
������

������

��	
��������

������������

This document is published by the NEON Systems, Inc. Technical Publications Department and
applies to Shadow OS/390 Web Server, Version 4, Release 5.

Copyright 1999 NEON Systems, Inc. All rights reserved. Printed in the U.S.A.

Licensee is granted permission to make a limited number of copies of the documentation for its internal business
purposes only. All such copies shall bear all copyright, trade secret, trademark and any other intellectual property
notices on the original copies. This limited right to reproduce for internal purposes only is not transferable.
Furthermore, this limited right DOES NOT include any license to distribute, modify, display or make derivative
works from the Copyrighted materials.

® indicates a trademark registered in the United States.
™ indicates a trademark that is not registered in the United States.

NEON and Shadow are registered trademarks and Activity Monitor, Affinities Server, Connection Facility,
Database Event Facility, Dynamic Index Facility, Halo, Halo SSO, NEON 24X7, PDF, RandomMax, REXX/
Tools, ShadowDirect, Shadow Enterprise Direct, Shadow OS/390 Web Server, Speed Key, Speed Load, Speed
Unload, Support Module, SSL Support Module, and Transaction Server are trademarks of NEON Systems, Inc.

All other trademarks, service marks, and product or service names are the property of their respective owners.

This software/document contains proprietary information of NEON Systems, Inc.; it is provided under a license
agreement containing restrictions on use and disclosure and is also protected by copyright law. Reverse
engineering of the software is prohibited.

If this software/documentation is delivered to a U.S. Government Agency of the Department of Defense, then it
is delivered with Restricted Rights and the following legend is applicable:

Restricted Rights Legend

Use, duplication, or disclosure by the Government is subject to restrictions as set forth in
subparagraph (c)(1)(ii) of DFARS 252.227-7013, Rights in Technical Data and Computer
Software (October 1988).

If this software/documentation is delivered to a U.S. Government Agency not within the
Department of Defense, then it is delivered with “Restricted Rights,” as defined in
FAR 52.227-14, Rights in Data—General, including alternate (June 1987).

NEON Systems, Inc. does not warrant that this document is error-free. The information in this document is
subject to change without notice and does not represent a commitment on the part of NEON Systems, Inc. No
part of this document may be reproduced or transmitted in any form or by any means, electronic or mechanical,
including photocopying and recording, for any purpose without the express written permission of NEON
Systems, Inc.

Address inquiries to:

NEON Systems, Inc.
14100 SW Freeway, Suite 500

Sugar Land, Texas 77478

World Wide Web: http://www.neonsys.com

Phone: 1-800-505-6366
(281) 491-4200 (Corporate Sales, Technical Support)

Fax: (281) 242-3880

December 3, 1999

Contents
 About this Publication . xv

How this Publication is Organized. xv
Conventions . xvii
Reader’s Comments . xvii
NEON Systems, Inc. Products and Publications . xviii
Year 2000 Compliancy Statement . xviii
Working with Technical Support . xix

 Chapter 1: An Overview . 1-1

What Is Shadow OS/390 Web Server? . 1-1
Internet Protocols . 1-1

What Protocols Govern . 1-1
TCP/IP . 1-2
Internet Application Layer Protocols . 1-2

Client/Server Roles in HTTP . 1-2
Terminology . 1-3
Important HTTP Protocol Concepts . 1-3

Processing Web Transactions and URLs . 1-4
How the Web Server Handles URLs. 1-4
Handling Inbound Requests . 1-5

Supported URL Values . 1-5
Restrictions . 1-5
Special Characters and URL Strings . 1-5
Rescanning to a New URL Value . 1-6
Rescan Request . 1-7
Error Recovery . 1-7
FLUSH Request. 1-7
Shadow/REXX Return Values . 1-7
Other WWW Transaction Procedures . 1-8

Recovery From Server Detected Errors . 1-8
Transaction Level Recovery . 1-8

A Word About HyperText Transfer Protocol (HTTP). 1-10
TCP/IP Architecture. 1-11

Application Layer . 1-11
Transport Layer . 1-11
Internet Layer . 1-12
Network Interface Layer . 1-13

 Chapter 2: The Shadow Event Facility (SEF) . 2-1

What It Does . 2-1
December 1999 Shadow OS/390 Web Server User’s Guide iii

Contents
How It Works. 2-1
Event Types . 2-2

Event Matching . 2-2
Event Procedure Execution . 2-3

Event Procedure Rulesets. 2-3
Naming Convention. 2-3
Start-up Parameters . 2-3
Event Procedure Dataset Format . 2-3
Enabling Event Procedures . 2-4
Enabling and Disabling Event Procedure Rules . 2-4

Structure of an Event Procedure . 2-4
Event Procedure Header Statement (Required). 2-5
Process Section Header Statements. 2-6
Header-Only Rules . 2-6

SEF Event Procedure Variables . 2-6
WWW Event Procedures. 2-6
REXX Dynamic Variables . 2-7
Global Variables . 2-7
GLVEVENT Temporary Variables. 2-8
Event Related Variables . 2-8
Event Procedure Return Values. 2-10
Accessing SEF Variables. 2-10

Controlling SEF from a Batch Environment . 2-11
Return Messages . 2-12

 Chapter 3: Defining Event Procedure Types . 3-1

Different Event Procedure Types. 3-1
Authorization (ATH) Event Procedures. 3-1

How They Work . 3-2
ATH Event Procedure Criterion . 3-2
ATH Event Procedure Header Keywords . 3-4
Allowed Process Sections . 3-4
ATH Valid Return Values . 3-4
ATH Event Procedure REXX Variables . 3-4
ATH Access Type Values . 3-7

Command (CMD) Rule Event Procedures. 3-8
How They Work . 3-9
Command Rule Syntax . 3-9
Event Procedure Criterion . 3-10
Event Procedure Header Keywords. 3-10
Allowed Process Sections . 3-10
Valid Return Values . 3-11
Special Considerations for STOP Rules . 3-11
iv Shadow OS/390 Web Server User’s Guide December 1999

Contents
CMD Event Procedure REXX Variables . 3-12
Exception (EXC) Event Procedures. 3-12

How They Work . 3-12
EXC Event Procedure Criterion . 3-12
EXC Event Procedure Header Keywords . 3-13
EXC Allowed Process Sections. 3-13
EXC Valid Return Values . 3-13
EXC Event Procedure REXX Variables . 3-14

Global Variable (GLV) Event Procedures . 3-15
How Global Variable (GLV) Work. 3-15
GLV Event Procedure Criterion . 3-15
GLV Event Procedure Header Keywords . 3-16
GLV Allowed Process Sections . 3-16
GLV Valid Return Values . 3-16
GLV Event Procedure REXX Variables . 3-16

Time-of-Day (TOD) Event Procedures . 3-17
How Time-of-Day (TOD) Rules Work . 3-17
TOD Event Procedure Criterion . 3-17
TOD Event Procedure Header Keywords . 3-19
TOD Allowed Process Sections . 3-20
TOD Valid Return Values . 3-20
TOD Event Procedure REXX Variables . 3-20

Type (TYP) Event Procedures . 3-21
TYP Event Procedure Criterion. 3-21
TYP Event Procedure Header Keywords . 3-21
TYP Allowed Process Sections . 3-21
TYP Valid Return Values . 3-21
TYP Event Procedure REXX Variables . 3-21

WWW Event Procedure Rules. 3-21
How WWW Rules Work. 3-22
WWW Rule Types. 3-22
Syntax of WWW Rule Definitions . 3-25
WWW URL-to-Rule Matching . 3-31
WWW Rule Header Statements . 3-32
WWW Rule Process Sections . 3-33
WWW Event-Related Variables . 3-34

 Chapter 4: Web Transaction Security . 4-1

About Web Browsers . 4-1
Userid Prompting . 4-2
Controlled Transaction Paradigm . 4-4
Levels of Security . 4-4

MVS Security Subsystem . 4-4
December 1999 Shadow OS/390 Web Server User’s Guide v

Contents
Client Authorization (Optional). 4-4
Effective Userid. 4-5
Security Option Summary . 4-7

Distributed Transaction Administration. 4-7
The Master Ruleset . 4-8
Subordinate Rulesets . 4-9
Security Attributes Processing. 4-10
Security Processing Steps . 4-12
How to Implement Distributed Administration. 4-14

Specifying Web Transaction Security Parameters. 4-15
WWW Header Statement Keywords. 4-15

Configuring Secure Sockets Layer (SSL) Support . 4-16
WWW Header Security Parameters and Keywords. 4-16

AUTHREQ (YES | NO | LOCK). 4-17
RUNAUTH(NONE | CLIENT | proxy-id) . 4-18
RESOURCE (string). 4-19
SSL(NO | COND | YES | LOCK | LOCKCOND). 4-20

Shadow OS/390 Web Server Subsystem Security . 4-21
Setting Limits for the Subsystem. 4-21
Protecting Subsystem Command and Control Interfaces . 4-24

 Chapter 5: Writing Web Transactions in REXX . 5-1

Shadow/REXX. 5-1
/*REXX Process Sections . 5-1

/*REXX Statement Keywords. 5-1
Coding the Process Section . 5-2

Shadow/REXX Built-in Functions . 5-2

 Chapter 6: File Serving Using Shadow
OS/390 Web Server . 6-1

URL Values and the UNIX File System . 6-1
MVS File System. 6-1

Files Supported Directly by Shadow OS/390 Web Server . 6-2
File Sharing and Caching . 6-2

How Shadow OS/390 Web Server Handles Files . 6-3
Building File Serving WWW Rules Using /*FILE . 6-3

Coding a /*FILE Process Section . 6-4
/*FILE Transaction Operation. 6-4
/*FILE Statement Keyword Syntax. 6-5
Parsing URLs to Supply Missing /*FILE Keyword Values . 6-10
Inline File Processing . 6-14
Examples of /*FILE Rules . 6-14
vi Shadow OS/390 Web Server User’s Guide December 1999

Contents
 Chapter 7: HTML Extension Facility . 7-1

Using the HTML Extension Facility . 7-1
Insert Variable Text Into the Output . 7-1
HTTP Response Control Statements . 7-1
Conditional Statements . 7-1
Iteration Statements . 7-1
Other Control Statements . 7-2
Merging Data From Other Server Facilities . 7-2
Scope and Limitations of the Facility . 7-2

Rules for Coding HTML Extension Statements . 7-4
HTML Extension Statement Escape Delimiters . 7-4
No Continuation of Statements . 7-5
Single Statement Per Source Record (Except Text Insertions) . 7-5
Mixed Case Coding Allowed . 7-5
Reserved Words Not Valid as Variable Names. 7-6
Using Statement Operands . 7-6
Run-time Operand Evaluation . 7-8
HTML Extension Text Insertion Statement . 7-9

HTML Extension Run-time Condition Checking . 7-10
<%if%> Statement Syntax . 7-10
<%else%> Statement Syntax. 7-11
<%endif%> Statement Syntax. 7-11
Condition Statement Example . 7-12

HTML Extension Iteration Statements . 7-12
Using Named Iteration Groups . 7-13
<%do%> Statement Syntax. 7-13
<%leave%> Statement Syntax . 7-14
<%next%> Statement Syntax . 7-14
<%enddo%> Statement Syntax . 7-15
Operation Of Iterative Groups. 7-15
Iterative Group Example . 7-16

Other HTML Extension Statements. 7-17
<%date(_)%> Statement Syntax . 7-17
<%time(_)%> Statement Syntax . 7-17
<%exit%> Statement Syntax. 7-18
DB2 Result Set Cursor Advance . 7-18
HTTP Response Control Statement. 7-18

HTML Extension Merge Processing . 7-19
Interface With /*EXECSQL . 7-19
Special /*EXECSQL Variables . 7-19

 Chapter 8: Automated State Management Facility (ASMF) 8-1

What is a Stateless Protocol? . 8-1
December 1999 Shadow OS/390 Web Server User’s Guide vii

Contents
Persistent Session Support. 8-1
What is ASMF? . 8-1

Why use ASMF? . 8-2
What Constitutes 'State' Information? . 8-2

Transmitting State Information . 8-2
Server-Side State Information . 8-4
Using HTTP Cookies. 8-5
Using HTML Forms . 8-6

Using State Information Sets . 8-6
State Information Set Name . 8-7
State Information Set Variables. 8-8
GLVSTATE. Variable Inventory . 8-8
Collection Control Variable Name . 8-10
Collection Status Variables . 8-11

Using COOKIE-Type Information Sets. 8-13
How Cookies Work . 8-13
Creating a Cookie-type Set . 8-14

The unOfficial HTTP Cookie Specification . 8-15
Anomalies You May Encounter . 8-15
Making HTTP Cookies Work Reliably . 8-15
Some Suggestions . 8-16

 Chapter 9: Executing User Programs . 9-1

Program Process Sections . 9-1
What Programs Can be Executed . 9-1
Where is CGI? . 9-1
Where the Programs Must Reside . 9-2
Coding PROGRAM Process Sections. 9-2

Using Other REXX Interpreters. 9-4
Executing a Non-Shadow/REXX Interpreter . 9-4
Run-time Environment of Other REXX Interpreters . 9-5
Web Server APIs for Other REXX Interpreters . 9-6

Writing C/370 Web Transaction Programs . 9-6
Writing COBOL Web Transaction Programs . 9-6
Writing PL/I Web Transaction Programs . 9-7

 Chapter 10: Writing DB2-Based Web Applications . 10-1

Shadow/REXXTOOLs DB2/SQL Interface . 10-1
/*EXECSQL Process Sections. 10-1

Operation of EXECSQL Sections . 10-1
Coding EXECSQL Process Sections. 10-2
SQL Statement. 10-4
EXECSQL Examples . 10-5
viii Shadow OS/390 Web Server User’s Guide December 1999

Contents
 Chapter 11: Using TSO/E Services For Web Transaction Processing 11-1

How TSO/E Auxiliary Servers Operate. 11-1
Auxiliary Server Operation . 11-1
Using TSO/E Commands in Web Transactions . 11-2
Restrictions on Commands Executed Within an Auxiliary Server 11-2
Release Restrictions. 11-3

Activating the TSO Server Facility . 11-3
Setting Up the SWSTSO Started-Task JCL . 11-4
Configuring Initialization Parameters . 11-4

Building Shadow/REXX Based TSO/E Web Transactions . 11-6
ADDRESS TSOSRV - Command Types . 11-6
Pseudo Command Formats . 11-7
TSO/E Command Formats . 11-8
ADDRESS TSOSRV Example . 11-9

/*TSOSRV Process Sections . 11-10
Operation of TSOSRV Sections . 11-11
Coding TSOSRV Process Sections . 11-11
TSOSRV Example. 11-13
Coding the External Command Procedure . 11-13

 Chapter 12: AutoHTML - Web Enabling Transactions . 12-1

IMS Implementation . 12-1
Installation and Configuration Overview . 12-1
Enable Web Transactions . 12-2

 Chapter 13: Data Mapping Facility . 13-1

How It Works. 13-1
Restrictions . 13-1

Getting Started . 13-1
Recommendations . 13-2

Data Mapping Checklist. 13-2
The ISPF Panels . 13-3

Map Defaults . 13-3
Map Extract . 13-4
Map Display . 13-6
Copy Map . 13-11
Refresh Map . 13-11
Generate RPC . 13-11
Merge Maps. 13-15
HTML Generation . 13-15

Using Data Maps in Client Programs. 13-16
December 1999 Shadow OS/390 Web Server User’s Guide ix

Contents
 Chapter 14: Shadow ADABAS Server . 14-1

How It Works. 14-1
Shadow Mapping Facility . 14-3

SDADEX. 14-3
SDADDM . 14-13
Dynamic ADABAS Data Mapping . 14-14

Cursor Processing. 14-14
Obtaining Data From Multiple ADABAS files . 14-15
SQL Syntax Supported. 14-17

Selection Criterion. 14-18
Search Criterion. 14-19
ASSIGNMENTS . 14-21
CLOSE. 14-21
COMMIT. 14-22
CONNECT . 14-22
DBCLOSE. 14-22
DELETE . 14-23
FETCH. 14-23
{FIND} SELECT . 14-24
HISTOGRAM . 14-25
HOLD . 14-25
INSERT . 14-26
OPEN. 14-26
READ . 14-27
RELEASE . 14-29
ROLLBACK . 14-29
SET . 14-30
SHOW . 14-30
TRACE . 14-31
UPDATE . 14-31

ADABAS User Identification . 14-32
Loss of Client Connectivity . 14-32
Tracing . 14-32
The ODBC Administrator and ADABAS Usage. 14-32
Compatibility with Other Software AG Products . 14-33
Installation Requirements. 14-33

ADABAS Link Routine. 14-33
Messages and Codes . 14-33

 Chapter 15: Shadow_VSAM and
Shadow_VSAM for CICS . 15-1

What are they? . 15-1
How do they work? . 15-2
x Shadow OS/390 Web Server User’s Guide December 1999

Contents
Shadow Data Mapping Facility . 15-4
Defining the VSAM Data Set Files . 15-4

Defining Multiple VSAM Logical Records Within the Same Physical File 15-8
An Alternate Approach . 15-8

Using Alternate Indexes for a VSAM Cluster . 15-9
Shadow VSAM . 15-9
Shadow_VSAM for CICS . 15-11

SQL Supported Syntax. 15-12
Shadow_VSAM. 15-12
Shadow_VSAM for CICS . 15-14
Syntax . 15-14

Codes . 15-17

 Chapter 16: Shadow Web Interface . 16-1

The Shadow Web Interface . 16-1
Before you Begin . 16-1
Logging On . 16-2
The Home Page . 16-3

The TITLE Frame . 16-3
The DATA Frame . 16-3
The MENU Frame . 16-4

Examples . 16-9
Drilling Down through the Panels . 16-9
Updating a Parameter . 16-11

Additional Screens . 16-12
Trace Browse Records. 16-12
Trace Browse Control . 16-15

Security Features . 16-18

 Chapter 17: Using the OS/390 UNIX OpenEdition
Hierarchical File System (HFS) . 17-1

Steps to Setting up HFS . 17-1
OpenEdition and HFS Security . 17-1

OpenEdition Security Subsystem (RACF) Configuration. 17-2
Server Start-up Parameters. 17-3

OEHFS Parameter (Required) . 17-3
HFSAUTHMODE Parameter (Required) . 17-4
DOCUMENTROOT Parameter (Optional). 17-4
SEFV31COMPATIBLE Parameter. 17-5

Ruleset Definitions. 17-5
HFSROOT() . 17-5
HFSROOT vs. DOCUMENTROOT. 17-6

/*WWW Rules . 17-6
December 1999 Shadow OS/390 Web Server User’s Guide xi

Contents
URL Criterion . 17-7
PATH Keyword Operand . 17-7
WELCOMEPAGE Keyword Operand . 17-7

Displaying the Web Page . 17-8

 Appendix A: Trace Browse . A-1

Starting Trace Browse . A-1
Order of Trace Browse Events. A-2
The Trace Browse Profile . A-3

Using the Specification Display . A-3
Using the PROFILE Command. A-5
Wildcards for Trace Browse Profile . A-5

Positioning Trace Browse . A-6
Changing Trace Browse Columns . A-7

Displaying Extra Columns of Information . A-7
Trace Browse Columns . A-7

Using Labels in the MSGNO Column . A-10
Locating Messages . A-10
Using the FIND Command . A-11

Finding Character Strings . A-11
Repeating a FIND Command . A-12
Finding With DISPLAY Columns . A-13

Row Information Commands. A-14
Printing Trace Browse Information . A-15

 Appendix B: Trace Browse Archival Facility . B-1

What is it . B-1
How it works . B-1
Backups and Extracts . B-2
Configuring Automatic Backups . B-3

To Begin Testing . B-4
Data Set Allocation Parameters. B-4

Using the Trace Browse Archival Facility. B-5

 Appendix C: Starting a Test Version . C-1

Setting Up Shadow Server to Run under TSO. C-1
Test Copies. C-1
Using the Debugging Control Screen . C-1
Using the Code/370 Debug Tool . C-2
xii Shadow OS/390 Web Server User’s Guide December 1999

Contents
 Appendix D: Sever Error Codes . D-1

 Appendix E: Supported SMF Fields . E-1

SMF Type 05 Records . E-1
SMF Type 06 Records . E-3

 Appendix F: Language Codes . F-1

 Glossary . Glossary-1

 Index . Index-1
December 1999 Shadow OS/390 Web Server User’s Guide xiii

Contents
xiv Shadow OS/390 Web Server User’s Guide December 1999

About this Publication

This guide expands on the concepts and information presented in Shadow OS/390 Web Server’s
Getting Started Guide. If you do not find the information in this manual, refer to the Getting Started
Guide or one of the related publications in Shadow OS/390 Web Server’s set of manuals.

