parameter string to the host RPC. The
parameter string length can range from 0 to 100 bytes. This string is passed to the
host RPC using an OS parameter list. In other words, the first word of the
parameter list points to atwo-byte prefix followed by up to 100 characters of
actual parameter data. The parameter string is placed in 24-bit storage so it can be
accessed by all host RPCs.

Virtual Storage Utilization

RPCs running in the Shadow Server address space can acquire and free 24- and/or
31-bit storage. However, use of 31-bit storage is very strongly recommended. As
previously mentioned, 24-bit storage is a scarce resource in many environments,
and serious problems can arise if the entire pool of 24-bit storage is depleted by
RPC applications.

An important consideration in this context is that Shadow RPC applications can

run for along time. This means that the storage used by these applications can be
long lived. Thisisan important point for the overall design of RPCsrunning in the
Shadow Server address space. Thetotal virtual storage utilization of all host RPCs

1-6

Shadow Programming Guide December 1999

Host Execution Environment

executing concurrently must not exceed the available 24- and 31-bit virtual
storage. In practice, there is often alarge amount of unused 31-bit storage,
whereas 24-hit storage may be sharply constrained.

Oneway of circumventing some of these constraintsis to use Shadow RPC Direct
RPCs which are in general much more short-lived than their Shadow RPC Direct
counterparts.

RPC Libraries

Each NEON Client RPC is comprised of one or more load modules. The RPC
name must be either a PDS member name or alias name in the RPC library. RPC
load modules must be stored in the SDBRPCL D concatenation of the Shadow
Server address space.

The Shadow Server JCL containsa SDBRPCLB DD statement. As many separate
RPC libraries as necessary can be concatenated using this DD statement. If this
DD statement is coded in the Shadow Server starter task JCL, all RPC load
modules will be loaded from this library concatenation.

There are several reasons for storing RPC load modules in the RPCL 1B
concatenation:

s Data sets comprising the RPCLIB concatenation do not need to be APF
authorized. By contrast, the libraries of the STEPLIB concatenation must be
APF authorized. This approach alows host RPC applications developers to
update the RPC library concatenation with a minimum of security. Stringent
security procedures are often required before APF libraries can be updated.
Additionally, this method providesisolation from the STEPLIB
concatenation.

m Useof the RPC library concatenation improves performance.

Other DD Statements

Host RPCs can use any other DD statements in the Shadow Server address space
JCL. Each installation can add additional DD statements for VSAM files, flat
files, PDSs, etc. to meet application requirements. The DD statements used by the
Shadow Server address space itself should not be changed. Please see the Shadow
Server User’'s Guidéor additional information about the Shadow Server address
space JCL.

The Shadow Server User’s Guidecuments procedures for running the Shadow
Server under TSO. This mechanism was specifically designed to facilitate the
development of host RPCs. Each application developer can work with an

individual copy of the Shadow Server running under TSO, allowing the devel oper

to work independently. The Shadow Server runs unauthorized in the TSO
environment and therefore cannot be used in any way to compromise system
security. All accessesto data are associated with the TSO userid of the application
developer. For additional information please see the Shadow Server User’s Guide

December 1999 Shadow Programming Guide 1-7

Shadow RPC Direct

Data Transmission between the Client
Application and the Host RPC

Datais transmitted between the client application and the host RPC using
messages. Each message is a single buffer of data, and has a specific length
(possible zero), specified by the sender. It will always be sent and received as a
single entity. In other words the sender passes compl ete messages on the sending
side, and the receiver receives complete messages on the receiving side. This
approach is different from the TCP/IP stream approach where the data sent by one
side can be received as multiple pieces on the other side, or multiple transmissions
from the sender can be received together by the receiver.

In all cases, the messages sent between the client application and the host RPC are
compressed to reduce network utilization. The compression/decompression
processis completely transparent at both ends. The compression algorithm used is
simple and fast, and consists of using compression factors of up to 10 and 20:1 for
the sending and receiving of sparse data buffers (many blanks or binary zeros).

Using Host Data

Host RPCs can access and update many different types of host data including
VSAM, DB2 and IMS. In general, host RPCs can use normal high-level language
facilitiesto access and update these databases. However, special considerations do
apply in some cases, and these considerations should be carefully reviewed before
attempting to access and update the databases listed below.

DB2

Host RPCs can use either static or dynamic SQL to access DB2 databases,
however, static SQL isused in most cases. Host RPC programs using either static
or dynamic SQL can be prepared using standard DB2 program development
procedures.

At run time, the plan name used by a host RPC with DB2 can be specified in the
following two ways.

m Theclient program that invokesthe host RPC can specify the host DB2
subsystem name and the plan name.

In this case, both the DB2 subsystem name and the plan name will be padded
with blanks and translated from ASCII to EBCDIC. Shadow Server will use
the DB2 subsystem name and the plan name to establish a connection to DB2
immediately prior to the execution of the host RPC. This approach eliminates
the need for the host RPC to establish its own connection to DB2.

The connection to DB2 will automatically be broken as soon as the host RPC
terminates. DSNALI close will be called to terminate the DB2 connection and
release any DB2 resources. DSNALI close will be called with a close type of
either SYNC or ABRT. By default, SYNC will be used to commit any

1-8 Shadow Programming Guide December 1999

Using Host Data

IMS

uncommitted changes. However, if the host RPC abended, ABRT will be used
to roll back any uncommitted DB2 changes.

s A host RPC can establish its own connection to DB2 using DSNALI.

Thisapproach isnot recommended. If ahost application establishesits own
connection with DB2 using DSNALI, then the authorization ID that DB2 uses
to validate all host RPC requests to access/update datawill be undefined.
Thisrestriction can be removed by installing the Shadow Server modification
to the DSN3@ATH exit. The best approach is simply to let Shadow Server
providethe DSNALI open and close calls rather than incorporating these calls
into the host RPC application.

Note:

A dlightly different link-edit procedure must be used for host RPCs
versus DSNALI command applications. Host RPCs must be linked
with DSNALI and DSNHLI2 rather than DSNELI. The correct
approach isto include only DSNALI in the link-edit step.

Host RPCs can access and update IM S databases using the DBCTL interface. This
interface allows any number of host RPCs to concurrently and independently
access and update IM S databases, however, it does not provide accessto IMS
message queues. Host RPCs that use DBCTL to communicate with IMS can use
al the IMSfacilities that are available to CICS transactions. In other words, host
RPCs have the same IM S programming facilities available as transactions running
under CICS. Host RPCs use the same mechanism (DBCTL) to communicate with
IMS as do CICS transactions running under CICS Version 3 and later releases.

DBCTL isafeature of IMS Version 3 and later releases. The DBCTL API is
provided by either a separate DBCTL address space or by an IMS DB/DC system.
See the IMS general information manual (GC26-4275) for additional information
about installing and utilizing DBCTL. There are no special IMS generation or
run-time parameters required to use the DBCTL API.

The DBCTL feature of the Shadow Server address spaceis not enabled by default.
This feature must be enabled using the required product feature string letter, ‘I'.
The product feature string is processed during product initialization.

Writing a Host RPC

Using DBCTL API

Host RPCs using the IMS interface can be written in any high-level language or
assembler. In each case, the application programmer should call the language-
specific interface routine. Host IMS RPCs are not passed a PCB list on entry.
Instead they must schedule a PSB by calling the language-specific IMS interface
function. This call (the function code'RCB’) returns a PCB list to the caller.

December 1999

Shadow Programming Guide 1-9

Shadow RPC Direct

The PCB list can then be used for subsequent IMS calls. Standard IMS function
codes (‘GN' , ‘DELT' , ‘ISRT , ‘REPL’) can be used to get segments, delete
segments, insert segments, and replace IMS segments.

The host RPC can either commit any changes it makes or terminate. If ahost RPC
neither commits changes nor terminates the PSB, Shadow Server will
automatically perform these tasks after the host RPC terminates. Shadow Server
will commit all changes made up to that point, if the RPC terminates normally.
Shadow Server will roll back any uncommitted changes, if the RPC abends.

VSAM

Host RPCs running under Shadow Server can use VSAM data sets. Each host
RPC must start by opening whatever data sets it needs. The DD statements for
these data sets should be incorporated into the Shadow Server address space
started task JCL. In the test environment, the VSAM data sets should be allocated
by the TSO user running atest copy of the Shadow Server address space.

Host RPCs can use hormal high-level language facilities to access and update
V SAM records. Standard VSAM data sharing facilities can be used to coordinate
updatesto VSAM files.

RPC Debug Support

Version 4.5 of Shadow Direct provides accessto a GUI, source level debugger for
RPC. Thisfeatureis called the Visual Age ™ Remote Debugger (VAD) and isa
product of IBM. It allows each programmer developing RPCs or stored
procedures to debug them on his or her own personal computer.

A major benefit of this debugger isthat a programmer no longer hasto run a
private copy of Shadow Server under TSO. In addition, this debugger requires no
changes to the invoking ODBC application or to Shadow Direct on the host.
Shadow Direct automatically invokes VAD on the same PC that is running the
ODBC application.

For more information about the VAD debugger, check the IBM website at http://
www-4.ibm.com/software/ad/c390/pt/.

To use the debugger:

1. Makesurethat VAD and Shadow Direct, Version 4.5, have both been properly
installed on your system. For more information about this step, check the IBM
installation documentation for VAD, and the Shadow Installation Guide for
Shadow Direct.

2. On the mainframe, compile and link the Stored Procedure written in C, C++,
Coboal, or PL/I with the TEST option.

1-10

Shadow Programming Guide December 1999

RPC Debug Support

Note:

The output listing from the compile step must be stored in afile
and not routed to SY SOUT.

3. Copy theload module to the standard RPC load module library, which will be
aSTEPLIB or RPCLIB in the started task environment. If the Shadow Server
isinvoked using TSO, the load module can also be stored in the ISPLLIB.

4. Usethe ODBC Administrator to set the Host Debug option to the correct
language type. To get to this screen, perform the following steps (for more
detailed information about these steps, refer to the NEON Client User’s
Guide, Chapter 2, “Installing NEON Client”):

a. Select the Neon_Client_Debug_Sample32 option from the User Data
Sources screen.

b. Click the <ADVANCED> button at the bottom of the Neon Client 32-bit
screen.

c. Click the <MORE> button at the bottom of the NEON Client Advanced
Information Screen. This will take you to the NEON Optional Client
Information Screen, as shown below:

NEON Client Optional Information

Optional Seftings Feyword: HODE

DTS Plan File o [Vale
Enable Multitazking
Extended Cursor Pool
Fast Logon ! CoBOL j
Fix INSERT statements

Fix DB2 Outer Joing

Fix Sting Length

Flaating to Character Digits
Gaiji Extenzion Support

G aiji Extenzion T able Mame
German HLS support This field iz uzed to contral the debugaing of -
iHost Uebugging Values hozt programs [generally Stored Procedures].

Description

Host User Parm Thiz figld iz either set to the type of language
Identifier Quote Dption the host program was wiitten in, or NOME. The
Ignore High Bound Column Errors hiost program language must be specified
lgnare Underscore Characters corectly 5o that the program can be invoked
Language ID with the correct debugaging options. The

Long data fis supported values are COBOL, PLI, C, and
Lotus Approach Compatibility C++. The default is HOME.

L7 Campression
tasimum Buffer Size
Meszage Type

M5 Access Compatibility
MTS Security SID Type
Multiet TCP/P Compatibility =l |

Ok, | Cancel Drefault Dietault Al | Helm |

Figure 1-2. NEON Client Optional Information Screen

December 1999

Shadow Programming Guide 1-11

Shadow RPC Direct

d. Select “Host Debugging Values” as the optional setting.
e. Select the appropriate keyword value. Options include:

COBOL
C

C++
PL/

5. Start the VAD Remote Debugger Daemon from the Windows Start menu, or
by clicking on an icon. You should see the following screen:

IBM<R?> WViszualAge<TH> Hemote Debugger Daemon

Uersion 5.0808

— Licensed Materials — Program—Property of IBH

(GC> Copyright IBM Corp. 1997 - All Rights Reserwved.

DBG> Initializing communication: protocol=tcpip, port=8008
Daemon started
DBG>» Waiting for connection...