How this Publication is Organized
This book contains the following chapters:

� Chapter 1, “An Overview,” provides an introduction to Shadow OS/390 Web
Server by reviewing information covered in the Getting Started Guide plus
additional information on rescanning to a new URL, error recovery, flush
requests, and more in-depth information on HTTP and TCP/IP.

� Chapter 2, “The Shadow Event Facility (SEF),” covers the structure of an
event procedure (header statements and process sections), the different types
of variables, and how to control SEF from a batch environment.

� Chapter 3, “Defining Event Procedure Types,” covers the different event
procedures types, what they do, how they work and valid syntax for each.

� Chapter 4, “Web Transaction Security,” covers security parameters and
subsystem security.

� Chapter 5, “Writing Web Transactions in REXX,” covers the syntax for
coding REXX process sections.

� Chapter 6, “File Serving Using Shadow OS/390 Web Server,” discusses
supported files, how Shadow OS/390 Web Server handles files, and how to
build WWW rules using /*FILE.

� Chapter 7, “HTML Extension Facility,” covers the rules for coding HTML
extension statements, run-time condition checking, iteration statements, and
merge processing.

� Chapter 8, “Automated State Management Facility (ASMF),” covers State
Information, the ability to ‘remember’ information at the end of a client/
server interaction because it has some bearing on a future anticipated
interaction.

� Chapter 9, “Executing User Programs,” discusses the program process section
(what programs can be executed, where they must reside and how to code the
process section), using other REXX Interpreters, and writing transaction
programs (C/370, COBOL, and PL/I).

� Chapter 10, “Writing DB2-Based Web Applications,” covers the operation of,
coding and SQL statements for /*EXECSQL process section. The Shadow/
December 1999 Shadow OS/390 Web Server User’s Guide xv

About this Publication
REXXTOOLs DB2/SQL interface is discussed in the HTML online
documentation and the Shadow Programming Guide.

� Chapter 11, “Using TSO/E Services For Web Transaction Processing,”
discusses how TSO/E auxiliary servers operate, how to build the Shadow/
REXX based TSO/E Web transaction, and the syntax and coding for the
/*TSOSRV process section.

� Chapter 12, “AutoHTML - Web Enabling Transactions,” discusses how to
format the /*EXECIMS section. The Installation Guide covers how to
configure the system so you can use AutoHTML.

� Chapter 13, “Data Mapping Facility,” discusses the data mapping facility,
how it works, the various ISPF panels and what it does.

� Chapter 14, “Shadow ADABAS Server,” covers the new add-on component
to NEON’s line of Shadow Server products, which provide a reliable, high-
performance access to ADABAS data from the desktop.

� Chapter 15, “Shadow_VSAM and Shadow_VSAM for CICS,” covers the
new add-on components to NEON’s line of Shadow Server products,
providing reliable, high-performance access to VSAM data.

� Chapter 16, “Shadow Web Interface,” covers the GUI (Graphical User
Interface) that allows you to perform many of the same functions available on
the ISPF panels.

� Chapter 17, “Using the OS/390 UNIX OpenEdition Hierarchical File System
(HFS),” covers support for the OS/390 Unix System Services Hierarchical
File System (HFS).

� Appendix A, “Trace Browse,” covers the different features of Trace Browse,
such as, how it works, change columns (or displaying extra columns), and
locating messages.

� Appendix B, “Trace Browse Archival Facility,” discusses what it is, how it
works, handling backups and extracts and configuring automatic backups.

� Appendix C, “Starting a Test Version,” covers usinging the debugging control
screen, setting the server up to run under TSO and using the code/370 debug
tool.

� Appendix D, “Sever Error Codes,” lists the different server error codes and
their descriptions.

� Appendix E, “Supported SMF Fields,” explains the records that are written
out by Shadow OS/390 Web Server whenever a URL is executed. (Offset,
Field Name, Field Type/Value, and Description)

� Appendix F, “Language Codes,” lists the country codes and the language.

� “Glossary,” lists and defines terms and acronyms that may appear in NEON
Systems, Inc. publications.
xvi Shadow OS/390 Web Server User’s Guide December 1999

Conventions
Conventions
This book contains the following highlighting conventions:

BOLD CAPS
Identifies commands. For example:

Use the KEYS command to ...

Monospace
Identifies code examples, screen prompts, and messages, as well as
directory paths. For example:

//STEP010 EXEC PGM=NDBA2400

Monospace Italics
Identifies information you must provide at a screen prompt or in a
text field. For example:

PARM=’PARMLIB=your.parmlib’

<KEY> Identifies the key to press. For example:

<ENTER>

NEON Systems, Inc. uses Release.Version to identify software packages. For
example, Product 4.1, denotes the fourth release, first revision of the software.

Reader’s Comments
At NEON Systems, Inc. we are always looking for good ideas. If you have any
comments or suggestions regarding any of our publications, please complete the
Reader’s Comment form (located at the back of this book) and return it to NEON,
Attention: Technical Publications Department.

Mailing Address: NEON Systems, Inc.
14100 SW Freeway, Suite 500
Sugar Land, Texas 77478

Fax Number: (281) 242-3880

You can also send comments to directly to our Technical Publications department
via the following email address: documentation@neonsys.com.

Thank you!
December 1999 Shadow OS/390 Web Server User’s Guide xvii

About this Publication
NEON Systems, Inc. Products and Publications
For a comprehensive list of the products currently marketed by NEON Systems,
Inc., (NEON) visit our World Wide Web site at: http://www.neonsys.com.

You can also access and download all of the current NEON publications from this
Web site.

Year 2000 Compliancy Statement
The following products from NEON Systems, Inc., are Year 2000 ready:

� Enterprise Security Management Products
� Enterprise Subsystem Management Product Family
� Shadow® Product Family and Add-On Components

The mainframe code for the Shadow Product Family, Version 3.1 and all
subsequent versions, are Y2K ready.

All versions of the client code associated with Shadow® Direct™ and Shadow

Enterprise Direct® are Y2K ready.

These products use four-digit year values both internally and externally (although,
in a few cases, two-digit year values are displayed while four-digit year values are
maintained internally).

Note:

While Shadow Direct, Shadow® OS/390 Web Server™, and Shadow
Enterprise Direct are Y2K ready, customers should be aware that these
products can provide access to data sources that may not be Y2K ready.
xviii Shadow OS/390 Web Server User’s Guide December 1999

Working with Technical Support
Working with Technical Support
NEON Systems, Inc. provides a number of ways for you to obtain assistance for
our products. All product support inquiries are handled by the same support
group, regardless if you are a trial or a licensed customer. The following are
available support options:

Support
Option

How to Access How it Works This Option is Best for:

Email Access to Technical Support via
email:

support@neonsys.com

Email is available for receipt 24
hours a day, 7 days a week and is
answered between 9AM-7PM
CST Monday through Friday.

Email goes to the support queue,
which is continuously monitored
by a staff of cross-functional
technical experts. It is answered
in the order it is received. It is
logged in the support database
and assigned a trouble ticket
number for tracking purposes.

This type of support is excellent
for low to medium priority
requests. It is a proven method
for providing further information
on critical problems that may
have been phoned in. Email is a
convenient way of sending us a
list of lower priority items you
have collected at a time that is
convenient for you.

Phone For access to Technical Support
via phone, please call:

1-800-505-6366

During normal working hours
you will be transferred to
someone who can usually answer
your question on the first call.
You may be required to page a
support person via our phone
mail system after hours.

This type of support is best for
high priority requests and initial
installation questions. Use this
option for any obvious system
errors or anytime you need the
most rapid reply to your
question.

Internet For access to Internet support,
please visit our website at:

www.neonsys.com

Simply visit our website. NEON
Systems works to keep current,
relevant materials on our website
to support our trial and licensed
customers.

This option provides immediate
access to documentation,
updated client-side drivers, and
our product Knowledge Base.
The Knowledge Base is a
collection of questions answered
by support. Use this option to
answer your own questions or to
get a better understanding of
what customers ask on an
ongoing basis.

Account
Manager

Call your NEON Systems Sales
Representative at:

1-800-505-6366

Your Sales Representative is
your account manager. This
person is ultimately responsible
for your complete satisfaction
with NEON Systems, Inc.

Contact your Sales
Representative for pricing
information, contract details,
password renewal or if you feel
your needs are not being met.
December 1999 Shadow OS/390 Web Server User’s Guide xix

About this Publication
xx Shadow OS/390 Web Server User’s Guide December 1999

CHAPTER 1:

An Overview

The Shadow OS/390 User’s Guide expands on the concepts and information presented in Shadow
OS/390 Web Server’s Getting Started Guide. If you do not find the information in this guide, please
refer to the Getting Started Guide or one of the related publications in Shadow Web Server’s set of
manuals.

What Is Shadow OS/390 Web Server?
Shadow OS/390 Web Server is a native MVS Web server which provides
controlled access to MVS data and applications using any Web browser, such as
Netscape Navigator or Internet Explorer. The Web Server does not require an
intermediate server, nor is it limited to simple file transfers or screen scraping.
Shadow Web Server is an MVS transaction processor product designed especially
to connect MVS resident resources to the Internet or World Wide Web (WWW).

Internet Protocols*

The Internet operates effectively because an agreed upon set of communication
rules and procedures are implemented consistently across all connected
computers.

What Protocols Govern
A small subset of the things governed by these rules and protocols are:

� How data is transmitted and routed through the physical network pathways

� How remote computers, at previously unknown locations, are located,
identified, and contacted

� When, and at what network junctures, data streams are validity checked

� Whether messages are discarded or retransmitted if an error is detected or a
message cannot be delivered

� Whether one way, broadcast, or bidirectional sessions are used for
transmission

� How messages are formatted by the sender

� How messages are interpreted by both the intended recipient and any
intermediate computers along the transmission path

*See the Getting Started Guide for more information.
December 1999 Shadow OS/390 Web Server User’s Guide 1-1

An Overview
� Whether there is a client/server store and forward, or another relationship
between communication partners

� Which message and session level responsibilities and liberties each
transmission partner must observe

TCP/IP
TCP/IP is a communications protocol which provides many of the transmission,
routing, error checking, and session establishment/breakdown services. TCP/IP
also provides an easy to implement, extensible platform on which various
application layer protocols have been constructed.

Internet Application Layer Protocols
There are many application layer protocols which have been built upon the
TCP/IP communication protocol foundation. For example:

Domain Name Services (DNS)
These are used to look up computer domain names, their
corresponding Internet Protocol (IP) addresses, and various other
pieces of navigation and routing information.

File Transfer Protocol (FTP)
These are used to request and receive files and file system directory
information from another computer.

HyperText Transfer Protocol (HTTP)
These allow the retrieval of virtually any digital file in a format
suitable for later rendering in its original text, audio, or visual media
presentation form on the Web.

Mail (mailto) This is used to transfer electronic e-mail messages.

Each application layer protocol defines:

� How communication protocol (TCP/IP) services must be used to establish
communication sessions, make requests, send responses, recover from
unexpected conditions and breakdowns in communication sessions.

� The message formats used between session partners, the roles of sender and
receiver (such as client/server), and how senders and recipients are expected
to process messages to provide useful services.

Client/Server Roles in HTTP
Many application layer protocols define communication partners as acting in
client/server roles. This relationship also holds true for HTTP protocol. Each
communications partner is either the client, which initiates a request, or the server,
which responds to the request.
1-2 Shadow OS/390 Web Server User’s Guide December 1999

Client/Server Roles in HTTP
Terminology
Client This refers to a Web browser, such as Netscape Navigator or

Microsoft Internet Explorer and the person operating the browser.
However, an HTTP client could be any software system that uses
HTTP in a client role to initiate a request.

Server This refers to Shadow OS/390 Web Server acting in an HTTP server
role.

Important HTTP Protocol Concepts
These are the most important concepts about HTTP protocol are:

Note:
Formal HTTP specifications define a more generic term, “User Agent”,
used when referring to the downstream client or the upstream server.
This is because an unknown number of intermediate proxy or firewalls
servers can be between the target server and the original client.

Proxy servers and firewalls act as the server in relation to a downstream
client, and as the client in relation to an upstream server.

Concept Description

Single Request/Single Response Only one request can be sent each time the client contacts a server and only a
single response can be returned for each request. The server must send some
response or close the session if it cannot. If the server does not respond in a
reasonable amount of time, the client can close the session.

The Server Defines What Action is Taken The client sends each request in a form that can look like a reference to a
static data file, but it is the server that interprets the request. HTTP allows the
server to perform virtually any action while generating a response to the
client’s request as long as the server obeys a few limitations imposed by the
HTTP protocol. For example, HTTP allows the server to:

• Execute existing CICS and IMS transactions and return results to Web
browsers.

• Execute SQL statements against DB2 and return results sets.

• Execute programs in REXX, COBOL, PL/I, C, C++ and Assembler.

• Retrieve MVS files or data sets.

• Perform virtually any action while generating a response to the client's
request.

Table 1–1. Important Protol Concepts
December 1999 Shadow OS/390 Web Server User’s Guide 1-3

An Overview
Processing Web Transactions and URLs
An inbound URL (Uniform Resource Locator) specifies the location of a file on
the Internet, network or hard drive; it also identifies the Internet service protocol,
such as HTTP or FTP. Shadow OS/390 Web Server uses the URL Value to process
transactions.

The following is a URL:

http://www.neonsys.com/NEON/SAMPDATA/htxother.htm#attr

How the Web Server Handles URLs
The first part of the URL (http://www.neonsys.com) identifies the TCP/IP
address of the MVS system to the server. Once the port has been reached, this
information is discarded. Only the second part (/NEON/SAMPDATA/
htxother.htm#attr) is passed to Shadow OS/390 Web Server for processing.

Stateless Communication Because each request/response interaction occurs in a separate
communications session, each is logically isolated from all others. This
makes HTTP a “stateless” protocol. There is no left over operational status
information carried over from one request to another; it is “clean” or free
from accidental informational artifacts.

Various means are available both in the HTTP protocol and HTML
specification to allow state information to be passed between client and
server. However, it can also be difficult to create a coherent series of client/
server interactions using these means.

HTTP Messages Contain Self-Describing
Information

The HTTP protocol defines self-describing request and response message
formats for both inbound and outbound messages. For example, a client's
request can indicate a text language preference, or only display GIF images.
These controls allow the server to determine the best response to give each
request.

Server responses contain content type descriptions which tells the client how
to present each response from the server. For example, the response could
contain either an HTML page or plain text.

The server can also use status codes in a response, such as requesting a userid
and password, or redirecting the client to the server’s new location.

Internet
Protocol Domain Name Path File Name Bookmark

http:// www.neonsys.com /NEON/SAMPDATA /htxother.htm #attr

Table 1–2. Parts of the URL

Concept Description

Table 1–1. Important Protol Concepts
1-4 Shadow OS/390 Web Server User’s Guide December 1999

Supported URL Values
Handling Inbound Requests
Once Shadow OS/390 Web Server receives the URL, a Web transaction subtask is
selected (spawned) to service the request. The subtask looks in a list of defined
transactions to match the URL value against predefined WWW event procedure
rule definitions. These definitions determine how the request is processed.

When a Match is Found

When the URL can be matched to a predefined WWW event procedure, the
request is executed. Usually an outbound response is created where HTML or
binary data is returned to the Web browser. Once the outbound response has been
transmitted, the communications connection is terminated and the Web
transaction subtask ends.

When No Match is Found

The Web Server performs an internal rescan.

Supported URL Values
Shadow OS/390 Web Server places restrictions on the URL and recommends that
you limit the use of special characters when you create them to avoid any conflict.

Restrictions
Shadow OS/390 Web Server imposes the following restrictions on inbound URL
values:

1. No URL string can be longer than 128 bytes in length.

2. The URL can contain any character except embedded blanks and a question
mark.

3. If the transaction is defined outside of the master ruleset, the URL value must
have a prefix value which relates the definition back to the dataset in which it
is defined. This restriction is imposed to ensure that definitions are secure
from unauthorized modification.

Special Characters and URL Strings
Special characters have accepted usage within HTTP and HTML specifications.
Even though Shadow OS/390 Web Server does not restrict the use of these

Discarded once it arrives at the port SWS matches this to an Event Procedure Rule

http://www.neonsys.com /NEON/SAMPDATA/htxother.htm#attr

Table 1–3. How Shadow OS/390 Web Server (SWS) Handles URLs
December 1999 Shadow OS/390 Web Server User’s Guide 1-5

An Overview
characters, we recommend that you limit their usage to avoid conflicts. If you do
use these special characters, use them in the widely accepted Internet format.
Failure to do so could cause display problems in Web browsers, or it could even
confuse a proxy or routing agent, which in turn could misroute an inbound
request.

Rules or Using Special Characters

Rescanning to a New URL Value
When Shadow OS/390 Web Server detects an error during processing, such as an
unmatched current URL or a security authorization error, it does not generate a
hard coded error response. Instead, it performs an internal rescan request, which
redirects processing of the client request to use a new URL-to-rule matching
string.

Character Reason Not to Use

embedded blank This can never be used as part of a URL, because blanks are used as a delimiter within
HTTP request and response messages.

question mark (?) This can not be used, because it delimits the end of the URL string and signals the
beginning of query variables within HTTP request messages.

Table 1–4. Avoid using these entirely

Character Reason

pound sign (#) This is used by most browsers to point to an HTML page's internal reference
(bookmark). For instance, the HTML tag, points to
location xyz within the document at the URL location ABC.

Period (.) This is normally used to signal the beginning of a file extension. Data following a
single period can be interpreted as a PC or UNIX file extension, such as '.GIF', by the
server. (See “Parsing URLs to Supply Missing /*FILE Keyword Values” on page 6-10
for more information.)

../ or ./ One or two periods, preceding a slash normally signal a relative URL value to both
browsers and Internet proxy agents. Using this character combination can cause a
proxy agent to misroute an inbound request.

Tilde (~) This is used by many Web servers to denote a user owned and maintained directory or
subdirectory path; a “private” Web site. This capability is currently not supported by
Shadow OS/390 Web Server.

Exclamation point (!) This will be used by a future enhancement to Shadow OS/390 Web Server.

Miscellaneous Other: Many other symbols, particularly the ampersand (&), equal sign (=) and the HTML tag
delimiters (< and >) can have special meaning to some proxy agents.

Table 1–5. Only use these in accepted Internet format
1-6 Shadow OS/390 Web Server User’s Guide December 1999

Supported URL Values
Security related processing attributes accumulated during the previous URL-to-
rule pattern matching are discarded and reaccumulated during the subsequent
rescan.