Figure 1-3. Daemon Startup Screen

6. Start the ODBC application that invokes the host RPC. The following figure
shows an example of the GUI Debug screen. This screen will appear as soon
as the ODBC appplication executes the SQL CALLS for the RPC:

1-12 Shadow Programming Guide December 1999

RPC Debug Support

% DDEBC Test [(32-bit)

File Edt Connect Statement Besultz Catalog Mizc Tool: Window Help

_ﬁ|n| 2= L EEEE] EE

':'r;: Output 1] Y
¢ 1: ai38pds@P391. HONE H=

[1: 0x00BB068S B

call db2batch))|

4 F
Full Cannect:
dhe szSglState = "01004", *pfNativeErrar = 0, *pchErorsg = 54
szErrotsg="[NEDON][SCOD32TS DLL]Output connection sting truncated"
Successtully connected to DSMN 'F349T.NOMNE".

|User 'ai3Bpds' at DSM 'P3ST.NONE", HDBC: 0x00CAFESC

Figure 1-4. ODBC Test Debug Screen

7. Usethe VAD as needed to debug the host program. Figure 1-5 and Figure 1—
6 show examples of what the VAD screens look like when they are in the
process of debugging.

December 1999 Shadow Programming Guide 1-13

Shadow RPC Direct

E Source: DB2BATCH - Thread :1 M= E3
File Wiew Breakpointz Monitors Bun Options Windows Help

15 SOL-AVAR-ADDR1 PIC S9(9) COMP-4. s
15 SOL-AVAR-IND1 PIC S59(9) COMP-4.

* LINKAGE SECTION.

* 01 SOL-PARAM-FIELD .

* 05 SOL-PARAM-FILLER PIC 59(3) CCHE.
* 05 SOL-PARAM-VALUE FIC X(100).

FROCEDURE DIVISION.
DSHSOL SECTION.

L-INIT-END.

MOVE 1 TO SQL-INIT-FLAG.

CALL 'DSHHADDR' USIHNG SQL-APAEMETR OF SQL-PLIST1 SQL-AVAR-LIS
= TL.

CALL 'DSHNHADDR' USING SOL-AVAR-ADDRS OF SOL-PLIST1 DSNENM SOL
= —HULL.

CALL 'DSNHADDR' USING SOL-CODEFPTE OF SOL-FLIST1 SOLCA.
SOL-INIT-END.

CONTINUE.

HOVE 'OPEN ' TO CPENFH.

HOVE 'DSH1' TO S5ID.

MOVE 'DB2BATCH' TO FLAHMAME.

DISPLAY 'ABOUT TO CALL DSHALI'

CALL 'DSMALI' USING CFEWFN SS5ID PLANNAME RETCODE REASCOLDE
DISPLAY 'RETCODE FROM DSNALI OPEN: ' RETCODE

*
* EXEC SQL CONNECT TO DEZE
* END-EXEC.
* DISPLAY 'CONNECT SQLCODE: ' SQLCODE -
| Ll—‘
Figure 1-5.
Debugger - Sezsion Control =]
File Breakpointz Monitors Bun Options Windows Help
STATUS : Ready.
Threads DB2BATCH
Thread: 1] DB2BATCH
Figure 1-6.

1-14 Shadow Programming Guide December 1999

RPC Debug Support

The following information and restrictions apply to the VAD debugger:

m VAD can only be used to debug Shadow RPCs or Stored Procedure. It does
not support DB2 Stored Procedures at this time, however, it will in the future.

s VAD can only be used with OE TCP/IP and Interlink TCP/IP aslong as the
interlink stack is being ussed via OE sockets. It does not, and never will,
support LU6.2 and IUCV TCH/IP.

m VAD can only be used with LE/370, version 1.8 and later.
m VAD supports only OS/390 2.4 and later.

m VAD can be used with both started task and TSO versions of the Shadow
Server. The started task version eiminates the need to configure a separate
copy of Shadow Server (with its own port number) for each RPC devel oper,
and the TSO version provides a separate copy of Shadow Server to each RPC
developer.

m Thecurrent version of VAD gets a GPF in the termination phase. The GPF
occurs after host RPC has completed execution, and has no harmful effect.

December 1999 Shadow Programming Guide 1-15

Shadow RPC Direct

Client API Function Definitions

The Shadow RPC Direct API cals are used by Shadow RPC Direct applications
to establish a connection to the host and to transmit data to and from the host. All
these functions use the Pascal calling convention. None of these functions take a
variable number of arguments.

The following functions are available:

SCAsciiToEbcdic: Converts a string from ASCII to EBCDIC
SCEbcdicToAscii: Converts a string from EBCDIC to ASCII
SCReadBuffer: Receives a data buffer from the host

SCWriteBuffer: Sends a data buffer to the host

SCWriteReadBuffer: Writes a buffer to the host and receives data buffer

1-16 Shadow Programming Guide December 1999

Client API Function Definitions

SCAsciiToEbcdic

IMS DirectSCAscii ToEbcdic converts character data from ASCII to RPC Direct
EBCDIC. Thisfunction is normally used to convert data areas that are sent to the
host.

Syntax

RETCDBC SCAsci i TokEbedi c(hdbc, rgbAscii, rgbEbcdic, cbVal ue)

Arguments

The SCAscii ToEbcdic function accepts the following arguments:

Type

Argum

ent| Use Description

HDBC

hdbc

Input Connection handle.

PTR

rgbAscii

Input Pointer to storage area containing ASCII character datato be converted.

PTR

rgbEbcdic

Output Pointer to output area where converted EBCDIC characters should be stored.

SDWORD

cbValue

Input Number of bytesto convert from ASCII to EBCDIC.

Returns

SQL_SUCCESS
SQL_SUCCESS WITH_INFO
SQL_ERROR
SQL_INVALID_HANDLE

Diagnostics

When SCAscii ToEbcdic returns SQL_ERROR or

SQL_SUCCESS WITH_INFO, an associated SQL STATE value may be obtained
by calling SQLError. The following table lists the SQL STATE values commonly
returned by SCAsciiToEbcdic and explains each one in the context of this
function. The return code associated with each SQLSTATE valueis
SQL_ERROR, unless noted otherwise.

SQLSTATE

Error

Description

01000

Genera warning

Driver-specific informational message (function returns
SQL_SUCCESS WITH_INFO).

08003

Connection not open

Connection specified by hdbc argument was not open. Connection
processes must be compl eted successfully (and the connection must be
open) for the driver to perform this function.

S1009

Invalid argument value

Either rgbAscii or rgbEbcdic pointer was null.

S$1090

Invalid string or buffer length

Value specified for chValue was |ess than zero.

December 1999

Shadow Programming Guide 1-17

Shadow RPC Direct

Comments

Thisfunction is used to convert a character string from ASCII to EBCDIC. The
character string can be converted in place.

Note:

In the Visual Basic environment, fixed length character strings cannot be
converted in place. Visual Basic imposes this restriction because it
copies each of the character string arguments of this function into
temporary data areas and then restores temporary data areas in an
unpredictable order. However, variable length Visual Basic character
strings may be converted in place using this function.

Code Example

None at thistime.

Related Functions

For information about converting from EBCDIC to ASCII seethe
“SCEbcdicToAscii,” section on page 1-19.

1-18

Shadow Programming Guide December 1999

Client API Function Definitions

SCEbcdicToAscil

IMS Direct/RPC Direct

SCEbcdicToAscii converts character datafrom EBCDIC to ASCII. This function
isnormally used to convert data areas that are received from the host.

Syntax
RETCDBC SCebcdi cToAsci i (hdbc, rgbEbedic, rgbAscii, cbVal ue)

Arguments

The SCEbcdicToAscii function accepts the following arguments:

Type Argument | Use Description

HDBC hdbc Input Connection handle.

PTR rgbEbcdic Input Pointer to storage area containing EBCDIC character datato be converted.

PTR rgbAscii Output Pointer to output area where converted ASCII characters should be stored.

SDWORD | chValue Input Number of bytesto convert from EBCDIC to ASCII.

Returns

= SQL_SUCCESS

s SQL_SUCCESS WITH_INFO

s SQL ERROR

s SQL_INVALID HANDLE

Diagnostics

When SCEbcdicToAscii returns SQL_ERROR or

SQL_SUCCESS WITH_INFO, an associated SQL STATE value may be obtained
by calling SQLError. The following table lists the SQLSTATE vaues commonly
returned by SCEbcdicToAscii and explains each one in the context of this
function. The return code associated with each SQLSTATE valueis
SQL_ERROR, unless nhoted otherwise.

SQLSTATE | Error Description

01000 General warning Driver-specific informational message. (Function returns
SQ_SUCCESS WTH_| NFQ)

08003 Connection not open Connection specified by hdbc argument was not open. Connection
processes must be completed successfully (and the connection must be
open) for driver to perform this function.

S1009 Invalid argument value Either rgbAscii or rgbEbcdic pointer was null.

S1090 Invalid string or buffer length Value specified for cbhVaue was less than zero.

December 1999

Shadow Programming Guide 1-19

Shadow RPC Direct

Comments

Thisfunction is used to convert a character string from EBCDIC to ASCII. The
character string can be converted in place.

Note:

In the Visual Basic environment, fixed length character strings cannot be
converted in place. Visual Basic imposes this restriction because it
copies each of the character string arguments of this function into
temporary data areas and then restores temporary data areas in an
unpredictable order. However, variable length Visual Basic character
strings can be converted in place using this function

Code Example

None at thistime.

Related Functions

For information about converting from ASCII to EBCDIC seethe
“SCAsciiToEbcdic,” section on page 1-17.

1-20

Shadow Programming Guide December 1999

Client API Function Definitions

SCReadBuffer

RPC Direct

SCReadBuffer reads a complete data buffer from the host. Execution is suspended
until the data buffer is available or an error is detected.

Syntax
RETCDBC SCReadBuf f er (hdbc, rgbVval ue, chVal uehMax, pcbVal ue)

Arguments

The SCReadBuffer function accepts the following arguments:

Type Argument Use Description
HDBC hdbc Input Connection handle.
PTR rgbValue Output Buffer for input data. Part or al of this buffer may befilled
with data obtained from host.
SDWORD cbValueMax Input Maximum length of rgbValue buffer.
SDWORD FAR * pcbValue Output Total number of bytes read into buffer pointed to by rgbValue.
Returns
= SQL_SUCCESS
s SQL_SUCCESS WITH_INFO
s SQL ERROR
s SQL_INVALID_HANDLE
Diagnostics

When SCReadBuffer returns SQL_ERROR or SQL_SUCCESS WITH_INFO,
an associated SQL STATE value may be obtained by calling SQLError. The
following table lists the SQL STATE values commonly returned by SCReadBuffer
and explains each onein the context of this function. The return code associated
with each SQLSTATE value is SQL_ERROR, unless noted otherwise.

SQLSTATE | Error Description

01000 General warning Driver-specific informational message. (Function returns
SQL_SUCCESS WITH_INFO.)

08003 Connection not open Connection specified by hdbc argument was not open.
Connection process must be completed successfully (and
connection must be open) for driver to perform this function.

0801 Communication link failure Communication link between driver and data source failed

before or while the data buffer was being read from the host.

December 1999

Shadow Programming Guide 1-21

Shadow RPC Direct

SQLSTATE

Error

Description

22003

Buffer size error

Buffer transmitted from host was larger than data area
provided to receive buffer. Entire host buffer was discarded.

S1009

Invalid argument value Value specified for argument rgbValue was null.

S1090

Invalid string or buffer length Value specified for argument cbvalueMax was less than zero.

Comments

Thisfunction is used to read a buffer of data from the host. It will suspend
execution until either a data buffer is received from the error or a communication
error is detected. The size of the data buffer can range from zero to cbValueMax.
Zero length buffers are supported and can be transmitted both to and from

the host.

Note:

I> The buffer data area provided by the caller must be large enough to
contain the entire buffer transmitted from the host. If the dataareais
not large enough, the entire buffer will be discarded and an error will
be reported to the calling program.

Code Example

None at thistime.

Related Functions

For information about See

Converting datafrom ASCII to EBCDIC SCAsciiToEbcdic

Converting data from EBCDIC to ASCII SCEbcdicToAscii

Sending a buffer to the host SCWriteBuffer

Writing a buffer to a host and receiving areply SCWriteReadBuffer

1-22

Shadow Programming Guide December 1999

Client API Function Definitions

SCWriteBuffer

RPC Direct

SCWriteBuffer sends a buffer of datafrom the client application to the host RPC
program. Execution of the client application program is suspended until the datais
copied from the buffer provided by the caller.