Rescan Request
A rescan uses the newly specified URL string as though it were the URL
originally requested by the client and initiates a new URL-to-rule match. It
searches by beginning at the top most (least specific) WWW Rule with the default
transaction run-time control attributes restored.

To reroute subsequent URL-to-rule matching activities in a WWW procedure
before execution ends, set the RESCAN URL string value.

Error Recovery
Many of the error recovery processes are generated internally by a rescan, which
redirects the processing to system supplied error recovery transaction definitions.
These system recovery procedures are distributed within the WWW master
ruleset.

FLUSH Request
A WWW rule procedure can explicitly request that:

� No further rule matches are to be made under any condition.
� The transaction should end immediately.

A FLUSH request causes unconditional termination of rule matching. Any
buffered response data is transmitted to the client and the transaction ends.

Shadow/REXX Return Values
For Shadow/REXX only, flush or rescan processing is requested by setting a
special RETURN value which is examined when the REXX procedure completes.

Return Value Action

RETURN "FLUSH" A Shadow/REXX procedure can end by returning this character string. The Web
transaction ends and no further matching is performed against the inbound URL. Any
data remaining in the output buffers is immediately transmitted to the Web client.

RETURN "RESCAN
newURLstring"

A Shadow/REXX procedure can end by returning this character string. This value
forces a transaction rescan to the new URL value.

The “newURLstring” gives the new URL to be used in the next URL-to-rule
matching lookup. This string must conform to the overall limits on WWW rule
matching criterion.

Table 1–6. Special Shadow/REXX RETURN Values
December 1999 Shadow OS/390 Web Server User’s Guide 1-7

An Overview
Other WWW Transaction Procedures
All WWW transaction procedures types can request a subsequent rescan or flush
operation using high level language SWSSET API call or invoke the REXX-
language SWSSET () function.

SWSSET() function calls must be issued before the user written program or
REXX procedure ends. The final return code set at the end of a user written
program execution or by other interpreters is always ignored unless an abort type
error is indicated.

Recovery From Server Detected Errors
The Shadow OS/390 Web Server performs transaction level recovery operations
in response to various error conditions. The error encountered and the action taken
by the server is shown in the Table 1–7 on page 1-8.

Transaction Level Recovery

Any other EXIT or RETURN value This indicates a normal WWW rule procedure completion. Any processing of
subsequent URL-to-rule matches and the final transmission of the outbound response
data to the client proceeds normally.

Note:
Once a transaction procedure is initiated, it can encounter other
authorization failures not described here. For example, a System
Abend S913 error could occur if the transaction procedure
attempted to open an MVS dataset without a valid (authorized) run-
time effective userid. Even though run-time authorization errors are
intercepted by the Shadow OS/390 Web Server subsystem, they are
reported back to the end user as “server errors” and not as
authorization failures.

Error Encountered Action Taken by Shadow OS/390 Web Server

Communication session drops before entire HTTP
transaction request is received.

Ends the transaction processing subtask and waits for new
connection requests.

Inbound HTTP transaction request is badly formed. The
structural failure may be the actual request sent inbound,
or an attempt to use an HTTP/0.9 format request.

Rescans to “SYSTEM/ERROR/400” URL value to indicate HTTP
request format error.

Table 1–7. Action Taken by Shadow OS/390 Web Server when an Error is Encountered

Return Value Action

Table 1–6. Special Shadow/REXX RETURN Values
1-8 Shadow OS/390 Web Server User’s Guide December 1999

Recovery From Server Detected Errors
An unsupported method is specified in an inbound URL
sent from a Web browser.

Rescans to “SYSTEM/ERROR/501” URL value to indicate
unsupported method to browser.

No match is found among any Web transaction
definitions for the URL value requested by the client.

Rescans to “SYSTEM/ERROR/400” URL value to indicate URL
Not Found.

A URL match is processed, but the transaction definition
does not transmit any data to the Web browser before
ending.

No action. The transaction ends. Most Web browsers display a
message indicating that no data was received.

An end user userid/password is required by the
transaction definition for authentication, but none was
sent with the inbound request.

Rescans to “SYSTEM/ERROR/401” URL value to indicate the
request is unauthorized. The realm value sent in the response is
the server's subsystem ID value (for example, SWSS).

An end user userid/password is required by the
transaction definition and it was supplied within the
inbound transmission, but the userid/password
authentication request is rejected by the MVS security
subsystem.

This includes all reasons for which a RACROUTE
REQUEST=VERIFY operation might fail, except when the
return code indicates an expired password.

Rescans to “SYSTEM/ERROR/401” URL value to indicate the
request is unauthorized. The realm value sent in the response is
the server's subsystem ID value (for example, SWSS)

Same as previous entry except the RACROUTE return
code indicates the rejection is because the password
associated with the userid has expired.

Rescans to “PASSWORDEXPIRED” URL value to begin a
transaction/response dialog sequence which allow the end user to
specify a new password value for the MVS security subsystem.

The supplied “PASSWORDEXPIRED” Web transaction definition
supports Netscape 2.0 browsers, and may require customization
to operate correctly with other Web browser programs.

The userid is not authorized to execute the URL
requested. This occurs when the generalized resource rule
verification is used within the server for restricting users
to specific URL values, and the userid does not have read
authority to the generalized security subsystem resource
rule.

Rescans to “SYSTEM/ERROR/403” URL value to indicate that
the requested URL is forbidden. A link within the supplied
SYSTEM/ERROR/403 HTML points to the supplied /RELOGON
transaction definition.

The supplied “/RELOGON” Web transaction definition supports
Netscape 2.0 browsers, and may require customization to operate
correctly with other Web browser programs.

Shadow OS/390 Web Server detects an error within its
own transaction processing routines. The possible
conditions range from logic errors within the product
coding to GETMAIN or other MVS system requests
which cannot be honored by MVS.

Rescans to “SYSTEM/ERROR/500” URL value to indicate that a
server error has occurred.

Shadow OS/390 Web Server detects an error or abend
within a processing procedure executed as part of a
matching Web transaction definition.

Rescans to “SYSTEM/ERROR/500” URL value to indicate that a
server error has occurred.

The PLAN or SUBSYS keyword is specified on a
/*PROGRAM section, but connection to DB2 fails for any
reason.

Sets the WWW.AUXxxxxx variables to reflect the DB2 error
condition which was encountered. Rescans to “SYSTEM/ERROR/
AUX” URL value to indicate that a server error has occurred in an
external component

Error Encountered Action Taken by Shadow OS/390 Web Server

Table 1–7. Action Taken by Shadow OS/390 Web Server when an Error is Encountered
December 1999 Shadow OS/390 Web Server User’s Guide 1-9

An Overview
A Word About HyperText Transfer Protocol (HTTP)
The HTTP protocol is a very robust enhancement of the File Transfer Protocol
(FTP) because it:

� Transfers data files and other message data streams.
� Relays information describing the contents of each message.

A DB2-related failure is encountered while processing a
/*EXECSQL section. This includes problems with
opening a DB2 connection or executing the SQL
statement.

Sets the WWW.AUXxxxxx variables to reflect the DB2 error
condition which was encountered. Rescans to “SYSTEM/
ERROR/AUX” URL value to indicate that a server error has
occurred in an external component.

A failure is encountered while processing a
/*TSOSRV section. This includes problems with
scheduling a TSO command processor or excessive CPU
time usage by the command.

Sets the WWW.AUXxxxxx variables to reflect the TSO error
condition which was encountered. Rescan to “SYSTEM/ERROR/
AUX” URL value to indicate that a server error has occurred in an
external component.

More than 25 rescan events have occurred while
processing a single Web transaction.

Transmits hard coded error message to browser and end
transaction.

Recursive error detected within a SYSTEM/ERROR/nnn
procedure.

Rescans to SYSTEM/ERROR/500 procedure to transmit a server
error message.

File Transfer Protocol (FTP) HyperText Transfer Protocol (HTTP)

A client establishes communications session with a server. A client establishes a communications session with a server.

The client can request a directory change or display a list of
files in the directory.

The client sends one, and only one request, for what appears
to be a data file name to the server.

The client requests the download of one or more data files. The server can retrieve an actual data file named in the
request or it can perform a different action when servicing
the request.

If possible and authorized, the server returns each requested
data file to the client.

The sole obligation of the server is to return a response to the
client's request.

The FTP server does nothing except package and transmit
the requested files. It does not give the client any clues to the
actual contents.

HTTP defines a robust message format which allows the
server to return not only the response, but additional
information describing the response. The client can examine
this information to determine a response.

The server checks to ensure that the client received the file
properly and may initiate retry processing.

The server does not verify that the response was correctly
received.

An FTP client does nothing with the data files returned
except to store them in a local file.

The client uses the additional information transmitted to
determine how the response should be displayed.

Table 1–8. Comparison of HTTP and FTP Protocols

Error Encountered Action Taken by Shadow OS/390 Web Server

Table 1–7. Action Taken by Shadow OS/390 Web Server when an Error is Encountered
1-10 Shadow OS/390 Web Server User’s Guide December 1999

TCP/IP Architecture
TCP/IP Architecture
TCP/IP has four communication layers, which enable heterogeneous systems to
communicate by performing network related processing, such as message routing,
network control, and error detection and correction.

Application Layer
The appplication layer is provided by the program using TCP/IP for
communication, such as, FTP, e-mail, or gopher. The interface between the
application layer and the transport layer is defined by port numbers and sockets.
See the Shadow OS/390 Web Server’s Getting Started Guide for more information
on the application layer.

Transport Layer
The transport layer provides communication between application programs
wlhich are on the same or different hosts and can support multiple applications
simultaneously. This layer is responsible for providing a reliable exchange of
information. The main transport layer is TCP.

Ports and Sockets

Each process that communicates with another process identifies itself to TCP/IP
by one or more ports. A port is a 16-bit number used by the host-to-host protocol
to identify which higher level protocol or application program (process) to which
it must deliver incoming messages.

Some higher level programs are themselves protocols. For example, TCP/IP
standardized Telnet and FTP port numbers for all TCP/IP implementations. (Port
12 is used by a Telnet server; ports 20 and 21 are used by an FTP server.) These
assigned port numbers are called “well-known ports”, while standard applications
are called “well-known services”.

The well-known ports (numbers ranging from 0-1023) are controlled and assigned
by IANA (International Assigned Numbers Authority). On most systems these
ports can only be used by system processes or programs executed by privileged
users. The ports ranging from 1024-65535 are not controlled and can usually be
used by ordinary user developed programs.

The communication session ends when either the client
requests termination or the server terminates it after an
inactive timeout expiration. There could be several
interactions between client and server before the session is
terminated.

The communications session is broken down, by the server,
after each response message has been transmitted.

File Transfer Protocol (FTP) HyperText Transfer Protocol (HTTP)

Table 1–8. Comparison of HTTP and FTP Protocols
December 1999 Shadow OS/390 Web Server User’s Guide 1-11

An Overview
Terminology

Socket This is a special type of file handle that a process uses to request
network services for the operating system.

Socket Address
It consists of: {protocol, local-address, port number}

TCP/IP example: {tcp, 38.158.124.40, 80}

Conversation
This is the communication link between two processes.

Association
This completely specifies the two processes that constitute a
connection. For example:
{protocol, local-address, local-port, foreign-
address, foreign-port}

TCP/IP example:
{tcp, 38.158.124.40, 80, 204.71.200.66, 21}

Half-association
This would be either {protocol, local-address, local
port} or {protocol, foreign-address, foreign-port}. It
specifies half of a connection.

A half-association is also called a “socket” or a “transport address”.
This means, the socket is an end point for communication which can
be named and addressed in a network.

The socket interface is one of several application programming interfaces (APIs)
to the communication protocols and was designed to be less a generic
communication programming interface.

Internet Layer
This layer provides communication between computers and ensures that messages
are delivered to the correct destination. This method is unreliable when it comes
to connectionless packet delivery. Sent packets can be lost, out of order, or even
duplicated. It is up to the higher layer protocols to deal with these problems.

Tip:
To avoid two different applications trying to use the same port
numbers on one host, write your applications so they request any
available port. This allows the port number to be dynamically
assigned with different ports being used from one invocation of an
application to the next.
1-12 Shadow OS/390 Web Server User’s Guide December 1999

TCP/IP Architecture
One reason for using a connectionless network protocol is to minimize the
dependency on specific computing centers which use hierarchical connection
oriented networks. The Department of Defense’s intent was to deploy a network
that would continue to operate even if parts of the country were destroyed.

IP Addresses

An IP address consists of two logical parts:

� A network address
� A host address

The IP address is used by TCP/IP to route information packets from one node in
the network to another. In order for the client request and the Web server's return
response to get “delivered” to the correct computers, each computer on the
Internet must have a unique numerical IP address assigned. This address is a
series of four groups of numbers (ranging from 0 to 255), which are separated by
periods. For example, 38.158.124.40

You can refer to a Web site by its IP address (http://38.158.124.40) or by its
name (http://www.neonsys.com).

Subnets

With the explosive growth of the Internet, a single IP address could no longer
handle changes to local network configurations, such as:

� Adding a new type of physical network.
� Splitting the local network into two or more separate networks.
� Splitting networks into smaller networks with gateways between them.

To avoid multiple IP addresses, the concept of subnets was introduced. The
assignment of subnets can be done locally, while the whole network still appears
to be one IP network to the outside world.

Network Interface Layer
This layer, sometimes referred to as the link layer, data link layer, or network
layer, is implemented by the physical network which connects the computers.
Although this layer is not covered by the TCP/IP standards, there are specific
methods used to access higher layers. The following are the different types of
networks which the Internet layer can be connected.

Multiaccess broadcast networks
Here, any system (TCP/IP host) can have multiple connections to
other hosts simultaneously, plus it can send information to all other
hosts on the same network with a single message command. LANs
are representative these networks. Protocols such as ARP, ProxyARP,
RARP, BooP and DHCP are used with it.
December 1999 Shadow OS/390 Web Server User’s Guide 1-13

An Overview
Multiaccess nonbroadcast networks
Again, any host can have multiple connections to other host
simultaneously; however, there is not a single messaging command
that communication with all the hosts simultaneously. Examples of
this type of network are X.25, Frame Relay, and AnyNet Sockets over
SNA.

Point-to-point networks
Here, a host can only have one connection to one other host at a time.
There are no broadcasting capabilities. Examples of this type of
network are SNAlink and asynchronous connections (using SLIP or
PPP).

Hardware Address Resolution

The Address Resolution Protocol (ARP) maps internet addresses to hardware
addresses. When an application sends data over a TCP/IP network capable of
broadcasting, IP requests the appropriate hardware address mapping using ARP. If
the mapping is not in the mapping table (ARP cache), an ARP broadcast packet is
sent to all hosts on the network, requesting their physical hardware address.

Because the asynchronous transfer mode (ATM) technology does not work in this
manner, every host has to register with an ARP server on initialization in order to
map IP addresses to hardware addresses.

Some network hosts do not know their IP addresses when they are initialized,
especially when they are booted from diskette. Reverse ARP (RARP) can be used
if you have an RARP server on your network to implement it. For example, if a
diskless workstation knows its hardware address, then it can send a message to
RARP to determine it own IP address.

Note:
The term connection applies to any single IP interface of a host in
any of the network type. For instance, a host could have multiple
point-to-point interfaces and thus more than one connection at a
time, but still only one per interface.
1-14 Shadow OS/390 Web Server User’s Guide December 1999

CHAPTER 2:

The Shadow Event Facility (SEF)

This chapter expands on the concepts and information presented in Shadow OS/390 Web Server’s
Getting Started Guide, which includes an introduction to the Shadow Event Facility, event matching
and how it works, event procedure execution, event procedure rulesets, naming conventions, start-up
parameters, dataset format, enabling and disabling event procedures, and the structure of an event
procedure.

What It Does
The Shadow Event Facility (SEF) is a built-in feature and the foundation of
Shadow OS/390 Web Server's WWW rule mechanism. With it, administrators can
tailor their system using high-level language routines.

How It Works
When an event occurs (Shadow OS/390 Web Server receives a URL), SEF builds
an event matching argument string by stripping off the destination information
from the URL. It uses this information to search through a list of enabled event
procedure rules until a match is found. SEF then executes the matching event.

In addition to matching URL requests to WWW rules, SEF contains more
generalized event-to-rule matching capability. This allows you to schedule custom
tailored procedures in response to processing events encountered during server
operation, such as “trigger” the server to respond to a real-time event. For
example:

Authorization Rules (ATH)
These are used to customize Logon and Logoff operations, control
access to the programmable facilities of the Shadow Diagnostic
Facility (SDF), and limit access to various server owned resources.

Exception Rules (EXC)
These are used to customize the server's response and handling
conditions, such as SQL failures or when resource usage limit is
exceeded.

SQL Rules (SQL)
These are used to capture, modify, or disallow processing for any
server-based dynamic SQL operation.

Time-Of-Day Rules (TOD)
These are used to implement server administration tasks, such as
refreshing web accessible data file from an external source. TOD fires
at a specific interval, date, or time.
December 1999 Shadow OS/390 Web Server User’s Guide 2-1

The Shadow Event Facility (SEF)
Event Types
The Shadow Event Facility recognizes the following event types:

Event Matching*

When an event occurs, SEF builds an event matching argument string based on
the event type. SEF uses this string to search through the list of enabled event
procedure rules until one (or more) matches are found between the event
argument string and the event procedure “criterion”. When a match is found, SEF
“triggers” or “fires” the matching event procedure to execute.

Least-to-Most Specific

Event procedure criterion values are allowed to contain a wildcard character. This
means a single event can match more than one event procedure. Event procedures
are matched to the event argument and executed, in order, from the least-to-most
specific match.

Event Type Description

ATH Authorization events are generated by the server when authorization processing must be done. The event
procedure can either do the required processing or allow default ACF/2 or RACF processing to make the
final decision.

CMD Command events control client/server and web access to the mainframe by using SEF to manage the
environments on the host.

DIS Disable events are pseudo-events generated by the system whenever an event procedure is being disabled.
This allows a procedure to be executed when it is disabled in order to perform termination processing.

ENA Enable events are pseudo-events generated by the system whenever an event procedure is being enabled.
This allows a procedure to be executed when it is enabled so it can perform initialization processing.

EXC Exception events are generated by the system when some action must be taken. For example, a long-
running data base transaction has exceeded a predefined time limit. The event procedure can decide what
action to take in response to the event.

GLV Global variable events are generated by the system whenever 1) the value of a global variable symbol is
changed and 2) when the SEFGLVEVENTS start-up parameter is set to allow them.

TOD Time-of-day events are generated by the system at specified times.

TYP Language Types are not actually events, but rather, procedures which are an integral part of SEF. TYP
allows you to prototype new process section types by building compiler/interpreter in REXX, which is
then processed on behalf of WWW events procedures.

WWW World Wide Web event are generated by the system whenever an HTTP transaction arrives. This is the
primary means transaction processing is implemented in Shadow OS/390 Web Server.

Table 2–1. Event Types

*Refer to Shadow OS/390 Web Server Getting Started Guide for more information.
2-2 Shadow OS/390 Web Server User’s Guide December 1999

Event Procedure Rulesets
Event Procedure Execution*

Normally, you want event procedure rules to run in direct response to an actual
event; occasionally, you may need to specify that a procedure be allowed to
initialize or terminate itself. Whenever a procedure is scheduled for execution, a
pre-instantiated variable, PHASE, contains information about whether the
procedure was invoked for initialization, termination, or normal event processing.