Syntax
RETCDBC SCWii t eBuf f er (hdbc, rgbVal ue, cbVal ue)
Arguments
The SCWriteBuffer function accepts the following arguments:
Type Argument Use Description
HDBC hdbc Input Connection handle.
PTR rgbValue Input rgbValue argument contains a pointer to data buffer that should be
transmitted to host. This buffer is not null terminated.
SDWORD cbValue Input cbValue argument contains number of bytesto be transmitted to host.
This value must be greater than or equal to zero.
Returns
s SQL_SUCCESS
s SQL_SUCCESS WITH_INFO
s SQL ERROR
= SQL_INVALID HANDLE
Diagnostics
When SCWriteBuffer returns SQL_ ERROR or SQL_SUCCESS WITH_INFO,
an associated SQL STATE value may be obtained by calling SQLError. The
following table liststhe SQL STATE values commonly returned by SCWriteBuffer
and explains each one in the context of this function. The return code associated
with each SQL STATE valueis SQL_ERROR, unless noted otherwise.
SQLSTATE | Error Description
01000 Genera warning Driver-specific informational message. (Function returns
SQL_SUCCESS WITH_INFO.)
08003 Connection not open Connection specified by hdbc argument was not open.

Connection processes must be completed successfully (and
connection must be open) for driver to perform this function.

December 1999

Shadow Programming Guide 1-23

Shadow RPC Direct

SQLSTATE

Error Description

083501

Communication Link Failure Communication link between driver and data source to which
driver was connected failed before function completed
processing.

S1009

Invalid argument value rgbValue argument was a null pointer.

S1090

Invalid string or buffer length Value specified for argument chValue was less than zero.

Comments

Thisfunction is used to write a buffer of data from the client to the host. The
length of the buffer can range from zero up to approximately 30,000 bytes.
Control returns to the invoking application as soon as the data in the application
buffer is copied into the communication buffers. There is no guarantee that when
this function returns, the data has actually been transmitted to the host, nor isthere
any way of suspending execution until the data has been successfully transmitted.

Thisfunction will NOT turn the line around after the write operation is completed.
This means that the host RPC will not be able to send areply to the client. The
SCWriteReadBuffer function should be used if the host RPC is expected to send a
response buffer.

Note:
Thisisaconsideration only for LU 6.2 client/server sessions.

Code Example

None at thistime.

Related Functions

For information about See

Writing a buffer to a host and receiving areply SCWriteReadBuffer

Reading a buffer of data from the host SCReadBuffer

Converting datafrom ASCII to EBCDIC SCAsciiToEbcdic

Converting data from EBCDIC to ASCII SCEbcdicToAscii

1-24

Shadow Programming Guide December 1999

Client API Function Definitions

SCWriteReadBuffer

RPC Direct

SCWriteReadBuffer writes a buffer of datato the host and receives areply buffer
from the host. Execution of the client application program is suspended until a
buffer is received from the host, or a communication error occurs.

Syntax

RETCDBC SCWi t eReadBuf fer (hdbc, rgbVal ue, cbVal ue, cbVal ueMax,
pcbVal ue)

Arguments
The SCWriteReadBuffer function accepts the following arguments:

Type Argument Use Description

HDBC hdbc Input Connection handle.

PTR rgbValue 1/0 rgbValue argument points to the data buffer used to both send
and receive data. Buffer must initially contain data that will be
transmitted to host. This buffer is not null-terminated. Upon
successful completion of this function, buffer will contain data
received from host.

SDWORD chVaue Input cbValue argument contains number of bytes of datato send to
host.

SDWORD chValueMax Input Maximum length of rghValue buffer.

SDWORD FAR * pchValue Output Total number of bytes read into buffer pointed to by the
rgbValue argument.

Returns

s SQL_SUCCESS

s SQL_SUCCESS WITH_INFO,
= SQL_ERROR

s SQL_INVALID_HANDLE.

Diagnostics

When SCWriteReadBuffer returns SQL_ERROR or

SQL_SUCCESS WITH_INFO, an associated SQL STATE value may be obtained
by calling SQLError. The following table lists the SQL STATE values commonly
returned by SCWriteReadBuffer and explains each one in the context of this
function. The return code associated with each SQLSTATE valueis
SQL_ERROR, unless noted otherwise.

December 1999

Shadow Programming Guide 1-25

Shadow RPC Direct

SQLSTATE Error Description

01000 General warning Driver-specific informational message. (Function returns
SQL_SUCCESS WITH_INFO.)

08003 Connection not open Connection specified by hdbc argument was not open. Connection
processes must be completed successfully (and connection must be
open) for driver to performthis function.

0801 Communication link failure Communication link between driver and data source to which driver
was connected failed before function completed processing.

22003 Numeric value out of range Buffer transmitted from host was larger than data area provided to
receive buffer. Entire host buffer was discarded.

S1009 Invalid argument value rgbValue argument was a null pointer.
S1090 Invalid string or buffer length Value specified for argument chValue was less than zero.
Comments

Thisfunction is used to write a data buffer to the host and then receive areply.
Control isnot returned to the invoking application until either thereply isreceived

or acommunication error is detected. This function is normally used to send
“transactions” to the host and then receive a reply. If the data area is not large
enough, the entire buffer will be discarded and an error will be reported to the
calling program.

This function will turn the line around after the operation is completed. This
means that the host PC will be able to send a reply to the client. The
SCWriteBuffer function should be used if multiple buffers must be sent to the host
without an intervening read.

Note:
This is a consideration only for LU 6.2 client/server sessions.

Code Example

None at this time.

Related Functions

For information about See

Writing a buffer to a host SCWriteBuffer
Reading a buffer of data from the host SCReadBuffer
Converting data from ASCII to EBCDIC SCAsciiToEbcdic
Converting datafrom EBCDIC to ASCII SCEbcdicToAscii

1-26 Shadow Programming Guide December 1999

CHAPTER 2:

ODBC CALL RPCs

This chapter covers programming information for ODBC CALL RPCs, which can be used to access
most types of data residing on the mainframe.The information covered here includes ODBC CALL
RPC examples, sample ODBC CALL RPCsfor VSAM, and other sample RPCs.

This chapter appliesto Shadow Direct and Shadow OS/390 Web Server.

Introduction

ODBC CALL RPCs can be used to access ailmost any type of dataresiding on the
mainframe in the same manner RPC Direct RPCs can. ThisincludesDB2, IMS,
VSAM, PDSs, Flat Files, ADABAS, and M204. However, ODBC CALL RPCs
have a major advantage over RPC Direct RPCs:

s ODBC CALL RPCsdo not require any additional coding from the client
application.
Relational ODBC result sets are returned.
Multiple RPCs can be executed from the same connection.
ODBC CALL RPCs execute and end, unlike RPC Direct RPCs which remain
|loaded for the life of the connection or are terminated.

ODBC CALL RPCscan be executed with a CALL statement from any ODBC
compliant client application, such as Visual Basic, Powerbuilder, MS-Access, etc.
Since they are written using APIs provided on the host, they can return an ODBC
result set to the client application. With ODBC CALL RPCs, the remote programs
execute and end similar to the way anormal DB2 query executes and ends. The
results of the RPC are accessed in the same manner as the results of a DB2 query.

ODBC CALL RPC Examples

All the source to the sample ODBC CALL RPCsislocated in the
NEON. SV040100. SAVP dataset on the MV S host. Compiled copies of these
samples are also provided in the NECN SV040100. RPCLI B dataset.

The Visual Basic application, VBDEMO, which is shipped with the client ODBC
drivers, can be used to execute the sasmple ODBC CALL RPCs. In order to invoke
the RPC, usethe CALL statement preceding the RPC. Parametersto the RPCs are
defined by placing the parameters with parenthesis. Each parameter is separated
by acomma, literals are placed in quotes, and numeric datais | eft alone.

Example:

CALL RPCNAME(‘This is a literal’, The next parameter is a
number’,100)

December 1999

Shadow Programming Guide 2-1

ODBC CALL RPCs

Sample ODBC CALL RPC for VSAM

NEON SV040100. SAMP(SDOOVSP) isasample COBOL program that returns
records from a VSAM dataset. This program can return all rows of the VSAM
dataset or only the rows specified by an optional parameter.

Use the following steps to set up the sample application:

1. Allocate the sample VSAM cluster and popul ate it with sample data. Job
DEFSTAFF in NECN. SV040100. CNTL will allocate the VSAM cluster and
repro the sample data into the dataset.

2. Uncomment the SDBV S01 DDNAME in the main SDBB started task PROC.
Then update the DSNAME with the fully qualified name of the VSAM
dataset alocated in step 1, and restart Shadow Server. You can avoid
alocating the VSAM dataset within the SDBB started task by using dynamic
alocation within your RPC application.

3. The sample SDCOV SP program should already be compiled and linked and
placed in the NEON SV040100. RPCLI B dataset. If necessary, the sample
program can be recompiled and re-linked using the source code provided in
NECN SV040100. SAVP.

To run the sample, you can use any ODBC-compliant application on your client
workstation to issue a CALL program nane. The client application must have
the ability to run a user-defined SQL script, such as MS-Query, Visual Basic, etc.
The VBDEMO application that is shipped with Shadow Direct can be used for
this.

The sample RPC to VSAM is a prime example of how to use Shadow Direct’s
unique ODBC CALL RPC approach for developing your client-server
applications. The sample SDCOVSP RPC will:

= Read the VSAM dataset.
m Place the output in a relational ODBC result set.
m Return the results to the calling client application.

There are six ODBC calls used in this sample for this purpose. These calls and
others have all been simplified for the application developer by a common header
file that should be included in your RPC applications. These files provide all the
definitions needed for support of the Host APIs, and also contain documentation
for each API. The following header files are included in the SDB.SAMP dataset:

s SBCPHD For COBOL
SCCPHD for C
SPCPHD for PL/1

2-2

Shadow Programming Guide December 1999

Sample ODBC CALL RPC for VSAM

The following procedure division shows how to emulate ODBC callsin a host
RPC, using the program SDCOV SP as an example (for detailed information about
each parameter, please see the comments in the Header files):

1.

3.

CALL * SDCPG "’ USI NG CONNECTI ON- HANDLE SQL- USER- NAME SQL-
USER D SQ.- USERI D- LEN SQL- USER D- ACTUAL- LEN

SDCPGI or SQLGETINFO can be used to return information from Shadow
Server about the current environment. Examples of this information include
Userid of the person calling the RPC, the DB2 subsystem being accessed, etc.
For acomplete list of possible values, refer to the Header filein the

SDB. SAMWP dataset.

SQL- USER- NAME is the actual information requested.

SQ.- USER D isthe pointer to storage for the information.

SQ.- USER D LENis the maximum length of the requested data.
SQ.- USER D- ACTUAL- LENisthe actual length of the returned
information.

CALL ' SDCPNP’ US| NG STATEMENT- HANDLE SQL- PARAM
COUNT.

SDCPNP or SQLNUMPARANS is used to return to the program the number of
parameters sent to the RPC. This number will be returned in SQ_- PARAM
GOUNT.

CALL ’ SDCPDP US| NG STATEMENT- HANDLE
SQL- PARAM NUVBER

SQL- DATA- TYPE

SQL- PRECI SI ON

SQL- SCALE

SQL- NULLABLE- TYPE

SQL- PARAM TYPE

SQL- PARAM ADDRESS

SQL- PARAM LENGTH

SDCPDP or SQLDESCR BEPARAMperforms a describe parameter on behalf of
an ODBC CALL RPC. Thiscall is used to obtain information about the
parameter passed from the client to the host. SDCPDP should be executed for
each parameter being passed to the RPC.

» SQ- PARAM NUMBER should be set by the programmer to the parameter
number being requested.

December 1999

Shadow Programming Guide 2-3

ODBC CALL RPCs

4.

SQL- DATA- TYPE returns the datatype of the parameter, SQL-
VARCHAR, SQL-SMALLINIT, etc.

SQL- PRECI SI ON returns the precision of the parameter.

SQL- SCALE returnsthe scale of the parameter, used mainly with decimal
values.

SQL- NULLABLE- TYPE specifies whether or not the parameter is
nullable.

SQL- PARAM TYPE returns the type of parameter, which will mainly be
SQ.- PARAM | NPUT.

SQL- PARAM ADDRESS returns the pointer in storage for the parameter.

SQL- PARAM LENGTH returns the actual length of the column. The
length will be the same as the precision except for variable length fields
(character and binary). For variable length fields, the length will be the
current length.

CALL ' SDCPBC USI NG STATEMENT- HANDLE

SQ- CALUMN- NUMBER

SQL- G DEFAULT

SQL- SMALLI NT

SQL- PRECI S| ON

SQL- SCALE

SQ- NG NULLS

| D- VALUE

SQL- OCLUMN- LEN

SQL- OCLUMN- NAMVE

SQL- OCLUMN- NAME- LEN

SDCPBC or SQLBI NDCCL performs a bind column on behalf of an ODBC call
RPC. This call must be executed for each column being returned to the client.
SQLBI NDCCL assigns the storage and data type for a column in aresult set.
The following values will should be set by the RPC to properly bind the
column:

SQL- COLUMN- NUMBER is the number of the column in the result set.

SQL- G- DEFAULT isthe C data type column of the column data. This
value must be set to SQL_C_DEFAULT at thistime. This means that the
C type must match the SQL type.

2-4

Shadow Programming Guide December 1999

Sample ODBC CALL RPC for VSAM

m SQL- SMALLI NI T isthe SQL datatype of the column data.

s SQL- PRECI SI ONisthe precision of the data. Thisvaueis used
primarily with character and decimal data. If the value is an integer, it
should be set to “1".

m SQL- SCALE is the scale of the data type, used primarily with decimal
data.

m SQ.- NO- NULLS is the parameter specifying whether or not the data can
be nullable. This value will either I8 - NO- NULLS or SQL-
NULLABLE.

= | D- VALUE i s the actual value to be bound. If this value is a variable
field, the first two bytes must contain the length of the data.

m *SQL- COLUMN- LENis used to determine if the data is NULL; should be
set to “1” if the data is not NULL.

m SQL- COLUWMN- NAME is the name of the column.

= SQL- COLUMN- NAME- LEN is the precision of the name of the column.

Note:

When using RPCs to access DB2, if you want to return NULL data to the
client application, you will need to update ti8€1.- COLUMN- LENfield and

set it toSQL- NULL- DATA or - 1. For every column that may contain NULL
data, a separate value should be use8¢hr COLUW- LEN. When a row is
fetched from the database, the RPC needs to inspect whether the data is
NULL. If it is NULL, the corresponding(.- CCLUVN LEN value defined

in the SQLBI NDOCL call must be set t8QL- NULL- DATA or - 1.

5. CALL ' SDCPTH USI NG STATEMENT- HANDLE SCQL- THRON RON

SDCPTH or SQLTHRONROWsends a row from the RPC into the output buffer
created using th8CQLBI NDCCLUMN calls. This command is issued after a row
of data has been retrieved from the requested database. GBIIARGH with

a parameter ddQL- THROW DCONE signifies no more data is to be returned and
flushes the buffer, sending the results down to the client application.

December 1999 Shadow Programming Guide 2-5

ODBC CALL RPCs

6. CALL ' SDCPSE USI NG ENVI RONMENT- HANDLE
CONNECTI ON- HANDLE
STATEMENT- HANDLE
SQLSTATE- DATA- AREA
NATI VE- ERRCR- CCDE- AREA
ERRCR- MESSAGE- AREA
FB256 ERROR- MBG LENGTH AREA

SDCPSE or SQLERRCRs used to abtain error information that may have been
stored by aprior function call. Envi r onment - Handl e, Connecti on-
Handl e and St at enrent - Handl e areignored since only one host RPC can
execute at atime.

m SQLSTATE- DATA- AREA must be set to at least 6 bytesto allow for the
return of the SQL-Code from this call.

= NATI VE- ERROR- CODE- AREA returns a value describing the error.

m ERROR- MESSAGE- AREA returns a pointer to storage for the error
message text. Thiswill always be null-terminated.

m FB256 isthe maximum length of the error message buffer; the
recommended setting is 256.

m ERROR- MSG- LENGTH- AREA returns the actual length of the error
message.

7. CALL " SDCPRS USI NG CONNECTI ON- HANDLE TRACE- MESSAGE- AREA
SQ- NTS NATI VE- ERRCR- CCDE- AREA.

SDCPRS or SQLRETURNSTATUS returns the status to the client from an ODBC
call. The status data determines the return code from the SQ_LEXECDI RECT,
SQPREPARE, or SQLEXECUTE function that started the RPC. The client
application can retrieve the status data (message and native code) by calling
SQERRCR. The Connect i on- Handl e isignored since only one host RPC
can execute at atime. The following parameters are required:

» ERROR- MSG- LENGTH- AREA returns the actual length of the error
message.

m TRACE- MESSAGE- AREA isthe address of the message text.

m SQL.- NTSisthelength of the message text to be returned. Thisvalue can
be an actual length or SQL-NTS can be specified if the message is null-
terminated.

= NATI VE- ERROR- CODE- AREA isthe Native Error code. If thisvalueis
negative, the client return code will be SQL-ERROR. If thisvalueis

2-6 Shadow Programming Guide December 1999

Other Sample RPCs

positive, the client return code will be SQL-SUCCESS-WITH-INFO.
Thisfield cannot be zero.

Other Sample RPCs

Other sample RPC programs are availablefor useinthe NEON SV040100. SAMP
dataset. These RPC samples access various other types of databases using
COBOL, PL/1 and C. All use the same types of ODBC function calls asthe
VSAM sample above, in addition to other function calls necessary to access a
desired database, e.g. IMS, M204. The following Cobol RPC samples are
provided; () indicates that the sample supports an optional parameter.

SDCOIM
Reads sample data from the IM S parts database using IMS/DBCTL.
The IMS PARTs database is provided by IBM during the IMS IVP
install.
SDCOIMAP
Uses IMS/APPC to access the IMS Parts database. The IMS PARTS
database is provided by IBM during the IMS IVP ingtall.
SDCOM 24P()
Uses IFAM callsto access the sample M 204 database provided by
M204.
SDCODB()
A sample DB2 RPC that reads the Q.staff table provided by QMF.
SDCOCIEC

A sample RPC to access CICS using EXCI.

Writing RPCs that Access DB2

With DB2 RPCs, such as the sample SDCODB, specia considerations must be
followed. Refer to the NEON. SV040100. ONTL dataset, member cob2db?2, for the
Sample JCL to compile and link a Cobol for MVS RPC.

1. Since SDCODB uses static SQL, the program must first be run through the
DB2 precompiler to produce aDB2 DBRM.

2. Thecodeisthen compiled and linked. On thelink step, DSNALI must be
linked into the RPC load module.

3. Since Shadow Server will manage opening the thread to DB2 before
connecting to the Shadow Server, either in the ODBC datasource definition or
in the connection string, the PLAN parameter should be set to the name of the
plan bound into DB2 for this RPC. Optionally multiple RPC DBRMs can be
placed into asingle plan.

December 1999

Shadow Programming Guide 2-7

ODBC CALL RPCs

4.

Note:

If the 4th character of the Plan Name isan R, the NEON Client
ODBC driver assumes that your application is using a plan where
the plan was bound using an Isolation value of Repeatable Read. If
you are not using Repeatable Read please ensure that your plan
name does NOT have an R in the 4th character of the plan name as
does the Shadow default plan SDBR1010. If itisany other character
than an R we assume the plan was bound with an Isolation Level of
Cursor Stahility.

In the datasource, Static SQL (CD) should be selected or set to YESin the
connection string.

Under the Advanced/More option of the datasource definition, Always
Convert Dynamic SQL (ALCD) should be set to NO. If it is not, the Shadow
ODBC driver will attempt to convert ALL SQL sent through the driver to
Static. Although all the SQL in the RPC will run statically, theinitial CALL
statement for the RPC is run dynamically. ALCD=YES can also be set in the
connection string of the application.

Note:
If you are running client code dated 11/19/97 or above, selecting
Static SQL and setting ALCD=NO is no longer required.

Customer-written PL/l programs must NOT usethe FETCH, CALL, or
RELEASE statementsif SSL is used for encryption of session data. Thisis
due to Language Environment for VM & MV S restrictions.

Special Considerations for Cobol Il

Coboal Il was originaly designed with CICS in mind. Under CICS, Caboal 11
programs are kept serialized and thus can be Reentrant. If you wish to use Cobol
I1 with NEON Client, the following restrictions apply:

All RPCs, including RPC Direct, must be compiled with NORENT, NORES
and NODYNAM.

All RPCs, including RPC Direct, must also be linked with NORENT.

All RPCsmust be AMODE 31, regardless of language, if you are passing
parameters to the RPC.

Programs must be linked with AMODE 31, since Shadow stores the
parameter in a 31-bit address.

These restrictions, with the exception of being AMODE 31, are not necessary if:

2-8

Shadow Programming Guide December 1999

Other Sample RPCs

You are using the latest releases of the Cobol compiler, including Cobol for
MV S or Cobol/370 as it was recently called.

You are using PLI, C or Assembler.

The following information (in italics) is from the IBM VS Cobol |1 Application
Programming Guide for MVSand VSE:

Multiple tasks within the same region are supported for RESIDENT run units
only under CICS. Multiple OStasks within the same region are not supported
by COBOL in conjunction with the Library Management feature (RES
option). COBOL does not preclude multitasking if the run units are compiled
with NORES However, any restrictions and conventions of multitasking
imposed by the operating system, access methods, and so on, must be
observed.

Wth Cobol Il you have the following valid combinations of DYNAM,
RESDENT, and RENT:

There are five valid combinations of the DYNAM, RES DENT, and RENT
compiler options.

» NORENT and NORES and NODYNAM
Nonreentrant code, no COBOL Library Management feature, CALL
literal is static call.

= NORENT and RESand NODYNAM
Nonreentrant code, COBOL library routines called dynamically, CALL
literal is static call.

= NORENT and RESand DYNAM
Nonreentrant code, COBOL library routines and user subprograms all
called dynamically.

s RENT and RES and NODYNAM
Reentrant code, COBOL library routines called dynamically, CALL
literal is static call.

s RENT and RES and DYNAM
Reentrant code, COBOL library routines and user subprogramsall called
dynamically.RENT or DYNAM causes the RESIDENT option to be forced
on.

Asthe IBM restrictions indicate, RES is only alowed running multiple tasks
under CICS. As aresult, the only valid combination for NORES is NORENT,
NORES and NODY NAM. Attempting to run two simultaneous RPCs under
Shadow with DY NAM or RENT will result in an abend followed by alGZ015I
Cobol error which states:

A recursive call was attempted to a program that was still active. COBOL
does not allow reinvocation of a program which has begun execution, but has

December 1999

Shadow Programming Guide 2-9

ODBC CALL RPCs

not yet terminated. For example, if program A calls program B, program B
cannot call program A. The job was canceled.

Running Cobol I RPCs can also cause storage problems. Since al RPCs must be
coded NORENT, NORES and NODY NAM, all external routines must be
statically linked in with the RPC, causing a separate RPC to be loaded for each
execution of the RPC. If the number of loaded Non-Reentrant RPCs exceeds the
amount of private storage available to Shadow Server, an S806 abend will occur.
In this case, one of the following actions must be chosen:

m Upgradeto Cobol for MV S.
= Set up multiple Shadow Servers and do work load balancing.
m Place the RPCsin the RPC Specia Requirements parameter list.

The RPC Special Requirements parameter list is used to define the RPCs that
should be serialized. By placing the RPC name on thislist, Shadow Server will
seriaize al executions of these RPCs. This means that no more than one of these
RPCswill be allowed to execute at atime. All other execution requests for the
same RPC will be queued for execution. This function can cause significant
performance degradation for a high-transaction environment.

The Specia Requirements parameter list can be specified in the Shadow
Initialization exec member, SDBxINOO, located in the dataset allocated to

SY SEXEC in the Shadow Server started task. The parameter is

RPCxx SPECI ALREQ where xx is anumber between 01 and 10. The syntax for
placing thisin the Shadow Initialization exec is:

MDDl FY PARM NAME (RPCxxSPEQ ALREQ VALUE(r pcnare)

You can also add these RPCs dynamically using option 5.2 from the Shadow
Server Primary Options menu (SDF | SPF panel), and selecting the the PRODRPC
group of parameters. However, all changes made in this manner are only
temporary until the next time the Shadow Server started task is recycled. To make
the changes permanent, they should be placed in the SDBxINOOQ initialization
exec.

For more detailed information and restrictions about running Cobol |1, please
refer to the IBM VS Coboal |1 Application Programming Guide for MVSand VSE.

Special Considerations for Cobol for MVS and
Other LE/370 Languages

With Cobol for MVS or other LE/370 languages, your RPCs will perform best if
you minimize the amount of storage that your application programs use to below
the 16 megabyte line. Whenever possible, design your RPCs to run above the 16
megabyte line. If you use the default LE/370 run-time options, you can only run a
small number of RPCs concurrently within the Shadow Server address space. For
programs that can run above the line, do the following:

s For COBOL programs, use the RES and DATA(31) compiler options.