Event Procedure Rulesets
Event procedure datasets (rulesets) are MVS PDS datasets. Each member of the
ruleset is either active (enabled) or inactive (disabled) and can be either:

� One event procedure rule.

� A REXX-language subroutine, which can be called by one or more event
procedures contained within the same PDS ruleset.

Naming Convention
All event procedure dataset names must use the following Shadow OS/390 Web
Server naming convention. All datasets must:

� Start with the same “prefix” (for example, 'SWS.xxxxxx.'†).

� End with the same “suffix” (for example, '.EXEC').

� Contain a maximum of one qualifier between the pre-defined prefix and
suffix. This mid-level qualifier is the “ruleset” or “event procedure set” name.

Start-up Parameters
Shadow OS/390 Web Server's startup parameters specify which MVS data set
prefix and suffix values to use. The Shadow Events Facility then scans the MVS
catalog and preloads enabled event procedures sets into storage. When a request is
matched to an event, the SEF executes the matching event and the designated rule
definition.

Event Procedure Dataset Format‡
Each event procedure ruleset contains one or more PDS members which must be
allocated to contain either fixed or variable length records. We recommend you
use numbered, RECFM(FB) datasets.

*Refer to Shadow OS/390 Web Server Getting Started Guide for more information.
†Where xxxxxx represents the version number. For example, ‘SWS.SV040100.’ is release 4.1 and
‘SWS.SV040500.’ would be release 4.5.
‡Refer to Shadow OS/390 Web Server Getting Started Guide for more information.
December 1999 Shadow OS/390 Web Server User’s Guide 2-3

The Shadow Event Facility (SEF)
Enabling Event Procedures
Each member within an event procedure ruleset can be enabled and matched to
the event type specified in the event procedure header. Enabled members are read
into storage, compiled into an internal form, and then stored so they can be paired
to event matching criterion values.

Enabling and Disabling Event Procedure Rules
A single event procedure rule can be enabled or disabled by:

� Using product ISPF panels.
� Flagging the event procedure with the PDS as “auto-enabled”.

If the member is auto-enabled, the Shadow Event Facility enables it at start-up. If
it is not auto-enabled, the rule must be explicitly enabled using the ISPF interface
after start-up.

Memory of the auto-enablement attribute is maintained across subsystem start-ups
through the use of a bit within the PDS ISPF statistics. If you edit the member off-
line, the auto-enablement is reset and is no longer auto-enabled.

Structure of an Event Procedure*

With the exception of WWW event procedures, each member in the PDS event
procedure ruleset consists of two parts:

� A procedure header statement.

� One process section, which must be REXX. (The member cannot be enabled
without it.)

The WWW event procedure can contain:

� Header-only rules (no process section).
� Process sections using REXX, FILE, Shadow/REXX and PROGRAM.

The following is an example of a WWW event procedure containing a valid
header statement, a process section, and section contents:

/*WWW /NEON/HTMLFILE/* AUTHREQ(NO)
/*FILE DATATYPE(PDS) DDNAME(HTMFILE)

Note:
Only procedures that are enabled can be matched. Disabled
procedures are ignored.

*Refer to Shadow OS/390 Web Server Getting Started Guide’s Chapter entitled, “Putting it All Together”
for detailed examples of event procedures.
2-4 Shadow OS/390 Web Server User’s Guide December 1999

Structure of an Event Procedure
CONTENTTYPE(text/html)-
FORMAT(BINARY)

Event Procedure Header Statement (Required)
Header statements must:

� Be the first statement within the PDS member. If the first statement is not
valid, then the PDS member cannot be enabled nor can it be processed by
SEF.

� Begin in the first input column (discounting record numbering) of the first
record within the event procedure member. If a valid header statement is not
present, the PDS member cannot be enabled as an event procedure.

The Format
/*xxx criterion (keyword (keyword...) cont)

Where

/*xxx Must be the first five characters on the header statement line. "xxx" is
one of the valid Shadow OS/390 Web Server event types:

� ATH - Authorization event procedures
� CMD - Command event procedures
� EXC - Exception event procedures
� GLV - Global Variable event procedures
� TOD - Time-of-day event procedures
� TYP - Language processing 'type' definition
� WWW - World Wide Web Transaction Definition

Criterion Specifies the pattern match value (the event triggering criteria) for
processing the event procedure rule. For example:
/NEON/HTMLFILE/*

The exact contents and meaning of the criterion string are defined
separately for each event type. The maximum length for URL
criterion values is 50 bytes for all event types except WWW, which
allows 128 bytes.

Keyword (optional)
Use one or more keywords to define:

� Properties of the event procedure.

� Attributes to be used in processing of the event. At present,
keywords are used for specifying WWW security attributes.

For example: AUTHREQ(NO)
December 1999 Shadow OS/390 Web Server User’s Guide 2-5

The Shadow Event Facility (SEF)
Cont (optional)
Use a continuation character after the header line keyword when the
header statement continues on the next line. Two continuation
characters are recognized:

� "-" This strips trailing blanks from the end of the continued line
and from the beginning of the continuation line.

� "+" This interprets the string literally (blanks are not stripped).

Closing delimiter (optional)
If you use a closing “*/” delimiter at the end of the header statement
and it follows all other keywords, the system ignores it. No
information can follow the closing “*/” delimiter.

Process Section Header Statements
Except for WWW event procedures where header only rules are allowed, there
must be at least one process section present within each event procedure member.
See the Getting Started Guide for more information on process section headers.

Header-Only Rules
See the Getting Started Guide.

SEF Event Procedure Variables
By referencing the variable name within the Shadow/REXX (/*REXX) procedure,
SEF event procedure variables are always accessible to a Shadow/REXX
(/*REXX) process section without requiring special interface function calls to
access or set the value of an SEF variable.

WWW Event Procedures
Because other non-REXX section types can execute a high-level language
program in WWW event procedures, SEF event variables are accessible only
under controlled circumstances. This usually requires the use of an access API
function, such as the SWSVALUE function.

Types of Event Procedure Variables

Event Procedures use the following types of variables:

� REXX Dynamic Variables
� Event Related Variables
� Global Variables
� GLVEVENT Temporary Variables
2-6 Shadow OS/390 Web Server User’s Guide December 1999

SEF Event Procedure Variables
REXX Dynamic Variables
REXX Dynamic Variables are variables that get created during execution of a
REXX-language process section whenever you reference or set the value of a
variable.

How They Work

REXX Dynamic Variables exist only during execution of a REXX-language
procedure and are freed when the REXX environment is deleted. Generally, they
are not accessed by any non-REXX procedure or function, except as explicitly
noted in API functions.

Example:

In this example, a REXX-language simple variable, COUNT or I sets the value of
the variable within the REXX code. The REXX-language compound variable
symbol, stemvar.I sets the “InitValue”.

do I = 1 to COUNT
 stemvar.I = "InitValue"
 end

Not all Variable Symbols are Dynamic

Within a Shadow/REXX procedure, not all compound variable symbols are
dynamic.

� If a compound variable has one of the stem values listed in the Global
Variables section, it is a Global Variable.

� If a compound variable has the GLVEVENT. prefix, it is a GLVEVENT
temporary variable.

Intercepting and performing special processing for these reserved stem values is
an automatic feature of Shadow/REXX.

Global Variables
Global variables are special variables which Shadow OS/390 Web Server stores
global variable checkpoint dataset. The values are persistent across restarts of the
product and are shared by all event procedures which execute within the system.

Global variables begin with one of the stem values:

� GLOBAL.
� GLOBAL1. through GLOBAL9.

How They Work

When a global variable is referenced by a Shadow/REXX-language procedure or
by the Web transaction API SWSVALUE function, the subsystem retrieves the
value from its checkpoint dataset. When a global variable is updated, its new
December 1999 Shadow OS/390 Web Server User’s Guide 2-7

The Shadow Event Facility (SEF)
value is saved. Whenever the value of a GLOBAL. or GLOBALn. variable is
changed, a GLV event can be generated to intercept the change and perform
additional processing.

GLVEVENT Temporary Variables
GLVEVENT temporary variables:

� Are designed primarily for use by the high-level language routines that create
and interrogate variables during execution.

� Begin with the stem value GLVEVENT.

How They Work

GLVEVENT temporary variables are similar to event related variables because
they exist only for the duration of the event being processed and are deleted when
the event is completed.

These variables can be created or accessed from non-Shadow/REXX procedures
using the SWSVALUE function or referenced by name within a Shadow/REXX
procedure.

Refer to Chapter 8, “Automated State Management Facility (ASMF),” for more
information.

Event Related Variables
Event related variables are created by the Shadow Events Facility whenever an
event occurs. They are used to pass information about the event to the event
procedure that is matched to the event. For example, a variable named,
WWW.INPUTURL, receives a copy of the inbound URL transmitted from the Web
browser.

How They Work

Event related variables:

� Can be referenced directly by Shadow/REXX-language process sections.

� Are only accessible to non-Shadow/REXX procedures using the SWSVALUE
Web Server API function.

Note:
GLV events are only generated when the subsystem parameter,
SEFGLVEVENTS, is set to YES during start-up.
2-8 Shadow OS/390 Web Server User’s Guide December 1999

SEF Event Procedure Variables
Changing Event Related Variables

Some event related variable values can be altered during execution; however,
most are read-only. If you change the value of an event related variable, it can
affect how the event is subsequently processed by Shadow OS/390 Web Server.

Changes are Cumulative

The first rule that an event triggers gets the original event information; rules for
the same event executing later get modified copies of this information. Even if a
rule modifies an event related variable, all rules eligible to execute for an event
still execute.

Because the values of read-only event related variables do not change, all rules
that execute for a single event get the same event data.

The PHASE Variable

Event related variables are specific to the event type with one exception. SEF
always creates the event related variable PHASE before any event procedure is
invoked. The PHASE variable can have the following values:

Other Event Related Variables

The remaining event related variable values are specific to the event type and are
only set up when the procedure is processing an actual event (such as,
PHASE="PROC").

Refer to Chapter 3, “Defining Event Procedure Types,” for more information on
event related variables and event types.

Note:
You cannot create new event related variables.

PHASE Variable
Value

Meaning

INIT This value is set whenever the event procedure is executed as a result of being enabled. Execution
of a REXX-language procedure during enablement is optional.

TERM This value is set whenever the event procedure is executed as a result of being disabled. Execution
of a REXX-language procedure during disablement is optional.

PROC This value is set whenever the event procedure is executed as a result of being matched to an actual
event. This is the normal execution of the procedure.

Table 2–2. Values for the Phase Variable
December 1999 Shadow OS/390 Web Server User’s Guide 2-9

The Shadow Event Facility (SEF)
Event Procedure Return Values
While an actual event is processed, one or more event procedures are matched to
the event and executed. As each event procedure completes, it can set a return
value. For some event types, this return value is intercepted and used to control
how subsequent events are processed.

How They Work

Not all event types use this control mechanism. Refer to Chapter 3, “Defining
Event Procedure Types,” for more information.

Return Values for the Pseudo-Events

The enable (ENA) and disable (DIS) events are classified as pseudo-events
because they:

� Are only optionally generated when an event procedure is enabled or
disabled.

� Invoke the event procedure which is being enabled or disabled.

If an event procedure is invoked for enablement (the PHASE variable is set to
'INIT'), or disablement (the PHASE variable is set to 'TERM'), it might not return
a value.

Accessing SEF Variables
This table shows when each class of SEF Event Variables can be accessed.

Value Returned Meaning

None Returned If no value is returned, enablement or disablement processing ends with the rule in the desired state.

"TRUE" If the character string value "TRUE" is returned, enablement or disablement also proceeds.

"FALSE" If the character string "FALSE" is returned, enablement or disablement is suppressed. For example:

• If the procedure was invoked for enablement, the event procedure is not enabled.

• If the procedure was invoked for disablement, the event procedure is not disabled. It remains
enabled, unless the subsystem is terminating.

Table 2–3. Return Values for the Pseudo-Events
2-10 Shadow OS/390 Web Server User’s Guide December 1999

Controlling SEF from a Batch Environment
Controlling SEF from a Batch Environment
The ‘NEON.CNTL’ library contains the member, ‘SWSBATCH’, which illustrates
two ways in which Shadow/REXX can be invoked:

� Under a batch mode TMP (preferred). SAY statements and TRACE output
are intercepted and written to SYSTSPRT.

� Stand-alone. SAY statements and TRACE output are directed to the MVS
console, which can be cumbersome if you're trying to write and debug a new
procedure.

Sample REXX Routines

The sample REXX routines are named ‘SDBBATCH’ and ‘SWSBATCH’ in
SYSEXEC. Both samples refer to a ruleset which does not exist at your site
(test.andy1). The procedure in the sample illustrates:

� The use of all SEF commands that can be used to control rulesets.
� The format of other SEF commands.

Access Type and
Variable Type

From Shadow/REXX
Event Procedure

From High-level
Language Event
Procedure

From Other REXX
Event Procedure

Reading Value of REXX
Dynamic Variables

Intrinsic Not Allowed Intrinsic

Writing Value of REXX
Dynamic Variables

Intrinsic Not Allowed Intrinsic

Reading Value of Event
Related Variables

Intrinsic Using SWSVALUE API call Using SWSVALUE function
call

Writing Value of Event
Related Variables

Allowed only for certain
variables

Not Allowed Not Allowed

Reading Value of Global
Variables

By Reference or using
SWSVALUE function

Using SWSVALUE API call Using SWSVALUE function
call

Writing Value of Global
Variables

By Reference or using
SWSVALUE function

Using SWSVALUE API call Using SWSVALUE function
call

Reading Value of
GLVENENT Temporary
Variables

By Reference or using
SWSVALUE function

Using SWSVALUE API call Using SWSVALUE function
call

Writing Value of
GLVEVENT Temporary
Variables

By Reference or using
SWSVALUE function

Using SWSVALUE API call Using SWSVALUE function
call

Table 2–4. When SEF Variables can be Accessed
December 1999 Shadow OS/390 Web Server User’s Guide 2-11

The Shadow Event Facility (SEF)
Return Messages
Whenever rule enablement requests are issued via an SEF command, always
retrieve the messages from the external data queue to find out the status of the
operation. If the enable operation fails because of an invalid rule syntax, a
message is issued. If no message is returned, it means the rule was successfully
enabled. (This applies to the ENABLE and START command verbs).

Return Values

Whenever an ADDRESS SEF command is issued, the following return code value
is set for the REXX variable “RC”:

Note:
A return code of ZERO does not indicate the final results of
processing the command, rather, it indicates the command was
successfully passed to the subsystem and that some response was
received. The External Data Queue must be examined to determine
the actual results which occurred while processing the command.

Return Code
Value

Meaning

0 SEF COMMAND ISSUED AND RESPONSE RECEIVED

4 WARNING MESSAGE ISSUED

8 COMMAND TIME OUT ERROR

16 SEF COMMAND SYNTAX ERROR

20 TARGET SUBSYSTEM NOT ACTIVE

24 INCOMPATIBLE SUBSYSTEM VERSION

28 INTERNAL SENDMG ROUTINE FAILED

32 USER NOT AUTHORIZED TO ISSUE THIS SEF COMMAND

36 AUTHORIZATION PROCESSING ABENDED

40 HOST COMMAND FAILURE

Table 2–5. Return Values
2-12 Shadow OS/390 Web Server User’s Guide December 1999

CHAPTER 3:

Defining Event Procedure Types

This chapter expands on the concepts and information presented in Shadow OS/390 Web Server’s
Getting Started, which includes the structure of an event procedure, event procedure header statements
and the format, process section header statements, process section header syntax, header-only rules,
SEF event procedure variables.

Different Event Procedure Types
SEF recognizes the following event types:

� Authorization (ATH) events
� Command (CMD) events
� Disable (DIS) events
� Enable (ENA) events
� Exception (EXC) events
� Global Variable (GLV) events
� Time-of-day (TOD) events
� Language Types (TYP)
� Word Wide Web (WWW) events

Refer to the appropriate event types in this chapter for specifc information on:

� The format of the criterion value which must be present on each event
procedure header statement

� Which keywords can be specified for each event procedure header statement

� Which process types can be created within the process sections

� What the valid return values are for the event type

� What valid event related variables are created for each each event type

Authorization (ATH) Event Procedures
Authorization (ATH) Event Procedures are generated by the server when
authorization processing must be done. They can be used to:

� Tailor the operation of the server at security control points.

� Perform complex, site-specific processing in response to an access request.

� Can either do the required processing or allow default ACF/2 or RACF
processing to make the final decision.
December 1999 Shadow OS/390 Web Server User’s Guide 3-1

Defining Event Procedure Types
How They Work
Whenever the server performs authorization processing for a controlled resource,
an ATH event procedure is scheduled for execution. The server:

1. Generates an ATH event criterion string which describes the resource being
checked or the operation being performed before invoking the validation
facilities of RACF, ACF/2, or TopSecret.

2. Searches the enabled ATH rules for a matching event procedure.

a. If a match is found, the ATH rule is scheduled for execution before the
server attempts to validate access using RACF, ACF/2, or TopSecret.

b. If no matching ATH procedure is found, the server relies entirely upon the
determination of the MVS security subsystem.

Each ATH procedure ends by returning one of the following signals:

� Unconditionally REJECTs access to the resource being check. The server
bypasses invocation of RACF (ACF/2 or TopSecret) services and rejects the
resource access request.

� Unconditionally ALLOWs access to the resource. The server bypasses RACF
processing and immediately allows access to the resource.

� Makes no decision about access to the resource. In this case, the server
proceeds by invoking the MVS security subsystem to determine if access to
the resource is allowed or denied.

ATH Event Procedure Criterion
An ATH event procedure criterion value is a string containing from 1 to 30
characters. A trailing asterisk can be used as a wildcard character. If a single
asterisk is coded as the criterion, the ATH rule is scheduled for all control points.
For example:

/*ATH eventcriterion

Fixed Control Points

LOGON and LOGOFF ATH criterion are fixed. LOGON.WWW is the criterion
value for HTTP client userid and password validation requests. LOGOFF.WWW
is the criterion for client userid logoff processing requests. All third-party run-
time userid logon and logoff processing is handled internally. ATH rules are not
scheduled for non-client verification logon/logoff control points.

Other Control Points

All other server control point events are generated when an attempt is made to
access a server provided or server controlled facility. Each control point has an
3-2 Shadow OS/390 Web Server User’s Guide December 1999

Authorization (ATH) Event Procedures
associated “generalized resource name” used by the server. These names are fixed
and are not user configurable.

The server constructs the ATH event matching string by placing a period
following the fixed, generalized resource name. When an individual resource
entity identity is known, the entity name is appended to the string following the
period.

The “generalized resource names” referred to here are used to perform MVS
security subsystem resource checking. Start-up parameters give the RACF “class
table” name, in which these resource names must be defined. The MVS security
subsystem is configured to grant or deny access to the resources, by name, within
each class. The resource names in use by the server are normally configured into
the MVS security subsystem at installation time. The resource names are:

Resource Name Server Controlled Resource

CONTROLBLOCKS View internal server control blocks using ISPF interface.

CICSCONNECTIONS View or define server CICS connection entities.

FILE View or control server file services ISPF interface.

DATABASES View or define a database entity.

SEF Access the Event Procedure Management functions of the server.

TSO Schedule out-board execution of a procedure in a TSO server managed by the server.

LINKS View or define a telecommunications link entity.

MQSERIES View or define an MQ Series entity.

PARMS View or set a server initialization parameter value.

RPC Execute a user-written transaction program.

TRACEDATA View binary data for each wrap-around trace entry.

TRACEBROWSE Access the wrap-around trace display facility.