2-10

Shadow Programming Guide December 1999

Other Sample RPCs

m Link-edit the program with the AMODE(31) and RMODE(ANY) attributes.
m Usethefollowing LE/370 run-time options:

HEAP(,,ANY) allocates program heap storage above the 16MB line.
STACK(,,ANY) allocates program stack storage above the line.
STORAGE(,,,4K) reduces the storage area below the 16MB line to 4K.
BELOWHEAP(4K,,) reduces the below the 16MB heap storage to 4K.
LIBSTACK(4K,,) reducesthe library stack below theline to 4K.

s Compile and link-edit the RPC as reentrant.

s ALL31(ON) indicatesthat all programs contained in this stored procedure run
with AMODE(31) and RMODE(ANY).

JCL for compiling and linking a user CEEUOPT module can be found in member
CEEWUOPT of the NEON SV040100. ONTL dataset. This JCL can be used to
override system installation defaults for Cobol for MVS. CEEWUOPT has been
modified to contain the current recommendations for running Cobol for MVS
application under Shadow Server. This module should be linked with any Caobol
for MVS programsin order for the options to be used. If not, the installation
defaults for Cobol for MV S will be used. Optionally, the recommended changes
can be made to CEEDOPT, thus making these options the default, and eliminating
the required link for every RPC with CEEUORPT.

To improve performance, all eligible LE/370 runtime modules should be moved
into the MLPA. Thefollowing information (in italics) was obtained from the IBM
Language Environment for MVS & VM Installation and Customization on MVS
Release 5 Document Number SC26-4817-06. Please reference this manual for up-
to-date information.

Placing Language Environment Modules in Shared
Storage
Placing routines in shared storage reduces overall system storage requirements.

Also, initiate/terminate (init/term) timeis reduced for each application, since load
time decreases.

All of the re-entrant modules in CEE.V1R5MO0.SCEERUN can be included in
shared storage on MVS. To include them:

s Authorize the data set CEE.V1R5MO0.SCEERUN.

» Include CEE.V1IR5MO0.SCEERUN in the LNKLSTnn concatenation (optional
for MVSESA Version 4).

s Create an |IEALPANN member in SYS1.PARMLIB that lists the modules to be
made resident in the MLPA when the systemis | PLed.

Several members are installed in CEE.V1R5MO0.SCEESAMP for you to use as
examplesin creating your |EALPANN member. The table below lists the members,
their content, and the level of MVS/ESA they are to be used in. Note that the

December 1999

Shadow Programming Guide 2-11

ODBC CALL RPCs

format of the IEALPAnn member changed between MVS'SP Version 3 and MVY
ESA SP \ersion 4. Use the format appropriate for the release level of MVSat your
ste.

Member Name Description MVS/ESA Level
CEEWMLPA All language Environment base modules eligible for the LPA except Version 3
callable service stubs.
EDCWMLP1 All C/C++ component modules eligible for LPA. Version 3
1IGZWMLP1 All language Environment COBOL component modules eligible for LPA | Version 3
assuming modified, full COBPACKS (must reside below the 16M line).
1IGZWMLP2 All language Environment COBOL component modules eligible for LPA | Version 3
assuming COBPACKs will reside above the 16M line (All routines with
RMODE (ANY)).
IBMALLP1 All language Environment PL/I component modules eligible for LPA. Version 3
AFHWMLP1 All language Environment FORTRAN modules eligible for LPA. Version 3
CEEWMLP2 See description for CEEWMLPA. Version 4
EDCWMLP2 See description for EDCWMLP1. Version 4
IGZWMLP3 See description for IGZWMLP1. Version 4
IGZWMLP4 See description for IGZWMLP2. \ersion 4
IBMALLP2 See description for IBMALLP1. Version 4
AFHWMLP2 See description for AFHWMLPL. Version 4
If you want to load modulesinto the LPA under MVSESA Version 4, you do not
need to place CEE.V1R5M0.SCEERUN in the LNKLSTnhn concatenation. For
earlier versions of MVS, you must do one of the following:
s Add CEE.V1R5MO0.SCEERUN to the LNKLSTnn concatenation.
m Makethe non-LPA modules available to stepsthat run Language Environment
applications by either:
m Copying the non-LPA modules to a data set that isin the LNKLSTnn
concatenation, or
m Copying the non-LPA modulesto a data set that can be used as a STEPLIB or
a JOBLIB.
Using the entire CEE.V1R5MO0.SCEERUN dataset as a STEPLIB defeats the
purpose of placing the modulesin the LPA.
Shared Storage Considerations
Modules you copy into another (non-LPA) data set are not automatically updated
by SMP/E when you apply a service update. You must rerun your copy job after
2-12 Shadow Programming Guide December 1999

Other Sample RPCs

you apply service to Language Environment to make the updated modules
available in the LNKLSTnn data set or in the STEPLIB.

Examinethe lists carefully to make sure that you are installing the correct module
for the national language support you have installed. Comments in CEEWMLPA,
CEEWMLP2, EDCWMLP1, EDCWMLP2, IBMALLP1, and IBMALLPZ2 identify
the mixed-case U.S. English modules and the Japanese modules. In IGZWMLP1,
|GZWMLP2, | GZWMLP3, and | GZWMLP4 remove the module name
IGZCMGEN if U.S. English mixed-case is not installed and add |GZCMGJA if
Japanese isinstalled and you want it to be in the LPA.

Refer to the following books for more information on including modulesin the
LPA:

. MVSESA System Programming Library: Initialization and Tuning for MVY
SP \ersion 3, GC28-1828

. MVSESA Initialization and Tuning Reference for MVSESA SP Version 4,
GC28-1635

. MVSESA Initialization and Tuning Reference for MVSESA SP Version 5,
SC28-1452

When all recommended modules have been placed into MLPA, the runtime
library from the Shadow Server started task SDBRPCLB concatenation can be
removed to take advantage of the modulesin MLPA.

It is aso recommended that the PREL OAD option be used to preload the
following LE runtime modules:

CEEEV005
IGZEINI
IGZEPLF
IGZEPCL
CEEBINIT
CEEPLPKA
IGZCPAC

Using LE/370 languages for RPCswith Shadow Direct provides several important
advantages:

m Shadow Direct can exploit the LE/370 Library Routine Retention feature. If
the LIBKEEP parameter (in the PRODRPC parameter group) isset to YES,
Library Routine Retention support is enabled for LE/370 programs. Shadow
Direct will preload the required Library Retention support routines at
initialization time, and create the Library Routine Retention environment for
each transaction program TCB. Initial tests have shown a 50% decrease in
total CPU time for RPCs executed with the new Library Retention support
enabled. Benchmarks are easily performed by simply turning the LIBKEEP
parameter on and off. The following MCDI FY PARM statement placed in the
Shadow Initialization exec, SDBxINOO will turn on the Library Routine
Retention support:

December 1999

Shadow Programming Guide 2-13

ODBC CALL RPCs

MODI FY PARM NAVE(LE370LI BKEEP) VALUE(YES)

Shadow Direct provides an RPC Preload feature. In high transaction volume
environments, applicationsthat utilize RPCs must repeatedly invoke
operating system services to bring programs into memory for execution. This
can cause severe performance degradation and overhead, to the point of
eliminating the performance benefit of RPCs.

Shadow Direct provides an extremely effective solution to this problem. The
PREL OAD option when set to YES will preload programs from a special
library designed to contain RPCs which have very sensitive response time
regquirements. Shadow Direct will aso bypass operating systems services
which are typically used to pass control to programs and give control to these
programsdirectly. Thislibrary should be allocated to the SDBRPCPL ddname
in the Shadow Server started task JCL.

The performance improvement and CPU time reduction when using the
Preload feature has shown to be substantial for high volume RPC transactions.
The Preload feature can also be used with PLI or C. The only requirement for
these RPCsisthat they be compiled and linked with the REENTRANT
option. With the following parameter set, all RPCs allocated to the
SDBRPCPL ddname in the Shadow Server Started Task JCL will be
preloaded at Shadow Server startup time.

MODI FY PARM NAVE(PRELOAD) VAL UE(YES)

Note:

Any changes made to these RPCs will require the Shadow

Server started task to be recycled in order to pick up the new
changes. Also, since each preloaded RPC will be stored in the
Shadow Server private area below the 16 meg line, the more

RPCs loaded will decrease the amount of private storage

available for Shadow Server’s use. Only highly used RPCs that
have sensitive response time requirements should be placed in
this library.

Support for compiling programs with DY NAM option.

Using ODBC CALL RPCs in Visual Basic

The following sample Visual Basic code is an example of using Visual Basic with
DAO to return the results of an SQL query and returning the results from the
sample ODBC CALL RPC, SDCOV SP. This sample can be found on the NEON
Systems CD, in the sanpl e/ vb4/ daot est directory.

D m nyDB As Dat abase
D mMRs As Recordset
DmMSQ As String
DmMRPC As String
Dmrc As String

2-14

Shadow Programming Guide December 1999

Other Sample RPCs

Set nyDB = Wirkspaces(0). QpenDat abase("", Fal se, Fal se, "CDBC')
MyRPC = “call sdcovsp”
MySQL =“Select * from Q.STAFF"

You can base the record set after a DB2 table, a query, or the
RPC.
‘SDCOVSP also returns the same column names as the Q.Staff table.

"Set M/Rs = nyDB. (penRecor dset (M/RPC, dbQpenDynaset ,
dbSQ@_PassThr ough)
"Set M/Rs = nyDB. (penRecor dset (M/SQ@., dbQpenDynaset,
dbSQ@_PassThr ough)

‘Q.STAFFI is a DB2 table with a unique index on the id column.
Set MyRs = myDB.OpenRecordset(“Q.STAFFI", dbOpenDynaset)

The bel ow Text fields are text boxes on the nain form
‘The record set is updatable ifthe record set s based on a table
with a unique index

rc = M/Rs. Updat abl e
M/Rs. MoveFi r st
txtname.Text = MyRs(“name”)
Txtid. Text = MyRs(“id")

txtjob. Text = MyRs(“job”)
txtdept. Text = MyRs(“dept”)

Using ODBC CALL RPCs in Powerbuilder

The following sample Powerbuilder script is an example of using Powerbuilder’s
support for stored procedures to execute and return the results of the sample
ODBC CALL RPC, SDCOVSP. This code is supplied on the NEON System’s
CD-ROM, and can be found in directagnpl es/ pb/ t est . pbl .

string | s_EnpNane, |s_EnpJob

long Il _Enpl D, |l _EnpDept, Il_EnmpYears, ||_NewRow, || _Row,
[l _I nput Num

11

/1 Assign values to the ShadowDirect transaction

11

Shadowbi rect = reate Transacti on

ShadowDirect DBMS =“ODBC”"

ShadowDirect. AutoCommit = TRUE

ShadowDirect.database =""

ShadowDirectuserid ="

ShadowDirect.dbpass =
ShadowDirectlogid ="
ShadowDirect.logpass =
ShadowDirect.servername = “DB2A”

ShadowDirect.dbparm = “ConnectString="DSN=Sample_Direct”
/I Connect to the ShadowDirect ODBC transaction object
CONNECT USING ShadowDirect;

Il

/IReset the DataWindow

December 1999 Shadow Programming Guide 2-15

ODBC CALL RPCs

11

DW 1. Reset ()

11

/1Get the enployee ID entered fromthe input box
11

Il _I'nput Num = Long(em1. Text)

11

/I'When the input is zero, call the RPC without a parareter
11
IF Il _InputNum= 0 THEN
11
/I Decl are the RPC
11
Decl are Get St af f | nf oWOPar am Procedure for SDOOVSP
usi ng ShadowbDi rect;
11
//Call the RPC
11
Execute Get St af f I nf oWDPar am
11
/1 Process the result set
11
CHOCSE CASE ShadowbDi r ect . SQLCode
CASE 0
DO WH LE ShadowD rect. SQ1.Code = 0
FETCH Get St af f | nf oWOParam | NTO : || _Enpl D
, - | s_EnpName
, - 11 _EnpDept
, - 1's_EnpJob
, .11 _EnpYears;
| F ShadowDi rect. SQ.Code = 0 THEN
Il _NewRow = Dw 1. I nsert Row(0)
Il _Row = DW1. Scrol |l ToRow(I'l_NewRow)
DW1. Setltenm(Il_NewRow "enmpid" , |II_EnplD)
DW1. Setltenm(|1 _NewRow "enpdept" , || _EnpDept)
DW1. Setlten{ |1 _NewRow, "enpjob" , |s_EnpJob)
DW1. Setlten{ |1 _NewRow, "enpnane” , |s_EnmpNane)
DW1. Setlten{ Il _NewRow, "enpyears” , ||_EnpYears) END I F
LaooP
CASE ELSE
END CHOCSE
11
/1d ose the procedure
11
d ose Get St af f | nf oWOPar am
ELSE
11
/1 Declare the RPC with a paraneter
11
Declare Get Stafflnfo Procedure for SDOOVSP : 11 _I nput Num
usi ng ShadowbDi rect;
11
//Call the RPC
11

2-16

Shadow Programming Guide December 1999

Other Sample RPCs

Execute Get Staffl nfo;
/1
/I Process the result set
/1
CHOCSE CASE ShadowDi r ect . SQLCode
CASE 0
DO WA LE Shadowbi rect. SQ1.Code = 0
FETCH Get StaffInfo INTO: | _Enpl D
, .ls_EnpName
, .11 _EnpDep
, .ls_EnpJob
, .11 _EnpYears;
| F ShadowD rect. SQ.Code = 0 THEN
Il _NewRow = Dw 1. | nsert Row(0)
Il _Row = DW1. Scrol |l ToRow(Il_NewRow)
DW1. Setlten(Il _NewRow, "empid" , Il _EnplD)
DW1. Setlten{ |1 _NewRow, "enpdept" , || _EmpDept)
DW1. Setlten{ |1 _NewRow, "enpjob" , |s_EnpJob)
DW1. Setlten{ |1 _NewRow, "enpnane” , |s_EmpNane)
DW1. Setlten(Il _NewRow, "enpyears” , ||_EnpYears) END I F
LOCP
CASE ELSE
END CHOOBE
/1
/1d ose the procedure
/1
Commit usi ng ShadowDi rect;
A ose Get Stafflnfo;
END I F
DI SCONNECT USI NG ShadowDi r ect

Using ODBC CALL RPCs in EXECSQL

The following sample /* EXECSQL script is an example of using /* EXECSQL
support for stored procedures to execute and return the results of the sample
ODBC CALL RPC, SDCOV SP, which readsaVSAM file:

[*\WW / NEQV | MSEXECL

R SRR R R SRR SRS SRR R R R R R EEEEEEREEEEEREEEEEREEEEEEEEEEEE

* SAMPLE APPLI CATI ON THAT | LLUSTRATES THE USE CF AN EXECSCL *
* PROCESS SECTION THE AUTCFORVAT KEYWRD CALLS FCR THE ROW *

* DATA TO BE FCRVATTED | NTO AN HTM. TABLE. *

R SRR R SRS RS SRR RS E R R R R EEEEEEEEREEEEEEREEEEEEREEEEEEEEEEEE

/ * EXECSQL MAXROAS(100) -

December 1999

Shadow Programming Guide 2-17

ODBC CALL RPCs

SUBSYS(NCNE) PLAN(NONE) -
AUTCFCRVAT(Tl TLE(’ SAMPLE RPC CALL USI NG / *EXECSQL’) -

BCDY(’ BGOOLOR="#FFOC33"") -

CALL SDCOVSP(100)

Note:
This applies to Shadow 0S/390 Web Server only.

2-18 Shadow Programming Guide December 1999

CHAPTER 3:

Running DB2 Stored Procedures

This chapter covers programming information for running DB2 stored procedures. It includes
information about the execution, preparation, and troubleshooting of the DB2 stored procedures.

This chapter appliesto Shadow Direct and Shadow OS/390 Web Server.

Introduction

IBM stored procedures are fully supported by Shadow Direct and Shadow Web
Sever version 3.1 and above at maintenance level SVFX3270 and above. In order
to run DB2 stored procedures, you must be running DB2 version 4.1 or above. For
specific information on writing and using DB2 stored procedures, please refer to
the IBM DB2 Application Programming and SQL Guide.

The Syntax

The syntax for invoking an IBM stored procedure using the Neon Client ODBC
driver is

Call SYSPROC.procedure-name(parameter,parameter,)

Where:

SYSPROC
isthe prefix that identifies the stored procedures as IBM rather than a
NEON stored procedures (RPCs).

pr ocedur e- nane
isthe procedure namein the DB2 catal og.

par anmet er, paraneter,
are the parameters for the DB2 stored procedures.

This syntax matches the IBM SQL stored procedure naming conventions.

December 1999 Shadow Programming Guide 3-1

Running DB2 Stored Procedures

DB2 Stored Procedures

Result Sets

Shadow Direct supports returning zero or one result set from an IBM stored
procedure. If the DB2 stored procedure returns more than one result set, the
remaining result sets are ignored (without any error messages or warnings). This
is the same restriction for NEON RPCs.

Retrieving Column Names

If you want to retrieve column names from any DB2 stored procedures that return
result sets, the DESCSTAT installation parameter must be set to YES. (DESCSTAT
isset in the DB2 DSNZPARMmember at DB2 install time. DSNZPARMis created via
the DB2 installation job, DSNTI JUZ.).

Note:

If the DESCSTAT DB2 installation parameter isnot set to YES, then the
result set column names will always be zero length strings. Some IBM
documentation incorrectly implies that thisis a B ND parameter. It is not a
Bl ND parameter and must be set as part of the installation of DB2.

You must bind the DBRM used by Shadow Direct (CPRXSQ or Shadow 0S/390
Web Server (SWRXSQ) with the package used by the DB2 stored procedure in
order for this procedure to be called successfully.

Samples

m Result Set. A sample job, DB2PROCL, has been provided in the
NEON SV040100. CONTL dataset which shows how to properly compile and
bind a DB2 stored procedure that returns aresult set. This sample processes
the example stored procedure, DB2PRCOCL, in the NEON SV040100. SAMP
dataset.

= VBOutput Parameter. A sample job, DB2PROC2, has been provided in the
NEQON SV040100. ONTL dataset which shows how to properly compile and
bind a sample DB2 stored procedure that returns an output parameter. This
sampl e processes the exampl e stored procedure, DB2PROZ2, in the
NECON SV030100. SAVP dataset.

s VB4.0 Program. A sample VB 4.0 program is provided in the Shadow
sanpl es/ vb4/ DB2Pr oc?2 directory with the install of the Neon Client
32-bit driver version 3.02 or above. This sample shows how to properly use
the ODBC API to invoke DB2PROC?2.

s VB5.0 Program. A sample VB 5.0 program is provided in the Shadow
Sanpl es/ vb5/ ADCsanp directory with theinstall of the NEON Client 32-
bit driver version 3.04 or above. This sample shows how to do the following
using ADO:

3-2

Shadow Programming Guide December 1999

DB2 Stored Procedures

Call aDB2 stored procedure that returns a result set.

Call aDB2 stored procedure that returns an output parameter.
Call a Shadow RPC program.

Create an updateable recordset using an SQL query.

Preparing a DB2 Stored Procedure

The following steps need to be completed to properly prepare a DB2 stored
procedure:

1. Updatethe DB2 SYSI BM SYSPROCEDURES table with information regarding
the stored procedure. If any of thisinformation changes, you must stop the
DB2 stored procedure and restart it using the DB2 —START and —-STOP
PROCEDURE command. If you don’t, the changes will not take effect.

2. Run the DB2 Pre-Compiler against the DB2 stored procedure to create the
DBRM.

3. Compile the DB2 stored procedure.

4. Link-edit the DB2 stored procedure. The DB2 stored procedure must be
placed into a library in th8TEPLI B of the DB2 stored procedure address
space.

5. Bind the DB2 stored procedure into a DB2 package.

6. Bind the DB2 plan with the DB2 packlist and the Neon DBRM.

Note:

If the 4th character of the Plan Name is an R, the NEON Client
ODBC driver assumes that your application is using a plan where
the plan was bound using an Isolation value of Repeatable Read. If
you are not using Repeatable Read please ensure that your plan
name does NOT have an R in the 4th character of the plan name as
does the Shadow default plan SDBR1010. If it is any other character
than an R we assume the plan was bound with an Isolation Level of
Cursor Stability.

The plan used for the connection to DBRst have available the packages used
by all of the stored procedures. Since only packages are supported for stored
procedures, the plan must include a PKLIST that has all of the required packages.

Coding Cursors in Return Result Sets

When coding DB2 stored procedures, the cursors used in stored procedures
should be declared WITH HOLD in addition to WITH RETURN. Otherwise, any
COMMIT (either issued by DB2 or by Shadow Server) will destroy the result
set(s). If WITH HOLD is not specified and if COMMIT_ON_RETURN is set to

December 1999 Shadow Programming Guide 3-3

Running DB2 Stored Procedures

“Y”in SYSI BM SYSPROCEDURES, each stored procedure will not appear to
return any resukets,even if it actually does.

Here's an example of an EXEC SQL statement in a DB2 stored procedure:

EXEC SQL
DECLARE C1 QURSCR WTH HOLD WTH RETURN
FCR SELECT I D, NAME, DEPT, JGCB,
YEARS, SALARY, COW
FROM Q STAFF
END- EXEC.

Troubleshooting DB2 Stored Procedures

Be aware of the following situations that can arise when executing DB2 stored
procedures:

m Itis common to get a zeX®) SQ.CCDE from a stored procedure that
actually failed because it could not access the associated package (timestamp
errors, etc.). The reason is that all of the DB2 operations attempted by the
stored procedure failed and there is no indication why.

m All stored procedures that actually create result sets exit wil6@
SQ.CCDE unless the result set is destroyed by a commit (as described above).
This is neither an error nor a warning. It just means the stored procedure
successfully created at least one result set.

m A -204 SQCCLCE indicates that the DB2 stored procedure hame is unknown
to DB2. Unlike NEON stored procedures, all IBM stored procedures must be
defined in the DB2 catalog.

A -440 SQ.CCDE indicates the parameters passed by the application do not
match the parameter definitions in the DB2 catalog.

s A-480 SQ.CCDE indicates that the stored procedure created one or more
results without using¥ TH HCLD cursors and a subsequ&€avM T issued by
Shadow Server destroyed those result sets befoBESER BE PROCEDURE
was completed.

m Azero(0) SQQOCDE can result from a DB2 stored procedure that is
designed to return one or more results sets for at least two reasons.

m All of the EXEC S(L statements in the stored procedure are failing because
the required package is not available.

m The cursors used to return the result sets were not declaredd WihHCLD,
andCOMWM T_CON RETURNis settd Y' .

3-4 Shadow Programming Guide December 1999

CHAPTER 4:

Shadow IMS Direct

This chapter provides programming information for Shadow IM S Direct, a component of Shadow
Direct. Information includes the product architecture and installation, the progrmming of IMS
applications, client API function definitions, and Sample IM S batch message program code.

This chapter applies specifically to Shadow Direct.

Introduction
Shadow IM S Direct alows you to write client DL/l applications that:

m Accessand update IM S databases.
m Access and update the IMS message queue.

These client applications can be written in almost any programming language,
including C, C++, Visua Basic (VB), and PowerScript.

This chapter assumes that the reader is generally familiar with IMS and
specifically familiar with DL/I programming.

Product Architecture

Shadow IM S Direct allows two types of DL/l programs to be written:

m A Batch Message Program (BMP), providing single-threaded accessto IMS
databases and the message queue.

s A DBCTL program, providing multi-threaded accessto IM S databases.

The type of program that is chosen depends on the type of access needed.

Single-Threaded Access to IMS Databases and
the Message Queue

For accessing and updating the IM S message queue, a Batch Message Program
(BMP) should be run in Shadow Server’s address space. However, because only
one copy of the BMP can run inside Shadow Server at a time, this IMS interface is

December 1999 Shadow Programming Guide 4-1

Shadow IMS Direct

limited to one client application at any given time. In other words, only single-
threaded accessis possible.

Note:

If multiple requests are received to run a BMP, al subsequent requests
will be enqueued. As each BMP request is completed, a request will be
removed from the queue and processed. The queuing processis

automatic and invisible (save for possible delays) to client applications.

This type of access is shown in Figure 4-1.

Windows/OS/2/UNIX Client

MVS Host
(1.3) IMS @) IMS
Agpllcanon Shadow Server DB/DC or
rogram Address Space DBCTL
Control
Region
4,7)
Shadow IMS (6? IMS
Interface — IMSDirect |— Databases
¢ BMP hnllgl
(5) -<«>»{ | IMSMsg ||
TCP/IP or TCP/IP Queue
LU 6.2
TCP/IP or
» VTAM
LU 6.2

Figure 4-1. Shadow IMS Direct Product Architecture
(IMS Message Queue and Database Access)

The stepsin this process are:

1. A session beginswhen IMS Direct is invoked by a Windows/OS/2/UNIX

client application and establishesa TCP/IP or LU 6.2 connection to Shadow
Server.

The Shadow Server address space receives the request from the Windows/OS/
2/UNIX client and attaches the IM S Batch Message Program (BMP). The
IMS BMP then waits for work from the client system.

4-2

Shadow Programming Guide December 1999

Product Architecture

3. On the client system, the user’s application program calls the IMS Direct

DL/I interface function (SCCToDL) to access and update IMS databases or
the IMS message queue.