SWS Access the server's ISPF interface.

TOKENS View or control server Tokens.

USERS View in-flight transaction display.

GLOBALS Use ISPF interface to display/alter server Global Variables.

DATASET Access a specific MVS dataset.

URL Check authorization to execute a Web transaction definition which uses resource
protection.

Table 3–1. Server Controlled Events
December 1999 Shadow OS/390 Web Server User’s Guide 3-3

Defining Event Procedure Types
ATH Event Procedure Header Keywords
No keywords are currently defined for ATH event procedures. Only the event
criterion value is allowed and required. Each ATH Header Statement is coded as
follows:

/*ATH eventcriterion

Allowed Process Sections
A REXX-language process sections must be coded in each ATH event procedure.
Header-only ATH rules are not allowed.

ATH Valid Return Values
When an ATH procedure ends, the return value set by the REXX language rule is
examined by the server before invoking MVS security routines.

ATH Event Procedure REXX Variables
For any ATH event which is scheduled on behalf of an in-flight Web transaction
task, the server makes the transaction's WWW. stem variables available to the
ATH procedure. These variables are not available to ATH rules scheduled outside
a Web transaction subtasks. The WWW. variables that the server maintains can be
found at WWW Event-Related Variables.

In addition to the WWW variables, each ATH procedure also has access to all
server wide “GLOBAL.” variables.

ATH-specific variables are created before the ATH procedure is invoked. The
exact variables created differ, depending on the type of resource check operation
being performed. The variables which are instantiated for ATH procedures are
based upon the resource type being checked.

Return Value Action

ACCEPT If the REXX procedure returns the string “ACCEPT”, the server allows access to the
requested resource and bypasses any further processing by the MVS security subsystem.

REJECT If the REXX procedure returns the string “REJECT”, the server denies access to the
requested resource and bypasses any further processing by the MVS security subsystem.

The ATH rule may set the ATH.OPAUERMG variable to a message to explain the
rejection. In most validation requests, this error message is forwarded to the requester.

Any other value If any other value (or no value) is returned, the server performs validation checking using
built-in MVS security subsystem interfaces. The final determination to allow or deny
access is made by RACF (ACF/2 or TopSecret).

Table 3–2. Valid Authorization Return Values
3-4 Shadow OS/390 Web Server User’s Guide December 1999

Authorization (ATH) Event Procedures
The following tables show the ATH. stem variables built for each resource
validation type.

ATH Stem Variable Description

ATH.OPAURQSR Contents: The resource name string is set to LOGON or LOGOFF for client
authentication processing events. See “Fixed Control Points” on page 3-2.

Data Type: Character, Read-only

ATH.OPAUACSR Contents: The type of access being requested for the resource as a server defined
string. The access type string varies depending on the resource being validated
and the operation being requested.

See Table 3–8 on page 3-7 for valid values.

Data Type: Character, Read-only

ATH.OPAURQRC Contents: This requests a return code. Valid values are:

• 00 - Request Allowed
• 04 - Request must be modified
• 08 - Request Failed
• 12 - Request Abended
• 16 - Product Address Space is down

Data Type: Character, Read-write

ATH.OPAUUSID Contents: This is the userid being validated for LOGON, LOGOFF, or some task
requesting access to the controlled resource.

A LOGON routine may change the value of this field to cause a rule generated
userid to be used for subsequent validation processing in RACF, ACF/2 or
TopSecret. All other ATH rules should not attempt to alter this variable.

Data Type: Character, Read-only except as noted.

ATH.OPAUERMG Contents: This is a validation error message variable which can be set by the ATH
procedure.

Data Type: Character, Read-write

ATH.OPAUSRID Contents: This is the full ATH event procedure criterion value set by the server
for this control point.

Data Type: Character, Read-only

Table 3–3. ATH. Variables Set for ALL Rules

ATH Stem Variable Description

ATH.AUCCID Contents: This is the CICS SYSIDNT name.

Data Type: Character, Read-only

Table 3–4. ATH. Variables Set for CICSCONNECTIONS
December 1999 Shadow OS/390 Web Server User’s Guide 3-5

Defining Event Procedure Types
ATH Stem Variable Description

ATH.AUBKCBNA Contents: This is the control block acronym.

Data Type: Character, Read-only

ATH.AUBKCBAD Contents: This is the control block virtual storage address.

Data Type: Character, Read-only

ATH.AUBKCBLN Contents: This is the control block length.

Data Type: Numeric, Read-only

ATH.AUBKCBAS Contents: This is the Address Space ID (ASID) of the control block.

Data Type: Numeric, Read-only

Table 3–5. ATH. Variables Set for CONTROLBLOCKS

ATH Stem Variable Description

ATH.AUDBNAME Contents: This is the database name.

Data Type: Character, Read-only

ATH.AUDBTYPE Contents: This is the database type.

Data Type: Character, Read-only

ATH.AUDBHOST Contents: This is the database host name.

Data Type: Numeric, Read-only

Table 3–6. ATH. Variables Set for DATABASE

ATH Stem Variable Description

ATH.AUGLRQTY Contents: Used to specify the global access request type:

• A - Some type of read access
• U - Some type of update access

Data Type: Character, Read-only

Table 3–7. ATH. Variables Set for GLOBALS
3-6 Shadow OS/390 Web Server User’s Guide December 1999

Authorization (ATH) Event Procedures
ATH Access Type Values
The server generates an access type string value for each resource validation
request. The string used depends on the resource being validated.

The following table gives the access type strings that the server sets:

ATH.AUGLOPCH Contents: Used to specify the operation subtype value:

• A - Add a global variable.
• D - Drop a global variable.
• E - Check global variable existence.
• F - Exist/obtain for global variable.
• I - Obtain information about a global variable.
• L - List information about a global variable.
• O - Obtain a global variable.
• R - Remove a global variable.
• S - Subtree processing.
• T - Subtree information processing.
• U - Update a global variable.
• V - Value Processing.

Data Type: Character, Read-only

ATH.AUGLDELN Contents: This is the global variable's derived name length.

Data Type: Numeric, Read-only

ATH.AUGLDENA Contents: This is the global variable's derived name.

Data Type: Character, Read-only

Type String RACF Value Access Type Used For Validation Of

EXECUTE Execute RPC, URL

READ Read DATASET

INFO Read PARMS

LIST Read CICSCONNECTIONS, FILE, DATABASE, SEF, TSO, LINKS,
MQSERIES, PARMS, TOKENS, USERS, GLOBALS

SHOW Read PARMS

DISPLAY Read CONTROLBLOCKS, CICSCONNECTIONS, FILE,
DATABASE, SEF, TSO, LINKS, MQSERIES, PARMS,
TOKENS, USERS, GLOBALS, TRACEDATA,
TRACEBROWSE

SET Update PARMS

Table 3–8. ATH Access Type Values

ATH Stem Variable Description

Table 3–7. ATH. Variables Set for GLOBALS
December 1999 Shadow OS/390 Web Server User’s Guide 3-7

Defining Event Procedure Types
Command (CMD) Rule Event Procedures
Command rules control client/server and Web access to the mainframe by using
the Shadow Event Facility (SEF) to manage the environments on the host. When
viewed in conjunction with diagnostics, monitoring and control mechanisms built
into Shadow OS/390 Web Server, command rules are another step in providing
comprehensive Automated System Operation (ASO) capabilities.

CONTROL Control DATASET, LINKS, SEF, FILE, DATABASE,
CICSCONNECTIONS

KILL Update Users

WRITE Update CONTROLBLOCKS, CICSCONNECTIONS, FILE,
DATABASE, SEF, TSO, LINKS, MQSERIES, PARMS,
TOKENS, USERS, GLOBALS, TRACEDATA,
TRACEBROWSE, DATASET

ADD Add CICSCONNECTIONS, DATABASE, LINKS, MQSERIES,
GLOBALS

MODIFY Update CONTROLBLOCKS, CICSCONNECTIONS, FILE,
DATABASE, SEF, TSO, LINKS, MQSERIES, PARMS,
TOKENS, USERS, GLOBALS, TRACEDATA,
TRACEBROWSE, DATASET

DEFINE Add CICSCONNECTIONS, DATABASE, LINKS, MQSERIES,
FILE

CONTROL Control DATASET

DELETE Delete DATASET

ALTER Alter DATASET

USER UserID
Password
Validation

LOGON

LOGOFF UserID
Logoff

LOGOFF

Note:
Command rules are not subject to any security. Because these rules
can access and update any part of the product without constraint,
each installation needs to control who can create, enable, and disable
command rules.

Type String RACF Value Access Type Used For Validation Of

Table 3–8. ATH Access Type Values
3-8 Shadow OS/390 Web Server User’s Guide December 1999

Command (CMD) Rule Event Procedures
How They Work
Whenever the server receives a command from an MVS console, a command rule
event procedure is scheduled for execution. The console can be either 1) a
physical console used by operations personnel or 2) extended software used by
other products (such as NetView, CA-OPS/MVS, or SDSF.)

The command rule text consists of a command verb, followed by operands
(optional). This verb string is matched against enabled command rules from the
least to most specific. Command rules can:

� Examine the command text, parse out the operands and take whatever action
is needed, such as read and set product parameters. (This means parameters
can now be displayed and changed from an MVS console.)

� Access and update NEON REXX Global variables.

� Communicate back to the console that entered the command using REXX
SAY statements. All SAY statement output is routed back to the console
which entered the original command. This is not only useful to operators
entering commands from consoles, but it also allows ASO products to
communicate with, interrogate the status of, and control Shadow OS/390 Web
Server as needed.

Command Rule Processing

All command rule processing is done using Shadow/REXX. Processing in TSO/E
REXX, CA-OPMS/MVS REXX, or other programming languages is not
supported at this time. When the Command (CMD) procedure ends, it returns one
of these values:

� RETURN - Command rule has finished execution.
� RETURN "ACCEPT" - Command rule has finished execution.
� RETURN "REJECT" - Command rule has rejected execution of the

command.

Command Rule Syntax
Command rules are triggered by either the MVS STOP/MODIFY interface or
directly via an MVS command using the subsystem name chosen at startup time
as the identifying parameter. For example:

SWSX command text or F SWSX, command text
MODIFY SWSX, command text

From the perspective of command rule processing, there is no difference between
these methods.
December 1999 Shadow OS/390 Web Server User’s Guide 3-9

Defining Event Procedure Types
Event Procedure Criterion
A CMD rule event criterion is a string anywhere from 1 to 30 characters. A
trailing asterisk can be used as a wildcard character. If a single asterisk is coded as
the criterion, the CMD rule is scheduled for all commands. For example:

/*CMD eventcriterion

Rule Matching Order, Least to Most Specific

The event criterion can be specific or generic. The verb string is matched against
all enabled command rules. Matched command rules are executed in order of least
specific to most specific.

Example: Enabled command rules

/*CMD * Matches all commands.

/*CMD SE*
Matches all commands beginning with SE.

/*CMD SEF
Matches command name SEF only.

If the following command is issued:

SWSX SEF xxxxx or F SWSX,SEF xxxxx

First, Rule 1 is matched and executed, then rule 2, and finally rule 3.

Event Procedure Header Keywords
Currently, no keywords are defined for CMD event procedures. Only the event
criterion value is allowed and required. Each CMD Header Statement is coded as
follows:

/*CMD eventcriterion

Allowed Process Sections
A REXX-language process section must be coded in each CMD event procedure.
Header-only CMD rules are not allowed. To code the REXX process section
header statement see /*REXX Process Sections.

Note:
The command rule event facility cannot be used for general MVS
command processing. The command must be directed at a specific
instance of the product identified by the subsystem name chosen at
product initialization.
3-10 Shadow OS/390 Web Server User’s Guide December 1999

Command (CMD) Rule Event Procedures
Valid Return Values
When an CMD procedure ends, the return value set by the REXX language rule 1)
is examined by the server and 2) controls what is done with the command.

Special Considerations for STOP Rules
The MVS STOP command can also drive command rule processing. In turn,
command rule processing can control or reject product shutdown.

The return value supplied by the STOP CMD rule determines product
termination. Product shutdown can be controlled or rejected with STOP CMD
rule processing. The valid return values and their functions in a STOP CMD rule
are:

Return Value Action

None supplied If the REXX procedure simply executes a RETURN command, the server sends
a return code which indicates successful completion of the command rule. See
Special Considerations for STOP rules.

ACCEPT If the REXX procedure returns the string “ACCEPT”, the server sends a return
code which states the command rule was successfully completed. See Special
Considerations for STOP rules with RETURN ACCEPTED.

REJECT If the REXX procedure returns the string “REJECT”, the server sends a return
code which states the command rule rejected the entered command. It is the
responsibility of the person implementing the command rule to state (using
REXX SAY statements) the reason the command was REJECTED. See Special
Considerations for STOP rules with RETURN REJECTED.

Table 3–9. CMD Valid Return Values

Note:
The criterion of a STOP command rule must be STOP (or a less
specific command rule that matches STOP). The MVS STOP (P)
command also drives a command rule with a matching criterion of
STOP but the MVS P command does not drive a command rule
with a criterion of P.

Return Value Action

None supplied Product termination is allowed to continue.

ACCEPT Product termination is not allowed to continue.

REJECT Product termination is not allowed to continue.

Table 3–10. Return Values Supplied by the STOP CMD Rule
December 1999 Shadow OS/390 Web Server User’s Guide 3-11

Defining Event Procedure Types
CMD Event Procedure REXX Variables

Exception (EXC) Event Procedures
Exception (EXC) Events Procedures are generated by the system when an action
must be taken. For example, a long-running data base transaction has exceeded a
predefined time limit. The EXC event procedure decides what action to take in
response to the event.

How They Work
The server schedules execution of enabled EXC procedures when certain
exceptional events are detected. With EXC rules, you can customize various time-
slicing and time-keeping facilities of the server.

EXC Event Procedure Criterion
The criterion value for EXC event procedures is server generated exception type
names, which are shown in the following table:

Variable Description

CMD.VERB Contents: The command name entered at the console.

Data Type: Character, Read-only

CMD.TEXT Contents: Any operands entered after the command name at the
console.

Data Type: Character, Read-only

Table 3–11. CMD Variables Set for ALL Rules

Exception Name Description Default Server Action

CPULIMIT A transaction task has exceeded its maximum CPU time
limitation. This exception is detected only when multi-part
messages are being transmitted, and only at the point when
a new message segment is being read.

Terminate the transaction task.

CPUTIME A transaction task has exceeded its maximum CPU time
limitation. This exception can be detected at any time
during execution of the transaction task.

Terminate the transaction task.

IMSFAIL An IMS task detected a failing IMS operation. This
exception can occur for any type of IMS processing.

Terminate the IMS operation
and reflect error back to the
client transaction task.

LOCKEXCLUSIVE A transaction task has exceeded its DB2 exclusive lock time
limit.

Terminate the transaction task.

Table 3–12. Exception Names
3-12 Shadow OS/390 Web Server User’s Guide December 1999

Exception (EXC) Event Procedures
EXC Event Procedure Header Keywords
No keywords are currently defined for EXC event procedures. Keywords can not
follow the criterion value on the event procedure header statement.

EXC Allowed Process Sections
Only REXX-language process sections can be coded. Header-only rules are not
allowed.

EXC Valid Return Values
When an EXC procedure does not return a value, the default action is taken by the
server as seen in the event procedure criterion table.

Special Return Values

For some exception types, the EXC procedure can set a special return value which
causes the server to take an alternate recovery action. For example, it could ignore
a CPU time limit overrun or increase a task's CPU time limit value.

LOCKSHARE A transaction task has exceeded its DB2 shared lock time
limit.

Terminate the transaction task.

LOCKUPDATE A transaction task has exceeded its DB2 update lock time
limit.

Terminate the transaction task.

PERSQLCPU A transaction task has exceeded its per SQL statement CPU
time limit. This exception is only detected by SQL
operations executed by the server (such as for EXECSQL
rules) and not when a user written high-level language
program invokes long running SQL operations.

Terminate the transaction task.

SQLFAIL A transaction task detects an SQL statement has failed. An
SQL statement is considered to have failed if a negative
SQL code is set.

This exception is only detected by SQL operations executed
by the server (such as for EXECSQL rules) and not when a
user written high-level language program invokes long
running SQL operations.

Reflect SQL error code to the
transaction task.

TIMERONLIMIT A transaction task detects that a prepare has returned a
timeron value which exceeds the tasks timeron limit value.

This exception is only detected for dynamic SQL operations
executed by the server (such as for EXECSQL rules) and
not when a user written high-level language program
invokes prepare.

Terminate SQL processing a
reflect error to transaction task.

WAITTIME A transaction task has exceeded its wait time limit. This
exception can be detected at any time for transaction tasks.

Terminate the transaction task.

Exception Name Description Default Server Action

Table 3–12. Exception Names
December 1999 Shadow OS/390 Web Server User’s Guide 3-13

Defining Event Procedure Types
The run-time environment in which an exception is detected by the server varies
for each type. Some exceptions are detected synchronously, within a transaction
processing subtask, while others are detected asynchronously by a special server
timekeeping task (the "check limits" task).

Samples

The EXC procedure samples distributed with the server contain a sample for each
of the exception types. Instructions in the samples indicate the environment in
which the exception is detected, what operational controls can be used to affect
subsequent processing by the server, and what return values are valid.

EXC Event Procedure REXX Variables
The server causes the following REXX variables to be instantiated, which are
available for examination by the EXC event procedure.

Variable Name Description

EXC.OPEXSRID Contents: This is the exception name which is matched to the EXC procedure's
criterion value.

Data Type: Character, Read-only

EXC.OPEXACSR Contents: This is a string describing the default exception handling action which
the server takes for this exception.

Data Type: Character, Read-only

EXC.OPEXERMG Contents: This is an error message which can be set/changed by the EXC event
procedure.

Data Type: Character, Read-write

EXC.OPEXCNTK Contents: This is a connection token value, which can be used to by the EXC
event procedure to obtain information about the transaction processing task.

Note: The token must be used to access transaction task information in cases
where the exception is detected asynchronously.

Data Type: Character, Read-only

EXC.OPEXWAOK Contents: This is a variable which indicates if the EXC procedure is allowed to
perform operations which cause the current subtask to be placed in a wait state,
for instance, by issuing an I/O request.

The values set for this variable are:

• 0 - Waits are not allowed
• 1 - Waits are allowed

Data Type: Character, Read-only
3-14 Shadow OS/390 Web Server User’s Guide December 1999

Global Variable (GLV) Event Procedures
Global Variable (GLV) Event Procedures
Global Variable (GLV) Events Procedures are generated by the system whenever
1) the value of a global variable is updated and 2) the SEFGLVEVENTS start-up
parameter is set to allow them. A GLV event procedure can be used to produce
side-effects based upon the detection of an update to a global variable value.

How Global Variable (GLV) Work
When the update event is detected, the SEF attempts to locate a matching GLV
event procedure.

GLV Event Procedure Criterion
You may specify a 1-to-50 byte string for the criterion value of the GLV event
procedure header statement. If you specify the value in lowercase, SEF converts it
internally to uppercase. Shadow OS/390 Web Server processes all GLV matching
operations using uppercase.

The criterion value is the name of the global variable which must be altered for
this event procedure to be triggered for execution. A generic procedure can be
created by using the wildcard (*) character.

Example

The sample GLV procedure below would trigger for any update to a global
variable which has a name beginning with "GLOBAL.WEBTRANS.".

 /*GLV Global.Webtrans.*
 /*REXX
 .
 ...remainder of procedure

EXC.OPEXINFO Contents: This is a variable which indicates whether the SWSINFO function can
be used by the EXC procedure.

The values set for this variable are:

• 0 - SWSINFO should not be used
• 1 - SWSINFO can be used

Data Type: Character, Read-only

Note:
The use of GLV event procedures has a modest impact upon the
virtual storage utilization of the Shadow OS/390 Web Server
subsystem.

Variable Name Description

Table 3–13. EXC Event Procedure REXX Variables
December 1999 Shadow OS/390 Web Server User’s Guide 3-15

Defining Event Procedure Types
GLV Event Procedure Header Keywords
No keywords are supported for GLV event procedures. Keywords should not
follow the criterion value on the event procedure header statement.

GLV Allowed Process Sections
Only REXX-language process sections can be coded. Header-only rules are not
allowed.

GLV Valid Return Values
The Shadow Event Facility is unaffected by any values returned by a GLV event
procedure. The Global variable value is updated in all cases, regardless of the
return value set by a GLV procedure.

GLV Event Procedure REXX Variables
When a global variable change event is detected, the system extracts information
about the event and creates event-related variables. These variables are pre-
instantiated when the GLV event procedure is scheduled for execution.

You may access these data items directly, by name, from within REXX language
event procedures.

Variable Name Contents

PHASE Contents: This contains a four-byte character constant which indicates the processing
phase for which the current event procedure was invoked.

• If set to "INIT", the procedure is enabled either during subsystem start-up or in
response to a user enable request.

• If set to "PROC", the procedure runs after being matched to an actual global variable
update event.

• If set to "TERM", the procedure is disabled either during subsystem shut-down, or in
response to a user disable request.

During procedure enablement and disablement, the only other variable that is instantiated
is GLV.USER. The remaining variables are only instantiated during "PROC" phase
processing.

Data Type: Character, Read-only

GLV.NAME Contents: This is 1-to-50 byte derived name of the global variable whose modification
triggered this event.

Data Type: Character, Read-only

GLV.NEWVALUE Contents: This is the global variable's value after modification. Note that the standard
REXX definitions apply to variables that have never been referenced before or have been
dropped.

Data Type: Character, Read-only

Table 3–14. GLV Event Procedure REXX Variables
3-16 Shadow OS/390 Web Server User’s Guide December 1999

Time-of-Day (TOD) Event Procedures
Refer to Chapter 8, “Automated State Management Facility (ASMF),” for more
information.

Time-of-Day (TOD) Event Procedures
TOD event procedures are generated whenever the MVS timer associated with a
TOD event procedure expires.

How Time-of-Day (TOD) Rules Work
The time or date you specified in a TOD rule's definition determines when the
MVS timer expires.

TOD Event Procedure Criterion
The TOD event procedure criterion value is specified in the following form:

/*TOD todspec, interval, endspec, maxexecs

The following describe each of the components of the TOD event procedure
criterion value.

GLV.OLDVALUE Contents: This is the value the global variable had before it was modified.

Note: Standard REXX definitions apply to variables that have never been referenced
before or have been dropped.

Data Type: Character, Read-only

GLV.PROGRAM Contents: This is the name of the program or event procedure that updates the global
variable.

Data Type: Character, Read-only

GLV.TEXT Contents: This is the text message which describes the global variable update event. The
string, truncated at 100 bytes, contains the GLV.NAME, GLV.PROGRAM, GLV.OLDVALUE
and GLV.NEWVALUE values.

Data Type: Character, Read-only

GLV.USER Contents: This is an 8-byte field for communicating between event procedures that are
executing for a single event. This field can be used to pass information between multiple
event procedures.

This field is initialized to binary zeroes.

Data Type: Character, Read-write, maximum length 8.

Variable Name Contents

Table 3–14. GLV Event Procedure REXX Variables
December 1999 Shadow OS/390 Web Server User’s Guide 3-17

Defining Event Procedure Types
Name Description

todspec Time-of-Day Specifier. Either the time-of-day specifier or the interval must be
present to define a TOD event procedure. Follow these guidelines when
specifying the todspec value:

• Specify a date or time in any order. The format for specifying times and
dates is given in Table 3–16 on page 3-19.

• Use either upper or lowercase letters.
• If the todspec value is omitted, code the comma following it to indicate its

omission. An interval specification must be present if the todspec is omitted.

interval Execution Interval Specifier. (optional unless TOD specifier omitted) The
interval specifier give the amount of time units between event executions. If the
interval specifier is omitted, the event procedure executes one time at the time
value given by the time-of-day specifier. The valid formats for the interval
specifier are given in Table 3–16 on page 3-19.

If other specifications follow the interval, and the interval specifier value is
omitted, code the comma following it to indicate its omission.

endspec Ending Time-of-Day Specifier. (optional) The specifier gives the time/date
value after which executions of this event procedure cease. The valid format for
the endspec matches the todspec format.

maxexecs Maximum Executions Specifier. (optional) The value for maxexecs is the
number of times the event procedure is to be executed. This value is coded as an
integer count value.

Table 3–15. TOD Criterion and Description
3-18 Shadow OS/390 Web Server User’s Guide December 1999

Time-of-Day (TOD) Event Procedures
Specifier Formats

The following table gives the correct formats for coding each of the TOD event
procedure specifier values:

TOD Event Procedure Header Keywords
No keywords are currently defined for TOD event procedures other than the
specifier values previously stated.

Specifier Type Format Description

Date Any one of these formats is
acceptable:

• dd MMM year
• yy/mm/dd
• weekday

The day, month, year, or day of the week, depending on the
format used:

• dd: A two-digit integer (01 through 31) corresponding
to the day of the month

• MMM: One of the following three-character abbrevia-
tions for the name of a month: JAN, FEB, MAR, APR,
MAY, JUN, JUL, AUG, SEP, OCT, NOV, or DEC

• year: A four-digit year (for example, 1996)

• yy: A two-digit integer corresponding to a year (for
example, 96)

• mm: A two-digit integer (01 through 31) correspond-
ing to a month of the year.

• Weekday: The full name of a weekday (for example,
SUNDAY and MONDAY).

Time hh:mm:ss The time in 24-hour military format, as follows:

• hh: A two-digit integer (00 through 23), indicating the
hour

• mm: A two-digit integer (00 through 59), indicating the
minute

• ss: (Optional) A two-digit integer (00 through 59), indi-
cating the seconds after the minute.

Interval n units

Note: You can also use the 24-hour
military time format described
above.

The frequency and type of the interval:

• n: An integer multiplier, indicating the number of inter-
val time units

• units: One of the following time units: DAY(S),
WEEK(S), HOUR(S), MINUTE(S) or MIN(S), SEC-
OND(S) or SEC(S)

For example:

3 WEEKS
50 SECS
5 MINS
1 DAY

Table 3–16. Specifier Formats
December 1999 Shadow OS/390 Web Server User’s Guide 3-19

Defining Event Procedure Types
TOD Allowed Process Sections
Only REXX-language process sections can be coded. Header-only rules are not
allowed.

TOD Valid Return Values
The value returned from a TOD event procedure does not:

� Have any special meaning for the event facility.
� Have any effect on subsequent SEF processing.

TOD Event Procedure REXX Variables
When a TOD event occurs, the system extracts information about the event and
creates event related variables. These variables are pre-instantiated when the TOD
event procedure is scheduled for execution. You can access these data items
directly, by name, from within REXX-language event procedures.

Variable Name Contents

PHASE Contents: This contains a four-byte character constant which indicates the processing phase
for which the current event procedure was invoked.

• If set to "INIT", the procedure is enabled either during subsystem start-up or in
response to a user enable request.

• If set to "PROC", the procedure runs after being matched to an actual global variable
update event.

• If set to "TERM", the procedure is disabled either during subsystem shut-down or in
response to a user disable request.

During procedure enablement and disablement, no other event relative variables are
instantiated.

Data Type: Character, Read-only

TOD.NEXTFIRE Contents: This value indicates the next time the event procedure will run.

Possible values are:

• The date and time the rule fires next, in yyyy/mm/dd hh:mm:ss format
• NONE, if the rule does not execute again

Data Type: Character, Read-only

TOD.USER Contents: This is an 8-byte field for communicating between event procedures which are
executing for a single event. This field can be used to pass information between multiple
event procedures.

This field is initialized to binary zeroes.

Data Type: Character, Read-write, maximum length 8.

Table 3–17. TOD Event Procedure REXX Variables
3-20 Shadow OS/390 Web Server User’s Guide December 1999

Type (TYP) Event Procedures
Type (TYP) Event Procedures
At the current time, TYP event procedures are reserved for use only by NEON
Systems. They are used to develop prototypical Web server process section
compiler/interpreter routines.

NEON Systems may elect to publish additional information about TYP event
procedures at a later time. We strongly recommend that you do not code your own
TYP event procedures, at this time

TYP Event Procedure Criterion
The criterion value must be a 1-to-8 byte process section "type" name. The name
must be unique within the system.

TYP Event Procedure Header Keywords
No keywords are currently defined for TYP event procedures. Keywords cannot
follow the criterion value on the event procedure header statement.

TYP Allowed Process Sections
Only REXX-language process sections may be coded. Header-only rules are not
allowed.

TYP Valid Return Values
Unpublished, at this time.

TYP Event Procedure REXX Variables
Unpublished, at this time.

WWW Event Procedure Rules
This section expands on the concepts and information presented in Shadow
OS/390 Web Server’s Getting Started Guide, such as, If you do not find the
information in this manual, please refer to the Getting Started Guide or one of the
related publications in Shadow OS/390 Web Server’s set of manuals.

For detailed information (such as, what is a WWW event, how to create one, input
and output examples, etc.) refer to Shadow OS/390 Web Server’s Getting Started
Guide. This section expands on those concepts and information presented in it.

Warning:
You must not alter the distributed TYP event procedures in any way.
December 1999 Shadow OS/390 Web Server User’s Guide 3-21

Defining Event Procedure Types
MVS, in its native form (catalog structure, file system naming conventions, JCL,
EBCDIC code pages, and overall operating configuration), does not easily fit
within the UNIX origins of the World Wide Web. Any Internet applications
deployed on MVS must provide a means of translating UNIX-style requests into
MVS resource designations, and then translating the responses into the expected
UNIX-style formats and ASCII character sets.

Shadow OS/390 Web Server performs this UNIX-to-MVS resource mapping by
using WWW event procedure rules.

How WWW Rules Work
WWW event procedure rules can:

� Define a native MVS dataset resource to be returned for the URL and provide
the specifications needed for transforming the resource into an ASCII,
browser compatible entity.

� Define the options needed to make use of a server provided turnkey interface
for extracting and formatting data from legacy systems such as CICS, IMS,
DB2, ADABAS, and TSO/E.

� Execute a script or customer written program which generates the response
associated with the requested URL.

WWW Rule Types
There are three types of WWW rule definitions which can be defined within
Shadow OS/390 Web Server.

� URL filter rules
� Target WWW rules
� Gateway filter rules

URL Filter Rules

A URL filter rule is a WWW rule which contains only the rule header statement
(the "/*WWW" delimiter, URL match criterion, and optional header statement
keywords, but not a process section). URL filter rules are normally defined
generically using a wildcard as the last character of the URL match criterion.

How They Work

Header-only, URL filter rules are used to specify run-time transaction security
limits or diagnostic attributes which control the MVS and server environment that
are to be in effect during a subsequent procedure execution. The run-time
attributes specified by URL filter rules are accumulated through each URL-to-rule
match step. Each time a URL filter rule is matched, the server saves the updated
attributes before it looks for another URL-to-rule match.
3-22 Shadow OS/390 Web Server User’s Guide December 1999

WWW Event Procedure Rules
A header-only URL filter rule is not considered to be the ultimate target of any
URL-to-rule search. URL filter rules can only set run-time security attributes and
options; they do not cause an outbound response message to be generated.

Security

The server provides a Security Administration scheme which allows certain
security related parameter values to be specified only within the master WWW
ruleset. URL filter rules (within the master ruleset) can be used to control run-time
security attributes of all the transactions in a subordinate WWW ruleset..

During rule lookup, the server must locate a target WWW rule definition, even if
one or more URL filter rules were found. Otherwise, the URL requested by the
client is considered to be undefined and a "URL Not Found" response is
generated.

Whenever a procedural WWW rule is matched (the rule contains a process
section), these accumulated run-time attributes are put into effect just before the
procedure is executed.

Example

One URL filter rule attribute could specify whether the end user must provide a
valid MVS userid and password before being allowed to request a URL. When the
accumulated attributes are put into effect, the server determines if a valid logon
has occurred. If it has, the procedure is executed; if not, the server generates a
rescan to a recovery procedure.

Target WWW Rules

A WWW rule, which contains a process section declaration (following the
"/*WWW" header statement line), is a normally a target WWW rule, unless the rule
is explicitly declared to be a gateway filter rule.

How They Work

A target WWW rule's process section is executed whenever a URL-to-rule match
selects a matching rule. Execution of the process section definition is expected to
generate an outbound response to the client's original request.

Because target WWW rules generate all actual transaction responses, they are
considered to be the ultimate targets of all URL-to-rule match searches. If no
target WWW rule is matched while scanning for URL-to-rule matches, the URL is
considered to be "Not Found".

Once a target WWW rule has been matched and executed, the server ceases to
look for additional URL-to-rule matches, because the first target rule match is
considered to have responded to the client request. Unless the target WWW rule
requests rescan to a new URL value, the Web transaction ends following
execution of the target rule.
December 1999 Shadow OS/390 Web Server User’s Guide 3-23

Defining Event Procedure Types
Target rules execute under control of the security and environmental run-time
options have been accumulated during previous matches to URL filter rule and
gateway filter rules.

Gateway Filter Rules

A WWW rule definition which contains a procedure (such as, a process section),
can be explicit declare to be a gateway filter rule. You make this explicit
specification by coding the keyword, "GATEWAY", as an operand on the
"/*WWW" header statement.

How They Work

Gateway filter rules are handled much like target WWW rules, except they:

� Are not assumed to generate a client response.

� Are not considered to be the ultimate target of a URL-to-rule match search.
After a gateway filter rule is executed during URL-to-rule searching, the
server continues searching until it locates a target WWW rule.

� Can re-direct subsequent processing using rescan or flush requests.

If a target WWW rule is not located by subsequent matching, the URL request is
rejected with a "Not Found" condition even though the gateway procedure was
executed. Gateway filter rules execute under control of the security and
environmental run-time options that have been accumulated during previous
matches to URL filter rules and gateway filter rules.

Gateway filter rules can be used to provide a common front-end procedure which
is executed each time a generic URL request is made against a set of related Web
transaction definitions. The gateway can monitor query variables or cookie values
and use rescan or flush to re-direct processing until some validity requirement has
been fulfilled. Once the validity check is passed, the gateway exits normally and
allows the server to continue its search for a target rule definition.

Example:

A gateway filter rule can specify a REXX procedure or user written program that
always executes before a match to a more specific target URL strings. For
example, it can be used to implement a customized HTML form-based logon/
logoff front-end transaction which must be concluded before access to the target
rules is allowed.

For such a front-end, the gateway rule is matched and executed first. It then
checks to see if a valid logon has already been performed. If yes, the gateway
filter rule terminates normally so subsequent processing by the server locates one
of the target rules being front-ended. If the logon has not been completed, the
gateway filter rule procedure could display and process a logon HTML form,
which creates a timed token to remember the logon through subsequent
interactions with the client.
3-24 Shadow OS/390 Web Server User’s Guide December 1999

WWW Event Procedure Rules
Syntax of WWW Rule Definitions
Each WWW rule definition is coded within a separate member of a ruleset
PDS(E) dataset. The syntax needed to define a valid WWW rule definition
contains:

� A WWW rule header statement (required)

This statement must begin in the first position of the first record within the
rule (disregarding optional record numbering) and it must begin with the
delimiter characters, "/*WWW ".

The URL match criterion is a required positional operand which must appear
on the same line, immediately following "/*WWW ". The match criterion
string gives the URL value(s) which can be matched to this rule to trigger its
selection during URL-to-rule searching. For example:

/*WWW /NEON/HTMLFILE/* AUTHREQ(NO)

Optional keyword parameters follow the URL criterion string on the first
input line and can be continued on subsequent lines. These keywords define
operational characteristics which are set up when a URL-to-rule match
occurs. Keywords control the run-time security authorization framework and
allow various diagnostic information to be selectively produced.

� A process section declaration (optional)

WWW event procedures can contain:

− Header-only rules (no process section).
− REXX, FILE or PROGRAM process sections.

Example:

/*FILE DATATYPE(PDS) DDNAME(HTMFILE)
CONTENTTYPE(text/html)-
FORMAT(BINARY)

WWW Header Keywords

Many keyword parameters can be coded on the "/*WWW " rule header statement.
All are optional, but if coded, they must follow the required URL matching
criterion value.

The WWW header keywords fall into the following categories:

� Security Administration Controls
� Gateway
� Developer Selectable Options
December 1999 Shadow OS/390 Web Server User’s Guide 3-25

Defining Event Procedure Types
Security Administration Controls

The security keywords are used to configure the run-time authorizations under
which a transaction operates. Some of these keywords can only be specified by a
Web server administrator within the master ruleset and are not available to the
developer unless delegated otherwise.

Security keywords are specifically related to server security administration and
can be applied generically to groups of WWW rules. See Chapter 4, “Web
Transaction Security,” for more information on the following security
administration control keywords:

� AUTHREQ(YES|NO|LOCK)
� RESOURCE (string)
� RUNAUTH(NONE|CLIENT|proxy-id)
� SSL(NO|COND|YES|LOCK|LOCKCOND)

GATEWAY

The GATEWAY keyword declares that the /*WWW rule act as a gateway filter
rule. This GATEWAY keyword must be explicitly coded in order to designate all
gateway filter rules.

� /*WWW rules that contain a process section, but do not have the GATEWAY
keyword explicitly coded are always processed as target WWW rules.

� /*WWW rules that do not contain a process section are always processed as
URL filter rules.

� The distributed rule in ‘WWW.SWSCNTL’ is an application dependant example
of a REXX language logon gateway filter rule which handles HTML form-
based MVS logons. Use the URL /SWSCNTL/MENU to access this sample
application.

Developer Selectable Options

Some "/*WWW " statement keywords specify developer selectable options can be
used to control the transaction run-time environment and resource allocations
needed for execution of an individual WWW rule. For instance, a developer may
need to override the server's default limitation on maximum outbound response
size if the rule is expected to output a very large response. Or a run-time tracing
option may be temporarily turned on in order to trace an outbound response for
debugging purposes.

Note:
If you continue a "/*WWW " header statement onto multiple lines,
code a trailing dash (-) at the end of a line to indicate that the
statement is continued onto the following line.
3-26 Shadow OS/390 Web Server User’s Guide December 1999

WWW Event Procedure Rules
The developer selectable options can be specified for any WWW rule and only
apply to the an individual rule. The developer keywords are:

AUTHOFLUSH(integer)
This keyword parameter operates only for Web transactions that
execute in "non-parsed header" mode; otherwise, it is ignored.

The server can automatically issue flush-to-client requests
periodically while an outbound response is being composed. This
parameter is the number of 32k outbound transmission buffers which
must be filled before an automatic flush-to-client request is issued.

The operand value for this keyword must be in the range of 0 to
32767. Coding 0 (zero) disables the automatic flush-to-client feature.
If this keyword is not explicitly coded for a rule, the start-up
parameter MAXCHAINEDBUFFERS value is used instead.

DPRTY(value)
This keyword overrides the dispatching priority of the Web
transaction subtask relative to other subtasks within the server
address space and allows you to raise or lower the relative priority of
certain Web transaction tasks. This is useful when defining long-
running DB2-based transactions to keep those tasks from slowing
overall response time.