4. The Shadow IMdterface routine analyzes and checks each DL/ call.

5. Shadow IMS Direct compresses each requests and sends it via TCP/IP or
LU 6.2 to the BMP running inside the Shadow Server address space.

6. The BMP decompresses each request and invokes the actual IMS DL/I
interface. The BMP compresses the data returned by IMS and sends it back to
the client system.

7. The Shadow Direct SCCToDLI interface routine checks and analyzes each
result and returns control to the application program. When the application
program terminates, Shadow IMS Direct terminates the BMP running in the
Shadow Server address space and closes the communication link.

Multi-Threaded Access to IMS Databases

If you do not need to access IMS message queues, you can write client
applications that take advantage of Shadow IMS Direct’'s multi-threaded database
access. These client applications architecturally resembles a CICS DL/I
transaction prograrﬁ.‘l’hey are therefore subject to the same restrictions as CICS
transactions that issue DL/I cdlls.

This type of access is illustrated in Figure 4-2.

* The SCCToDLI function is used with C and C++ language applications; the SCCToDL IPascal function is used
with Visua Basic and PowerBuilder.
t Shadow IMS Direct does not use any CICS facilities.

December 1999

Shadow Programming Guide 4-3

Shadow IMS Direct

Windows/OS/2/UNIX Client MVS Host
(1) IMS
Application Shadow Server IMS DB/DC or
Program Address Space DBCTL Control
* Region
(3,6) (2,5) IMS
Shadow IMS IMS Direct €7 Databases
Interface t
TfE’ '6Pz°r TCP/IP or
) VTAM
A A
| @)

LUG6.2

Figure 4-2. Shadow IMS Direct Product Architecture

(Multi-Threaded Database Access)

The steps in the process are:

1

A session begins when Shadow IMS Direct is invoked by a Windows/OS/2/
UNIX client and establishes a TCP/IP or LU 6.2 connection to Shadow
Server.

The Shadow Server address space recognizes the request from the Windows/
OS/2/UNIX client and establishesalink to IMS.

An IMS application program requests IMS services using the DL/I interface
routine (SCCToDL) to access and update IM S databases.

The Shadow DL/I interface routine checks and analyzes each request and
sendsit viaTCP/IP or LU 6.2 to the Shadow Server address space.

Shadow Server decompresses requests and invokes the actual IMS DL/I
interface. When IMS returns information, Shadow Server compresses it and
sends it back to the client system.

The Shadow IMS Direct SCCToDLI routine decompresses the returned
information and returns control to the application program.

4-4

Shadow Programming Guide December 1999

Installing Shadow IMS Direct

Installing Shadow IMS Direct

Configuring Shadow Server

Before any programs created using Shadow IM S Direct can be used to
communicate with the mainframe, several of Shadow Server’s parameters must be
properly set. This section will assume that Shadow Server is already installed and
running on the mainframe. If not, refer to the Shadow IM S section in the Shadow
Server User’s Guide. This guide is useful for maneuvering through the various
screens of the |SPF/SDB application.

By default, the Shadow Server address space does not alow either single-threaded
or multi-threaded access to IMS. Each of these facilities must be enabled using a
letter in the feature code string. IM S support is enabled using the feature letter
code ‘I'.

Note:
Only one single-threaded or multi-threaded IMS feature per Shaodw
Server can be enabled at a time.

To specify which feature is to be used by Shadow Server, one of the following
access parameters should be set to YES before the product is started:

m Single-threaded access.
= Multi-threaded access.

These parameters, which are explained in the following sections, can be set by
entering them into the SDBXINOO initialization REXX EXEC:DBCTL for multi-
threaded or BMP for single-threaded. After start time, they can be modified using
the SDB Parameters screen (SDB option 5.2) of the ISPF/SDB application.

Setting Parameters for Single-Threaded Access

The following parameters are used for single-threaded access to IMS. Note that, in
almost all cases, the default values are appropriate. The parameters are:

BMPPARM
Specifies the IMS BMP Parameter string. This parameter is not used
at this time, but may be used at some point in the future.

BMPNAME
Enters the name of the IMS BMP Region Controller. The default is
DFSRRCOO.

* For information on theinitiaization EXEC, see Appendix A of the Shadow Server User’s Guidd-or information
about the SDB Parameters window, see Chapter 3 of the Shadow Server User’s GuidS&ome parameters must be
set before the Shadow Server address space is started; see the Shadow Server User’s Guider details.

December 1999 Shadow Programming Guide 4-5

Shadow IMS Direct

IMSBMPTIMEOUT
Specifiesthe IMS BMP read time out value in units of seconds. This
value is used to control how long the IMS BMP will wait for
additional DL/I calls from the client application. If the time out limit
is reached, the communication session with the client application will
automatically be severed, and all IMS updates will automatically be
rolled back. This value is used to prevent afailing client application
or network problem from hanging the BMP in the main Shadow
Server address space indefinitely. There is no default value for this
field.

Setting Parameters for Multi-Threaded Access

The following parameters are used for multi-threaded accessto IM S databases:

IMSID
Specifiesthe IMSID of the DBCTL region. This should be the four-
character name of the DBCTL region, which is the same as the
IMSID parameter inthe DBCTL procedure. Thereis no default value
for this parameter. A DBCTL region is not required to use multi-
threaded access to IMS databases. All IMS DB/DC systems
automatically provide DBCTL functionality as of IMS/ESA Release
3.0 or later. Required.

IMSUSERID
Specifies the userid of the product region. This should be the eight
character name of the CCTL region. Thereis no default value.
Optional.

IMSFUNCLEVEL
Specifies the function level of the product region. This parameter
should indicate what DRA level the CCTL supports, so setting this
parameter to 1 means that the CCTL uses the DRA at the IMS 3.1
level. The default valueis 1. Optional.

M SSUFFIX
Specifies the suffix of the DFSPZP module. The default value is “00”.

IMSMAXTHREADS
Sets the maximum number of DRA thread TCBs to be available at
one time. The maximum number is 255. The default is “1”.

IMSMINTHREADS
Specifies the minimum number of DRA thread TCBs to be available
at one time. The maximum number is 255. The default is “1".

IMSWAITTIME
Sets the identity retry wait time. This parameter should indicate the
amount of time (in seconds) that the DRA should wait between
attempts to identify itself to CCTL during an INIT request. The
default is 60 seconds.

4-6 Shadow Programming Guide December 1999

Installing Shadow IMS Direct

IMSDDNAME
Specifies the DDname used to allocate RESLIB. This should be the
oneto eight character DDname that will be used to dynamically
alocate the DBCTL RESLIB data set. The default DDnameis
CCTLDD. Thislibrary must contain the DRA modules.

IMSDSNAME
Specifies the DSName of the DRA RESLIB. This should be the one
to forty-four character name of the DBCTL RESLIB data set. This
library must contain the DRA modules and must be MVS APF
authorized. The default data set name is ‘IMS.RESLIB'.

IMSFPBUFFERS
Indicates the number of Fast Path DEDB buffers to be allocated and
fixed per thread. The default is “0".

IMSFPOVERFL OW
Indicates the number of the Fast Path DEDB overflow buffers to be
allocated per thread. The default is “0".

IMSCLASS
Specifies the snap dump sysout output class.

IMSGROUPNAME
Specifies the Application Group Name. This should be a one to eight
character application group name to be used as part of the DBCTL
security function.

IMSNBABUFFERS
Specifies the total number of Fast Path NBA buffers that the CCTLs
can use.

IMSTIMEOUT
Enters the DRA term time out value. This should be the amount of
time (in seconds) that a CCTL should wait for the successful
completion of a DRA TERM request. This value should be specified
only if the CCTL is coded to use it. This value is returned to the
CCTL upon completion of an INIT request.

Note:

In almost all cases the default values are appropriate. The only
parameter that must be set is the IMSID.

In order to set up the connection between Shadow Server and IMS using DBCTL,
the IMS DBCTL interface will need to be active. DBCTL requires DBRC to be at
the SHARECTL level; if it is not, DBCTL will not start. To initialize the RECON,
specify (or let it default to) INIT. RECON SHARECTL. The example below
shows some sample JCL you can copy to initialize the RECON. If you have CICS
already connected to IMS and you are using DBCTL, this has probably already
been done.

December 1999

Shadow Programming Guide 4-7

Shadow IMS Direct

/11N TREC JCB 1, PQVER D, CLASS=Q MBGCLASS=A
/1%

//RECCN EXEC PQVEDSPURX00, REG CN=1000K
// STEPLI B DD DSNel M5. RESLI B, DI SP=SHR

/ | DFSRESLB DD DSN=I M5. RESLI B, DI SP=SHR
/1 SYSPR NT DD SYSQUT=*

//RECCNL DD DSNEl M5. RECONL, DI SP=SHR
//RECCN2 DD DSNEl M5. RECON2, DI SP=SHR
/ISYSIN DD *

I N T. RECON SSI (| MBA)

/*

For further information on how to setup DBCTL, refer to the CICS-IMSDatabase
Control Guide.

Programming IMS Applications

Using Shadow IM S Direct always involves two separate programs:

m A client application.
An MV S transaction program.

The client initiates the MV S transaction program. After the transaction program
has been started, the client application sends requests to the host TP for execution.
All requests are executed synchronously. By default, all data areas sent from the
IM S application program to the host are converted, as needed. Most data areas are
simply translated from ASCII to EBCDIC before being sent to the host, and from
EBCDIC back to ASCII upon receipt from the host. PCBs are converted to host
format on afield by field basis. All conversions can be turned off by passing
negative length values to the Shadow IM S Direct interface function. The
SCAsciiToEbcdic and SCEbcdicToAscii functions are provided to Shadow IMS
Direct applications for any data conversions needed.

Client Applications

Shadow IM S Direct client applications are programs written in any one of several
languages that use the Shadow IM S Direct API to execute IMS DL/I requests on
the host. These applications are normally written in C or C++. However, these
applications can be written in any language that can call DLL entry paints,
including Visual Basic (VB), PowerScript, Pascal, COBOL, etc. In practice,
amost any client application programming language can be used to invoke the
Shadow IM S Direct API.

The Shadow IM S Direct APl isimplemented asaDLL in the Windows, Windows
NT, and OS/2 environments. The Shadow IMS Direct APl isimplemented asa
shared library object in those UNIX environments (SunOS, etc.) that support
shared libraries. In other UNIX environments, the API isimplemented as an
archivefile.

Shadow IM S Direct applications must be linked using one of the two import
libraries supplied with Shadow IM S Direct:

4-8

Shadow Programming Guide December 1999

Programming IMS Applications

SQODBC. LI B, which is used with SOCDBC DLL
SOCDBCTS. LI B, used with SOCDBCTS. DLL

The SCCDBCTS. DLL contains numerous diagnostic, debugging, and support tools.
Asaresult, this DLL should be used for all application development purposes.
However, since the SCODBCTS. DLL issubstantially larger and slower than its
production counterpart (SCODBC. DLL), production applications that have been
fully debugged should be switched to SCODBC. DLL for improved performance.

Note:

I> CODBC. LI B must not be used with Shadow IM S Direct applications.
The architecture of Shadow IMS Direct does not support passing
calls from a Shadow IM S Direct application to the Shadow IMS
Direct DLL, viathe Microsoft driver manager (CDBC. DLL).

Shadow IMS Direct applicationswritten in C or C++ must include the scpghd. h
header file. This header file declares all the Shadow IM S Direct structures and
API entry points, and must be included in al Shadow IMS Direct client
application functions. The header file can be used with both ANSI and non-ANSI
C compilers, however, ANSI C isthe recommended choice for compiling and
building Shadow RPC client application programs. This header file will also work
in al client environmentsincluding Windows, OS/2, and UNIX.

Client APl Function Definitions

The following functions are available with Shadow IMS Direct API cals:

SCCToDLI: Execute DL/I callsfrom aC or C++ program.

SCCToDL | Pascal: Execute DL/I callsfrom aVB or PowerBuilder program.
SCPackedToAscii: Convert packed decimal datato ASCII.
SCAsciiToPacked: Convert an ASCII string to packed decimal data.

These API calls, which are detailed in the following sections, are used by Shadow
IMS Direct applications to establish a connection to the host and to execute DL/I
calls on the host.

December 1999 Shadow Programming Guide 4-9

Shadow IMS Direct

SCCToDLI

IMS Direct

SCCToDLI executes DL/I requests on behalf of aclient application. Most DL/I
requests are passed to the host for processing, and the results are returned to the
client application program. However, in afew cases, DL/I requests are executed
locally. This function takes a variable number of arguments, and is intended to be
called by C or C++ application programs. It cannot be called by Visual Basic or
Power Script applications.