Code the operand of DPRTY as a integer between 0 and 255 with or
without a leading sign. Do not code blanks between the leading sign,
if any, and the integer following it.

� If no leading sign is present, the operand value gives the absolute
dispatching priority to be assigned to the transaction subtask.

� If a leading plus or minus sign is coded, the current dispatching
priority is raised or lowered by the value given.

Only WWW procedures coded within the master ruleset may specify
a net increase in a task's dispatching priority. Any attempt to increase
the priority from within a subordinate ruleset is ignored.

HTXTRACE(list)
This keyword specifies whether a pre-compile or evaluation time
trace is performed when an HTML extension processing occurs while
executing a WWW rule. The trace options apply only to HTML
extension processing that occurs while executing a WWW rule. The
HTXTRACE option is not cumulatively applied to the WWW
transaction when more than a single WWW rule is matched.

If this keyword parameter is not coded, the subsystem will not trace
HTML extension processing while executing this or any other WWW
rule.
December 1999 Shadow OS/390 Web Server User’s Guide 3-27

Defining Event Procedure Types
This parameter can be used to diagnosis problems when processing
source file information containing complex HTML extension
statements. The keyword has no effect if HTML extensions are not
processed while the transaction is executing.

Specify one to three of the following keyword values as the operand
of the HTXTRACE parameter. Separate multiple keywords with a
single space, not a comma. For example:

MAXRESPBUFFERS(integer)
This keyword parameter specifies a limit on the number of 32k,
outbound HTTP response buffers which any single transaction can
simultaneously hold in storage while an outbound response is being
composed. The minimum value that can be specified is 0, and the
maximum is 32767. If 0 (zero) is coded, buffer-count limit checking
is not performed.

If this parameter is not coded, the server uses the setting of the start-
up parameter, MAXHTTPRESPBUFFERS, as a limit on the number
of outbound response buffers. If this limit is exceeded, Shadow OS/
390 Web Server generates a User Abend x'722' with a reason
code 500 in order to cancel the transaction procedure.

MAXRESPBYTES(integer)
This keyword parameter specifies a limit on the total number of bytes
that can be transmitted in an HTTP response message. The minimum
value that can be coded is 0 (zero), and the maximum is 2147483647.
If 0 (zero) is coded, outbound byte count limit checking is not
performed.

If this parameter is not coded, the server uses the setting of the start-
up parameter, MAXHTTPRESPBYTES, as a limit on the number of
outbound bytes. If this limit is exceeded, Shadow OS/390 Web Server

Parameter Value Meaning

HTXTRACE(ALL) Perform all traces. "ALL" is equivalent to specifying
"HTXTRACE(EMIT EVAL PCODE)".

HTXTRACE(EMIT) Trace internal P-code elements during compilation. If a cached p-code image is in use,
the trace is not performed. In order to ensure that compile time p-code emit trace is
performed, purge the cache storage for the member being processed before invoking the
WWW transaction.

HTXTRACE(PCODE) Trace internal P-code elements immediately before performing evaluation and
substitution of the source file.

HTXTRACE(EVAL) Trace evaluation of each HTML Extension statement as it is processed during output of
the source file.

Table 3–18. HTXTRACE(EMIT EVAL PCODE)
3-28 Shadow OS/390 Web Server User’s Guide December 1999

WWW Event Procedure Rules
generates a User Abend x'722' with a reason code 500 in order to
cancel the transaction procedure.

RESPMODE(SERVER | NONE)
This keyword parameter can be set to control the operational mode of
the server while an outbound response is being composed by the Web
transaction. Two operational modes are provided.

If the RESPMODE keyword parameter is not explicitly coded, the
server executes the Web transaction using the setting of the start-up
parameter HTTPRESPMODE parameter. Server parsed mode
operation is the preferred and it is the normal operational mode.

Non-Parsed Header Mode. Non-parsed header mode requires that the user
supply all the required HTTP response headers needed to
communicate with the client Web browser. In this mode, the server
does not examine, override, or augment the outbound HTTP response
message headers output by the Web transaction. The Web transaction
procedure has direct control of the outbound communications session
and can even have a partial response transmitted to the client before
the entire outbound response message has been composed.

The server uses this operational mode when transmitting huge files to
prevent large outbound responses from occupying excessive amounts
of virtual storage. Refer to the Shadow Programmer’s Guide or the
online HTML for information on SWSSEND, high-level-language
SWSSEND, ADDRESS SWSSEND and flush-to-client operations.

Following the completion of a transaction operating in non-parsed
header mode, the server never attempts to provide persistent session
support; the communications session is always closed.

Server Parsed Header Mode. In server parsed header mode, Shadow OS/390
Web Server buffers the complete outbound response until the Web
transaction is completed. The server then examines whatever HTTP
response headers that were explicitly output by the transaction. The
generated transaction HTTP response headers could be left
unchanged, altered, removed by the server, or additional HTTP
response headers could be inserted into the outbound response
message. After reviewing the HTTP response headers, the server
transmits the complete outbound response message.

Parameter Value Meaning

RESPMODE(NONE) The Web transaction composes and transmits an outbound response in "non-
parsed header" mode.

RESPMODE(SERVER) The Web transaction composes an outbound response, and the server monitors and
transmits the response in "server-parsed" mode.

Table 3–19. RESPMODE Parameters
December 1999 Shadow OS/390 Web Server User’s Guide 3-29

Defining Event Procedure Types
PARSETRACE(NO | YES)
This keyword specifies whether the parsing of “WWW.” event related
variables is to be written to the wrap-around trace dataset (trace
browse). If the parsed variables were not previously traced during
execution of the Web transaction, the trace is written when the WWW
rule is matched,

If this keyword parameter is not coded, the subsystem uses the setting
of the product level parameter, TRACEURLPARSE, to determine if
outbound tracing is performed.

The following values can be specified for PARSETRACE:

QUEUESIZE(integer)
This keyword specifies the number of entries allocated within the
external data queue which is used by Shadow/REXX to support the
PUSH and PARSE PULL instructions. The queue is also used to
return the results of executing a TSO request within an external TSO
server address space.

Use this keyword parameter to:

� Override the default external data queue specification made by
the SEFMAXQUEUE start-up parameter.

� Increase the default queue allocation size when a large number of
queued lines are expected in a response. If the value specified for
the QUEUESIZE() keyword is smaller than the
SEFMAXQUEUE start-up parameter, the value set for
SEFMAXQUEUE is used instead.

Code the operand of QUEUESIZE() as an integer in the range of 1 to
1,000,000. The operand gives the absolute number of entries to be
pre-allocated for the external data queue.

SENDTRACE(NO | YES)
This keyword specifies whether the transaction generates wrap-
around trace entries to record outbound data sent to the Web client. If
this keyword parameter is not coded, the subsystem uses the setting of
the product level parameter, TRACEHTML, to determine if outbound
tracing is performed.

The following values can be specified for the SENDTRACE:

Parameter Value Meaning

PARSETRACE(NO) Do not generate a trace of the parsed WWW. variables.

PARSETRACE(YES) Generate a trace of the parsed WWW. variables, if not previously traced.

Table 3–20. PARSETRACE Parameter
3-30 Shadow OS/390 Web Server User’s Guide December 1999

WWW Event Procedure Rules
WORKSIZE(integer)
This keyword specifies the size (Kilobytes) of the REXX work space
to allocate while executing this WWW rule. REXX work space is
used by Shadow/REXX to contain run-time variable names, values,
and evaluation areas during execution.

Use this keyword parameter to:

� Override the default work space size specification made by the
SEFSIZE start-up parameter.

� Increase the default allocation size when a large number of run-
time variables are expected. If the value specified for the
WORKSIZE() keyword is smaller than the SEFSIZE start-up
parameter, the value set for SEFSIZE is used instead.

For example, you may find this useful when using the ADDRESS
SQL environment of Shadow/REXXTOOLS. If a DB2 query returns
a large result set, a REXX work space is needed to contain each
column's variable name and value, which could result in large space
requirements.

Code the operand of WORKSIZE() as an integer in the range of 48 to
2,000,000. The operand value specifies the work space size to be
allocated in kilobytes.

WWW URL-to-Rule Matching
The following discusses how the URL-to-rule matching and its criteria is handled.

Search Order

When the server begins a URL-to-rule search, event procedures are matched from
the least-to-most specific. Unless a rescan is done, the search ends when the first
target WWW rule is matched.

Parameter Value Meaning

SENDTRACE(NO) Do not generate a trace of the outbound transmission.

SENDTRACE(YES) Generate a trace of the outbound transmission.

Table 3–21. SENDTRACE Parameters

Note:
URL-to-rule matching can be prematurely suspended if any gateway
or target procedure issues a flush request to suspend further rule
matching and terminate the current transaction normally.
December 1999 Shadow OS/390 Web Server User’s Guide 3-31

Defining Event Procedure Types
Match Order

If two or more WWW rules specify exactly the same URL match criterion string,
they are matched in the following order:

� Rules defined in the master WWW ruleset are always matched before rules
defined in subordinate WWW rulesets..

� URL filter rules, consisting of only a "/*WWW " header statement, are
matched before any gateway filter rules or target WWW rules.

� Gateway filter rules are matched before any target WWW rules.

WWW Rule Header Statements
You can specify a 1 to 128 character string for the criterion value of the WWW
event procedure rule header statement. The criterion must be coded as a
continuous string of non-blank characters and must appear on the first line of the
rule; continuation of the URL string is not allowed.

If the value is specified in lowercase, SEF converts it, internally, to uppercase.
Shadow OS/390 Web Server processes all URL matching operations using
uppercase URL values.

Character String Restrictions

� If the event procedure resides within the master WWW ruleset, the character
string that you specify as the URL matching criterion is unrestricted.

� If the event procedure resides within the subordinate WWW ruleset, the
character string that you specify as the URL matching criterion is restricted.
The criterion value must begin with the string, "/xxxxxxxx", where
"xxxxxxxx" is is the ruleset name. Any combination of characters is allowed
after the required prefix.

� If a leading slash character is not part of the criterion specification (allowed
only within the master ruleset), the URL value cannot be matched by an

Warning:
It is possible to create a group of WWW rule definitions where some
WWW rules can never be matched. Because each search proceeds
from least-to-most specific match, and searching ends when a target
is located, wildcards must be used carefully. The server does not
warn of unmatchable WWW rule definitions.

For example: If two like target rules are defined, only one is
matched-to and executed at run-time. The order in which the match
occurs is unpredictable. URL criterion values must be constructed so
one WWW rule does not "hide" other, more specific rules.
3-32 Shadow OS/390 Web Server User’s Guide December 1999

WWW Event Procedure Rules
externally entered Web transaction. Only a rescan operation can invoke an
event procedure without using a leading slash character.

See Special Characters and URL String in the Getting Started Guide for
recommendations on structuring URL criterion values.

WWW Rule Process Sections
Any of the valid process section types can be coded as part of a WWW rule to
specify a procedure to be executed by the server.

� REXX sections for low-to-intermediate volume scripting of Web transactions

� FILE sections to return an MVS dataset as a Web transaction response

� PROGRAM sections for high-volume transaction deployment

� EXECSQL sections for rapid creation of Web transaction responses using
data stored in a DB2 data base

� TSOSRV sections for executing a TSO/E command processor, CLIST,
REXX, or ISPF procedure in an isolated out-board TSO/E server

WWW Rule Examples

Setting Run-Time Security Environment (URL Filter Rule)

The following example shows a generic filter rule set up a run-time operational
limit for more specific URL-to-rule matches within the generic group.

/*WWW /NEON/* RUNAUTH(UserN)

A third-party-proxy userid, "UserN" is used to execute any URL-to-rule
transaction procedure which begins with “/NEON/...”. The remaining examples
(shown below) run within an MVS subtask where "UserN" is set as the run-time
MVS userid.

Accessing Native MVS Files (Target WWW Rule)

Whenever a URL arrives in the system, it is matched to a WWW rule which is
then executed by the server. For example:

In-bound URL:

HTTP://my.server/NEON/HTMFILE/MEMBER2

Matching WWW Rule

/*WWW /NEON/HTMFILE/*
/*FILE DATATYPE(PDS) DDNAME(HTMFILE) CONTENTTYPE(text/html) -
 FORMAT(TEXT)

In this example, the server's built-in /*FILE procedure executes to handle the
client's request.
December 1999 Shadow OS/390 Web Server User’s Guide 3-33

Defining Event Procedure Types
The /*FILE process section uses information represented by the URL wildcard
character ("MEMBER2") to specify which PDS member to be returned to the client.
Since this rule contains a procedural specification (the /*FILE process section), it
is allowed as a target of the URL-to-rule match. A return response (to the client) is
expected.

The prior URL-to-rule match for “/NEON/*” causes the proxy userid, UserN, to
be set up while this procedural rule executes. See the previous example.

Turnkey DB2 Access Rule (Target WWW Rule)

This WWW rule is executed by the server whenever a matching URL request
arrives.

/*WWW /NEON/QSTAFF AUTHREQ(NO)
/*EXECSQL SUBSYS(DSN2) -
PLAN(SWSCC1010) -
MAXBLOCKS(30) -
AUTOFORMAT(TITLE('Contents of Q.STAFF Table') -
BODY('bgcolor="#FFCC33"') -
)
select * from q.staff

Here, the server executes an SQL statement (“select * from q.staff”) and
then dynamically formats the result set as an HTML table. Additional process
section parameters can be used to refine the SQL query or allow customized
HTML output.

Authorization to access the Q.STAFF table is granted or denied based upon the
run-time proxy userid, UserN, which was set up by the filter rule. See “Setting
Run-Time Security Environment (URL Filter Rule)” on page 3-33.

WWW Event-Related Variables
Each time an inbound HTTP request is received by the Shadow OS/390 Web
Server subsystem, the system parses the HTTP request header to determine which
event procedure to run. During the parse operation, various data items are
extracted from the transaction header along with other environmental data
elements. These items are made available to WWW rule transaction procedures
and is used in composing an HTML response.

Using the Shadow/Rexx Interpreter

By using the variable names listed in Table 3–22 on page 3-35, Shadow/REXX
can access these run-time values by name. These variables are automatically set
up in the REXX-language environment before a Shadow/REXX procedure is
executed.

You can see a demonstration of how a Shadow/REXX procedure is invoked and
can make use of these run-time variables by accessing the sample procedure
/NEN/DEMO01.
3-34 Shadow OS/390 Web Server User’s Guide December 1999

WWW Event Procedure Rules
Using Non-Shadow/REXX Interpreters

User written programs or REXX procedures executed by other (non-Shadow/
REXX) interpreters must use an API interface call to retrieve the value of these
run-time variables. Use the SWSVALUE API Call for user written high-level
language program access, or the SWSVALUE built-in function for non-Shadow/
REXX interpreters.

Variable Name Contents

PHASE Contents: Contains a four-byte character constant which indicates the processing
phase for which the current event procedure was invoked.

• If set to "INIT", the procedure is being enabled either during subsystem
start-up or in response to a user enable request.

• If set to "PROC", the procedure is being run after being matched to an
inbound HTTP transaction request.

• If set to "TERM", the procedure is being disabled either during subsystem
shut-down, or in response to a user disable request.

During procedure enablement and disablement, the only other variable that is
instantiated is WWW.USER. The remaining variables are only instantiated during
"PROC" phase processing.

Note: REXX procedures normally run only during the PROC phase, unless
explicitly requested. See Chapter 5, “Writing Web Transactions in REXX,” for
more information.

Data Type: Character, Read-only

WWW.ABENDCODE Contents: The decimal value of the last encountered abend code. The value can be
converted to displayable hexadecimal using the D2X built-in REXX function.
The value is zero, if no abend has occurred during processing.

Data Type: Integer, Read-only

WWW.ABENDREASON Contents: The decimal value of the last encountered abend reason code. The value
can be converted to displayable hexadecimal using the D2X built-in REXX
function. The value is zero, if no abend has occurred during processing.

Data Type: Integer, Read-only

WWW.ACCEPT_CHARSET Contents: The value of the Accept-charset: HTTP request header token. If the
Accept-charset: request header is not present in the inbound HTTP request, this
variable is seto to a NULL value.

Data Type: Character, Read-Only

WWW.ACCEPT_ENCODING Contents: The value of the Accept-encoding: HTTP request header token. If the
Accept-encoding: request header is not present in the inbound HTTP request, this
variable is seto to a NULL value.

Data Type: Character, Read-Only

WWW.ACCEPT_LANGUAGE Contents: The value of the Accept-language: HTTP request header token. If the
Accept-language: request header is not present in the inbound HTTP request, this
variable is seto to a NULL value.

Data Type: Character, Read-Only

Table 3–22. WWW Event-Related Variables
December 1999 Shadow OS/390 Web Server User’s Guide 3-35

Defining Event Procedure Types
WWW.ACCEPT.0 Contents: Contains the number of Accept: HTTP request headers found within
the inbound HTTP request. If none were found, the value of this variable is zero.

Data Type: Integer, Read-Only

WWW.ACCEPT.n Contents: Variables WWW.ACCEPT.1 through WWW.ACCEPT.n (where n is equal
to the value of the variable WWW.ACCEPT.0) contain each of the tokens set for the
Accept: HTTP request headers found in the inbound HTTP transaction. If no
Accept: headers were present in the inbound message, then WWW.ACCEPT.0 will
be set to zero, and the remaining WWW.ACCEPT.n variables will not be
instantiated.

Data Type: Character, Read-Only

WWW.AUTH Contents: Set to a character value indicating the authorization level of the current
event procedure.

• If set to "NONE", no authorization data was sent with the inbound HTTP
transaction request. The current transaction runs under the authorization of
the Web Server subsystem or an overriding RUNAUTH userid value.

• If set to "SENT", authorization data was sent with the inbound HTTP trans-
action request, but it was not used to perform userid/password validation. In
order to conserve CPU resources, userid validation is only performed when
required by the security attributes of the transaction. Because userid valida-
tion is not required by the current transaction, the authorization data sent by
the Web client was not processed. The current transaction is running under
the authorization of the Web server subsystem or an overriding RUNAUTH
userid value.

• If set to "NO", authorization data was sent with the inbound HTTP transac-
tion request, but the userid or password value was invalid and could not be
used to log on to the system. The current transaction is running under the
authorization of the Web server subsystem or an overriding RUNAUTH use-
rid value.

• If set to "YES", the inbound HTTP transaction contained a valid userid and
password, which were used to log on to the system. The current transaction
runs under the authorization of the Web server subsystem, an overriding
RUNAUTH userid value, or the authorization of the end user.

Data Type: Character, Read-Only

WWW.AUTHDATA Contents: Contains the value of the undecoded authentication information sent by
inbound HTTP Authorization: request header. If no such request header was
present, this variable contains a NULL string.

Data Type: Character, Read-Only

WWW.AUTHMETHOD Contents: Contains the value of the authorization method specified in the inbound
HTTP Authorization: request header. If no such request header was present, this
variable contains a NULL string. At present, the only allowable value for this
variable is the string "Basic".

Data Type: Character, Read-Only

WWW.AUTHMSG Contents: Contains a string value containing the message issued by the security
subsystem when the inbound userid and password were used to process a logon
request.

Data Type: Character, Read-Only

Variable Name Contents

Table 3–22. WWW Event-Related Variables
3-36 Shadow OS/390 Web Server User’s Guide December 1999

WWW Event Procedure Rules
WWW.AUTHORIZATION Contents: Contains the decoded value of the Authorization: userid and password
contained within the inbound HTTP request. If no Authorization: request header
was present, this variable contains a NULL string. The password within the
decoded authorization string has been overlaid with X's.