Syntax

RETCDBC SCCToDLI (hdbe, cpar, rgbl MsFunction, rgbVal uel,

rgbval ue2, rgbVal ue3, rgbVal ued, rgbVal ue4, rgbval ue5, rgbVal ueé,
rgbval ue7, rgbval ue8, rgbVal ue9, rgbval uel0O, rgbVal uell,

rgbval ue12, rgbval uel3, rgbVal ueld, rgbVal uel5, rgbVal uels,
rgbval uelz, rgbval uel8, rgbVal uel9, rgbVal ue20, rgbVal ue?1,
rgbval ue22, rgbval ue?23, rgbVal ue24, rgbVal ue25, rgbVal ue26,
rgbval ue27, rgbval ue28, rgbVval ue29, rgbVal ue30, rgbVal ue3l,
rgbval ue32, rgbval ue33, rgbVal ue34)

Arguments

The SCCToDLI function accepts the following arguments:

Type

Argument

Use

Description

HDBC

hdbc

Input

Connection handle.

SDWORD

cpar

Input

Number of parameters. This value includes the IMS function string,
but does not include the connection handle, the number of
parametersitself, or any length values provided for the other
arguments.

rgblM SFunction

Input

IMS function code. Thisfield must point to afour-byte string
containing the IM S function code. The function code does not need
to be null-terminated, but must be in uppercase and padded with
trailing blanks, if needed

PTR

rgbValuel-17

110

Use of this argument depends on the IMS function code string and
the number of parameters. See the comments below for additional
information.

PTR

rghValuel8-34

Input

Use of this argument depends on the IMS function code string and
the number of parameters. See the comments below for additional
information.

4-10

Shadow Programming Guide December 1999

Programming IMS Applications

SQL_SUCCESS WITH_INFO

A positive IMS status code stored in the least significant two bytes of the

Returns

= SQL_SUCCESS

: SQL_ERROR

= SQL_INVALID HANDLE
) return code.
Diagnostics

When SCCToDLI returns SQL_ERROR or SQL_SUCCESS WITH_INFO, an
associated SQLSTATE value may be obtained by calling SQLError. The
following table lists the SQL STATE vaues commonly returned by SCCToDL |
and explains each onein the context of this function. The return code associated
with each SQLSTATE value is SQL_ERROR, unless noted otherwise.

SQLSTATE Error Description

01000 Genera warning Driver-specific informational message. (Function returns
SQL_SUCCESS_WITH_INFO.)

08003 Connection not open Connection specified by hdbc argument was not open. Connection
processes must be compl eted successfully (and the connection must
be open) for driver to perform this function.

08s01 Communication link failure Communication link between driver and data source to which driver
was connected, failed before function completed processing.

S1000 General error Error occurred for which there was no specific SQLSTATE and for
which no implementation-specific SQL STATE was defined. Error
message returned by SQLError in the argument szErrorMsg
describes error and its cause.

S1009 Invalid argument value The parameter count cpar was less than one.

The parameter count cpar exceeded the maximum value. The
maximum valueis 18.

The rgblMSFunction pointer was null.
One of the rghValue arguments was null.
One of the argument length values was not set.

For the “PCB “ IMS Function code, the parameter capat was
not 3.

For either the “GPCB” or “PPCB” IMS function code values, the
cpar parameter count was not 4.

The IMS function codegblMSFunction did not contain a valid IMS
function code string.

The PCB length value passed was invalid.
An invalid PCB address was detected.

December 1999

Shadow Programming Guide 4-11

Shadow IMS Direct

Comments

The SCCToDLI function provides all IMS servicesto an IMS Direct client
application. This function can be used three ways

m Toissuestandard DL/I callsthat get, replace, insert, and delete IMS segments.

= To obtain the PCB list and the number of PCBs on behalf of the caller.

m To access and update individual fieldsin a PCB. Different arguments are
passed for each use of thisfunction.

The correct arguments for each use of this function are described below.

= All of the arguments passed to this function must be four bytes long.

Note:

In many cases, large data areas are passed to this function,
however, these data areas are passed using pointers that are
actually four byteslong. The practical significance of this
requirement isthat all length and count values must be passed as
four-byte integers. Length and count values can be cast to four-
byte integers, if needed. The SDWORD cast can be used to
ensure integers are passed to this function correctly.

s The SDWORD cast can be used to ensure integers are passed to this function
correctly.

m Some forms of this function (see below) take a PCB as the fourth argument
(rgbValuel). PCBs can be passed as either an address or afour-byte PCB
number. Visua Basic and PowerScript applications must pass a PCB number
value.

= Thenumber of arguments passed to this function is variable. The actual
number will range from three to thirty-seven.

Note:

The actual number will always be equal to the cpar argument
value, multiplied by two, plus one. Thisrelationship can be
explained asfollows:. alength parameter must be supplied for all
data arguments other than the IM S function code string pointed
to by rgblM SFunction; in addition, the cpar argument does not
include itself and the connection handle.

m Length values arerequired for all arguments except for the first three. The
length values always follow the data arguments. If, for example, cpar istwo,
the cpar argument will be followed by two data areas and one length. If cpar
isthree, the cpar argument will be followed by three data areas and two
lengths. The number of lengths will always be one less than the number of
data areas, because alength vaue is not provided for the rgblMSFunction
argument.

4-12

Shadow Programming Guide December 1999

Programming IMS Applications

s TheSCCToDLI function can only be called by languages that support passing
avariable number of arguments. This means that this function cannot be
called by Visual Basic and PowerBuilder applications. Visual Basic and
PowerBuilder applications can, however, call the SCCToDL IPascal function
described below. A C or C++ program can use this function without
restriction.

m Thereturn code from this function will either be an ODBC return code or an
IMS status code. The ODBC return codes are described above. IMS status
codes are two byte character strings stored in the return code variable. The
sample IM S applications show how these status codes can be tested.

Note:

If an IMS operation succeeds, the IMS status code will be two
blank characters. However, the two blank characters will NOT
be stored in the return code variable. Instead, a return code of
SQL_SUCCESS (which is actually zero) will be returned to the
caller. This is the same convention that the mainframe CTDLI
function uses. For more information about IMS status codes, see
IMS Messages and Codes (SC26-4290).

Obtaining the PCB List Structure

This function can be used to obtain the PCB list from the Shadow IMS Direct

interface. The PCB list isa structure that contains the number of PCBs, avector of
pointers to PCBs, and some additional information. The PCB list structure imst is
typedef’ed in thescpghd. h header file. The PCBs pointed to by the PCB list in
this structure are copies of the actual PCBs on the host. Shadow IMS Direct
automatically synchronizes the client application PCBs and the actual PCBs on
the host. The first PCB pointed to by the PCB list vector is the I/O PCB. The
second, and all subsequent PCBs in the PCB list vector are database PCBs. This
structure, and the PCBs pointed to by this structure, cannot be used in Visual
Basic and PowerBuilder applications. Visual Basic and PowerBuilder do not have
adequate capabilities for pointer manipulation.

SCCToDLI is called as follows, in order to obtain the PCB list structure:

rc = SCCToDLI(hdbc, 3, “PCB “, “DUMMYPSB", &lcimst, 8,
sizeof(imst))

The parameter count for retrieving the PCB list structure is always 3. The “PCB “
function code is used on the host to schedule a PSB and returns a vector of PCB
pointers. However, thBCCToDL | function returns the PCB vector list but does

not actually schedule the PSB. The PSB is scheduled as part of the host session
initiation process. The PSB name is specified using the PSB keyword in the
connection string or in a section of the ODBC.INI file.

The “DUMMYPSB” argument is the PSB name; as mentioned above, this
function cannot be used to schedule a PSB. However, PSB scheduling capability

December 1999

Shadow Programming Guide 4-13

Shadow IMS Direct

may be added at some point in the future. The “DUMMYPSB?” string should be
passed to maintain upward compatibility with future versions of this function.

Note:
The PSB string must be null-terminated.

Thelcimst argument is the local data area structure into which the PCB list
structure will be copied. This area should be allocated usinignshéypedef.

The length values are the sizes of the “DUMMYPSB” string and the size of the
localimst area, respectively. Thazeof function is used to determine the size of
theimst as a convenience and to ensure future upward compatibility.

Accessing and Updating PCB Fields

The function can also be used to access and update fields in the PCB. This
capability is provided for languages such as Visual Basic, or PowerScript, that
cannot access PCB fields using pointers. Of course, this function can also be
called from C or C++ applications. The IMS function code is “GPCB” for
accessing PCB fields and “PPCB” for updating PCB fields.S®&ToDL |

function is called as follows to access or update a PCB field:

rc = SCCToDLI (hdbc, 4, rgbl MBFunction, rgbVal uel, data type, data
area, sizeof (PCB_STRUCT 8 TYPE), sizeof(data type), sizeof(data
area))

The parameter count for accessing and updating PCB fields is always four. The
IMS function code stringgblMSFunction must either be “GPCB” or “PPCB” as
mentioned above. The PCB (argument 3) itself can be passed one of two ways

s As apointer to a PCB.
m Asthe PCB number (cast to a SDWORD).

PCBs in the PCB vector list are numbered starting with “1” for the I/O PCB. In
other words, the first database PCB is always PCB number 2.

The data type is either a pointer to a null-terminated character string or an integer
cast to a SDWORD with the data type number. Mabkalutely sure that, if the

data type is passed asiateger, afour-byteinteger is usedDo not pass a two-

byte integer in any case. You will get a program fault.

Note:

Do not pass the global const values defined in the Visual Basic
sample programs without first assigning them to long integer values.

4-14 Shadow Programming Guide December 1999

Programming IMS Applications

The possible data type values are:

Data Type Integer

Data Type String

Description

SC DB_PCB

“SC_DB_PCB’

Entire DB PCB area

SC_DATABASE NAME

“SC_DATABASE_NAME”

DB PCB database name

SC_SEGQVENT_LEVEL_NUMBER

“SC_SEGMENT_LEVEL_NUMBER”

DB PCB segment level number

SC_STATUS OCDE

“SC_STATUS_CODE”

DB and DC PCB status code

SC PROCESSI NG CPTI ONS

“SC_PROCESSING OPTIONS”

DB PCB processing options

SC_SEGQVENT_NAME

“SC_SEGMENT_NAME”"

DB PCB segment name

SC_KEY_AREA LENGTH

“SC_KEY_AREA_LENGTH"

DB PCB key feedback area length

SC_SENSI Tl VE_SEGQVENTS

“SC_SENSITIVE_SEGMENTS”

DB PCB number of sensitive

segments
SC KEY_AREA “SC_KEY_AREA” DB PCB key feedback area
SC DC PCB “SC_DC_PCB” Entire DC PCB area

SC_TERM NAL_NAME

“SC_TERMINAL_NAME”"

DC PCB terminal name

SC_OURRENT _DATE

“SC_CURRENT_DATE”"

DC PCB current date

SC_CURRENT_TI ME

“SC_CURRENT_TIME”

DC PCB current time

SC_SEQUENCE_NUMBER

“SC_SEQUENCE_NUMBER”

DC PCB input message sequence
number

SC_DESCR PTCR_NAME

“SC_DESCRIPTOR_NAME"

DC PCB output descriptor name

SC USER D

“SC_USERID”

DC PCB user identification

The data area must be large enough to contain any data returned by the “GPCB”
function code. If the “PPCB” function code is used, this area must contain all the
data that will be copied into the PCB. The first length value must be the size of the
PCB passed usimgbValuel. The actual size will depend on whether the client
application program is passing an I/O or a DB PCB. The size of I/O PCBs is
always fixed; the size of DB PCBs depends on the size of the key feedback area.

The size of the data type will depend on whether a character string or a numeric
data type is passed. In either case, the correct length should be passed to this
function. If a character string data type is passed, the size is the length of the
string. If a numeric data type is passed, the size will always be four. The size of
the data area will depend on field in the PCB that is being accessed or updated.
The correct size of the data area should always be passed to this function.

Sending DL/I Requests to the Host

This most common use of this function is to pass DL/I calls to the host. The IMS
function codes that can be used for this purpose are documented in the IMS

December 1999

Shadow Programming Guide

4-15

Shadow IMS Direct

Application Programming: DL/l Calls manual (SC26-4274). Seethe CICS with
DBCTL section of the table documenting which IMS calls are available in which
environments. Of course, all the standard get, delete, insert, and replace calls can
be used with the SCCToDL I function. SCCToDLI is called as follows for passing
DL/l callsto the hos