Data Type: Character, Read-Only

WWW.AUXCOMPONENT Contents: For some Web server processes, external MVS subsystems are invoked.
If an exceptional condition occurs, the WWW.AUXxxxx variables are set to reflect
the error.

This variable contains the name of the external component. It is set to the string
'DB2' when exceptional conditions are noted during DB2 open processing or
when processing an EXECSQL process section.

Data Type: Character, Read-Only

WWW.AUXRC Contents: For some Web server processes, external MVS subsystems are invoked.
If an exceptional condition occurs, the WWW.AUXxxxx variables are set to reflect
the error.

This variable contains the return code set by the external component.

Data Type: Integer, Read-Only

WWW.AUXREASON Contents: For some Web server processes, external MVS subsystems are invoked.
If an exceptional condition occurs, the WWW.AUXxxxx variables are set to reflect
the error.

This variable contains the reason code set by the external component.

Data Type: Integer, Read-Only

WWW.AUXABEND Contents: For some Web server processes, external MVS subsystems are invoked.
If an exceptional condition occurs, the WWW.AUXxxxx variables are set to reflect
the error.

This variable contains the abend code set by the external component.

Data Type: Integer, Read-Only

WWW.AUXOTHER Contents: For some Web server processes, external MVS subsystems are invoked.
If an exceptional condition occurs, the WWW.AUXxxxx variables are set to reflect
the error.

This variable contains any other code set by the external component.

Data Type: Integer, Read-Only

WWW.AUXMSG Contents: For some Web server processes, external MVS subsystems are invoked.
If an exceptional condition occurs, the WWW.AUXxxxx variables are set to reflect
the error.

This variable contains text information describing the exceptional condition.

Data Type: Character, Read-Only

WWW.COOKIE Contents: Contains the value specified for the Cookie: HTTP request header, if
present, or a NULL string. See the Netscape Documentation at Persistent Client
State HTTP Cookies for more information.

Data Type: Character, Read-Only

Variable Name Contents

Table 3–22. WWW Event-Related Variables
December 1999 Shadow OS/390 Web Server User’s Guide 3-37

Defining Event Procedure Types
WWW.COOKIE.xxxxx Contents: Contains the value of the name/value pair, xxxxx, contained within the
Cookie: HTTP request header. See the Netscape Documentation at Persistent
Client State HTTP Cookies for more information.

Data Type: Character, Read-Only

WWW.CONTENT_LENGTH Contents: Contains the value specified for the Content-length: HTTP request
header, if present, or a NULL string.

Data Type: Integer, Read-Only

WWW.CONTENT_TYPE Contents: Contains the value specified for the Content-type: HTTP request
header, if present, or a NULL string.

Data Type: Character, Read-Only

WWW.CURRENTURL Contents: The current value of the URL being used to perform matching to Web
event procedures. This is normally set to the value specified in the input HTTP
transaction request, unless an intervening procedure or the subsystem has altered
the match value.

The subsystem alters match values when certain errors are encountered to re-
direct processing to one of the built-in SYSTEM/ERROR/nnn procedures.

User procedures can alter the match URL value by issuing "RETURN RESCAN
xxxx" from an event procedure.

Data Type: Character, Read-Only

WWW.DATE Contents: Contains the value specified for the Date: HTTP request header, if
present, or a NULL string.

Data Type: Character, Read-Only

WWW.ERRORCODE Contents: Contains the value of the transaction error code field. The field may be
set by the subsystem in response to various transaction-related error events.

Data Type: Integer, Read-Only

WWW.FIELD.0 Contents: Contains the number of field name/value pairs present within the input
HTTP transaction. This value is set to zero, if no name/value pairs were present.

Data Type: Integer, Read-Only

WWW.FIELD.n.NAME Contents: Contains the name of the nth field name/value present within the input
HTTP transaction. The value of n ranges from 1 to the value set for
WWW.FIELD.0.

Data Type: Character, Read-Only

WWW.FIELD.n.VALUE Contents: Contains the value of the nth field name/value present within the input
HTTP transaction. The value of n ranges from 1 to the value set for
WWW.FIELD.0. If no value was present for the Nth pair, this variable contains a
NULL string.

Data Type: Character, Read-Only

WWW.FORWARDED Contents: Contains the value specified for the Forwarded: HTTP request header,
if present, or a NULL string.

Data Type: Character, Read-Only

Variable Name Contents

Table 3–22. WWW Event-Related Variables
3-38 Shadow OS/390 Web Server User’s Guide December 1999

WWW Event Procedure Rules
WWW.FROM Contents: Contains the value specified for the From: HTTP request header, if
present, or a NULL string.

Data Type: Character, Read-Only

WWW.IF_MODIFIED_SINCE Contents: Contains the value specified for the If-modified-since: HTTP request
header, if present, or a NULL string.

Data Type: Character, Read-Only

WWW.INPUTURL Contents: Contains the original inbound HTTP request URL value.

Data Type: Character, Read-Only

WWW.LINE.0 Contents: Contains the number of individual lines within the inbound HTTP
request header. Each line is delimited by a CRLF combination.

Data Type: Integer, Read-Only

WWW.LINE.n Contents: Contains the contents of the Nth line of the inbound HTTP request
header. Each line is delimited by a CRLF combination. The line data does not
contain the delimiting CRLF. The number of WWW.LINE.n variables is given by
WWW.LINE.0.

Data Type: Character, Read-Only

WWW.MATCHVALUE Contents: Contains the criterion value of the current WWW event procedure to
which the inbound URL was matched.

Data Type: Character, Read-Only

WWW.MESSAGE_ID Contents: Contains the value specified for the Message-id: HTTP request header,
if present, or a NULL string.

Data Type: Character, Read-Only

WWW.METHOD Contents: Contains the value specified for the HTTP method specified in the
inbound transaction. The Shadow OS/390 Web Server accepts transactions that
specify the "GET", "POST", and "HEAD" methods.

Data Type: Character, Read-Only

WWW.MIME_VERSION Contents: Contains the value specified for the MIME-version: HTTP request
header, if present, or a NULL string.

Data Type: Character, Read-Only

WWW.PRAGMA Contents: Contains the value specified for the Pragma: HTTP request header, if
present, or a NULL string.

Data Type: Character, Read-Only

WWW.PROTOCOL Contents: Contains the value HTTP version value that was present within the
inbound HTTP request header.

Data Type: Character, Read-Only

WWW.QUERY Contents: Contains the value of any encoded query data that was present within
the inbound HTTP request header.

Data Type: Character, Read-Only

Variable Name Contents

Table 3–22. WWW Event-Related Variables
December 1999 Shadow OS/390 Web Server User’s Guide 3-39

Defining Event Procedure Types
WWW.REFERER Contents: Contains the value specified for the Referer: HTTP request header, if
present, or a NULL string.

Data Type: Character, Read-Only

WWW.SSL Contents: Set to uppercase "Y" if an SSL connection is in use between the server
and client. Set to uppercase "N", if an SSL connection is not in use.

Data Type: Character, Read-Only

WWW.STATUSCODE Contents: Contains the value set by a previous procedure of the subsytem for the
HTTP response status code value. If set to zero, the subsystem substitutes value
200 (request was fulfilled). The only action of this variable is to save the status
code placed into transaction-level SMF records.

Data Type: Integer, Read-Write

WWW.TEXT Contents: Contains the entire HTTP request header.

Data Type: Character, Read-Only

WWW.USER_AGENT Contents: Contains the value specified for the User-agent: HTTP request header,
if present, or a NULL string.

Data Type: Character, Read-Only

WWW.USERID Contents: Contains the userid, if any, present within the inbound Authorization:
request header.

Data Type: Character, Read-Only

WWW.VAR.xxxxx Contents: Contains the value of the input variable for each inbound query variable
named xxxxx. If multiple query variables of the same name are input, the variable
contains the value set only for the last of these.

Data Type: Character, Read-Only

Variable Name Contents

Table 3–22. WWW Event-Related Variables
3-40 Shadow OS/390 Web Server User’s Guide December 1999

CHAPTER 4:

Web Transaction Security

This chapter expands on the concepts and information presented in Shadow OS/390 Web Server’s
Getting Started Guide, which includes, things you should know about Web browsers, the controlled
transaction paradigm, levels of security, types of transactions, distributed transaction administration
(master and subordinate rulesets, what they are and how they work), security attributes processing,
security processing steps, implementing distributed transaction administration, and specifying web
transaction security parameters.

About Web Browsers
Shadow OS/390 Web Server allows users with Web browsers to:

� Access DB2 tables via dynamic or static SQL using NEON's high
performance, built-in DB2 connection facilities.

� Use CICS, IMS, and TSO/E transaction processing facilities.

� Access Web transactions that use DB2, VSAM, or virtually any data storage
facility of MVS. Access is performed under strict controls imposed by the
Server using services such as RACF, ACF/2, and TopSecret.

� Use customizable Web transaction services built-in to the Web server’s rule-
based architecture. The built-in applications include facilities for creating
Web enabled applications that:

− Serve static or run-time generated HTML or other data from virtually any
MVS file. This function implements the intrinsic file server model used
for HTTP, but allows mapping of URL requests to the native MVS file
system.

− Handle form based DB2 queries and updates.

− Execute commands and procedures that execute within a TSO/E server,
managed by the product. This facility provides access to various MVS
data source and APIs that are normally unavailable using any other MVS
based Web server. You can create Web enabled access to facilities such as
ISPF, DFHSM, CLISTs or any other component which operates under
TSO/E.

� Execute customer written transaction programs or scripts. You can write
transaction programs using COBOL, PL/I, C, C++, Assembler or execute
command procedures written in IBM TSO/E REXX language or a third-party
vendor scripting language, such as Prevail/XP OPS/REXX.
December 1999 Shadow OS/390 Web Server User’s Guide 4-1

Web Transaction Security
Userid Prompting
The following information applies to the use of the “BASIC” authentication
protocol supported by all Web browsers, but might not apply to newer
authentication protocols.

Part or all of an outbound response to a URL request is an HTTP Response
Header, which contains a standard status code value.

Response Status Code 401

When the client receives a response status code 401, it means the URL request is
not authorized. Most browsers display a popup window that requests a userid and
password. Once the user enters this information, the browser retransmits the
original request, but adds an authentication header containing the encoded
information.

The browser retains a copy of this information and automatically sends the same
userid/password combination in response to subsequent 401 status errors. The
browser continues to use this information until the browser session is terminated.

Re-logons

Because the browser retains the userid/password information, it makes a generic
“re-logon”, such as you might use to switch TSO/E userids using a 3270 session,
virtually impossible to provide. Generic re-logons require that the browser be
closed and reopened. This appears awkward to users unless it can be customized
to specific transactions.

At present, there is no way in which a server can signal a Web browser to drop its
internal copy of a userid and password.

Each unique (and valid) userid, password, server domain, URL, and REALM
combinations:

� Is cached by the browser. By using this cached information, the browser
avoids re-prompting the user for a userid and password.

� Is considered valid by a browser if the server responds to a request with a
“normal” status code (codes in the 2xx range).

Varying the “REALM” Value

By varying the “REALM” value transmitted in the HTTP 401 (Not
Authorized) response, the server can force the end user to re-enter the
information. However, the combination of userid, password, server domain, URL
and REALM is not the original, and a new cache entry is generated.

This is not a useful means of providing generic solutions to the conflicts unless
you want the end user re-prompted for every request. Except for very specialized
transaction processes, the “REALM” value sent in 401 responses should be
constant in relationship to the URL string.
4-2 Shadow OS/390 Web Server User’s Guide December 1999

Userid Prompting
Example

The following scenario cannot be resolved by the server unless the browser is
closed after the password update is performed.

1. The client selects a given URL. For example, /ABC.

2. Because the /ABC rule requires authorization, the server responds with a 401
status code (Not Authorized).

3. Since this is the first request, no userid/password is cached. The browser
presents the popup window and solicits a userid and password. The browser
resubmits the original request for /ABC, but this time it includes the userid/
password values.

4. The server processes the userid/password, determines they are valid, and
allows the /ABC URL to be executed.

5. With the Web browser remaining open between requests, the end user re-
selects the URL, /ABC.

6. Because the userid/password was previously valid for access to /ABC, the
browser includes the original userid/password with the request.

7. When the transaction arrives at the server, the userid/password are again
authenticated. However, because of the time delay, the password has expired.

8. The server transfers control to the password expiration URLs supplied with
the product.

9. The password expiration URLs are executed successfully and the MVS
password is updated.

10. At this point, if the browser is not closed and restarted, problems occur.

The Problem

1. The /ABC URL is re-selected by the end user.

2. The browser transmits the original userid and password, not the updated
password.

3. Because the password is invalid, the server responds with a 401 (Not
Authorized) code.

4. The browser retransmits the /ABC request, again using the old password,
which it does without notifying the end user or displaying a message.

5. For older browsers, a loop starts in which the server constantly issues a 401
response and the browser constantly retransmits the same information.
December 1999 Shadow OS/390 Web Server User’s Guide 4-3

Web Transaction Security
Controlled Transaction Paradigm
The “controlled transaction” paradigm means Shadow OS/390 Web Server only
performs those transactions in which you explicitly define what action takes place
in response to an inbound URL based request. This includes which data files or
programs are available to Web clients and under what conditions and
authorization requirements each transaction is processed.

All gateways into your MVS system are closed unless you explicitly open them.
This allows you to protect your system from unauthorized use by controlling
which MVS resources are made available to the Internet.

Levels of Security
There are several levels of security.

MVS Security Subsystem
Shadow OS/390 Web Server runs each Web transaction under the authorization of
an MVS userid. When any Web transaction references MVS resources, Shadow
OS/390 Web Server uses your existing MVS security subsystem to authorize
access to the resource. The term userid is used within this document to refer to a
valid MVS userid.

Client Authorization (Optional)
The server contains facilities that require authentication information to be
provided with each inbound URL based request, and for validating the userid and
password supplied by the Web client.

Authentication of client userids is optional, and can be selectively turned on or off
for each transaction or transaction group by using the AUTHREQ parameter in
the /*WWW header statement.

Conditions under Which a Client Userid is Required

Once the accumulated security attributes have been merged, a valid client userid
and password are required whenever:

� AUTHREQ(YES) or AUTHREQ(LOCK) is in effect.

Note:
Shadow OS/390 Web Server does not automatically return data files or
execute programs based upon a user's request to obtain them; there is no
intrinsic link between inbound URL values and the MVS file system. If
a URL match value has not been specified within a WWW event
procedure, the URL is rejected with an Unknown URL error message.
4-4 Shadow OS/390 Web Server User’s Guide December 1999

Levels of Security
� RUNAUTH(CLIENT) is explicitly specified (even if AUTHREQ(NO) is also in
effect).

� At least one matching rule has specified a value for the RESOURCE
parameter. AUTHREQ(YES) is assumed in this case, since the client userid
must be present and valid in order for the generalized resource check to be
performed.

To conserve CPU resources, if the client userid is not required for authorization of
a Web transaction, no authentication is performed. This is true even if the Web
browser transmits an inbound authentication request header.

How an Effective Userid is Determined

A Web transaction's effective run-time userid is set based on the following logic:

� If the RUNAUTH keyword is explicitly specified for any matched WWW
rule, the last valid value for RUNAUTH is used to determine the transaction's
run-time effective userid.

� In the absence of an explicitly specified RUNAUTH keyword, the transaction
runs under the authorization of the client userid, whenever the client userid is
required.

� In the absence of an explicitly specified RUNAUTH keyword, and when the
client userid is not required by the transaction authorization procedure, the
default userid is used as the effective run-time userid.

Selective Access to URLs

By using a generalized resource rule protection scheme, access to URLs can be
limited so underlying transaction procedures can only be executed by a subset of
your MVS users. This allows you to restrict URL access by department, group or
some other grouping.

These generalized resource rules either grant or deny access to individual URLs,
usually by exploiting authorization controls already known to the MVS security
subsystem, such as RACF and ACF/2.

The client userid is validated against the security subsystem resource name, which
is specified by the RESOURCE parameter in the /*WWW header statement.

Effective Userid
Before any Web transaction procedure is executed, Shadow OS/390 Web Server
ensures the Web transaction subtask is paired with an MVS userid (the effective
userid). Using these subtask security controls, MVS determines what the Web
procedure can do and which system resources it can and cannot access.

Shadow OS/390 Web Server has three possible sources for the run time effective
userid. They are:
December 1999 Shadow OS/390 Web Server User’s Guide 4-5

Web Transaction Security
The Web Transaction Default Userid

This is the userid associated globally with Shadow OS/390 Web Server
subsystem's address space; it is used for authorization of public Web server
transactions. The default userid is normally set up with extremely limited
authorization.

The default userid is specified by the parameter WWWDEFAULTRUNAUTH
during product startup. If no startup option is given, the server uses the userid
associated with the product started task address space.

Web transactions run under the authorization of the default userid when no other
effective userid specifications have been made for a given URL value. (Most of
the sample URLs supplied with Shadow OS/390 Web Server operate under the
authorization of the default userid because they provide public information and
demonstrations.)

The Client Userid

Based on the WWW rule options set, Shadow OS/390 Web Server can require a
valid MVS userid/password combination from users. This means Web transaction
processes can operate under the authorization and control of the end user's MVS
userid.

A Third-Party-Proxy (or 'RUNAUTH') Userid.

A third-party-proxy userid allows you to specify the run-time effective userid
under which the Web transaction is processed. This is done without granting
access to those resources to the default userid (for public access), other individual
MVS userids or groups (for client userids). In most cases, the user is not even
need to be aware of its use.

Note:
We strongly recommend that you set up a special default userid for
Web server transaction processing rather than using the server's
started task userid.

Note:
Under some conditions, the client userid is required, even when the
Web transaction procedure operates under control of the default or
proxy userid. In cases like this, the client userid is only used to
verify the user's permission to execute the transaction and not to
control resource access while the transaction executes.
4-6 Shadow OS/390 Web Server User’s Guide December 1999

Distributed Transaction Administration
Security Option Summary
To define transaction level security processing (and therefore which MVS
resources can be accessed) use a combination of parameters coded on WWW
event procedure header statements. You can:

� Require the Web browser to provide a valid MVS userid and password as part
of the HTTP transaction request header. Use the AUTHREQ parameter to
specify this value.

� Require that a valid MVS userid, which is authorized to access a URL or
group of URLs, be entered at the Web browser. To do this, check the client’s
access privileges against a security subsystem generalized rule value
representing the URL request. The generalized rule value is specified by the
RESOURCE parameter.

� Specify the run-time effective userid under whose authority each Web
transaction runs. If you do not explicitly specify the id using the RUNAUTH
parameter, Shadow OS/390 Web Server defines it.

Distributed Transaction Administration
Deployment of Web server transaction definitions, particularly when made
available to the World Wide Web, normally require security related issues to be
tightly controlled. Larger installations might find it difficult to ensure proper
security, especially with different departments and people responsible for
deploying Web transaction definitions.

Shadow OS/390 Web Server’s Distributed Transaction Administration was
designed to prevent accidental or malicious misuse of security related parameters,
while still allowing diverse groups to have responsibility for writing and
maintaining Web transaction definitions. Plus, it aids in administering both
distributed and centralized transaction groupings.

Warning:
Shadow OS/390 Web Server only allows third-party proxy userids to be
specified by the RUNAUTH keyword within the master ruleset. Neither
a password nor an authentication procedure is needed to log the userid
on to the system. You must maintain close control over the master
ruleset to guard against its misuse.

Shadow OS/390 Web Server assumes the default userid possesses a
very low authorization level. Never create the default userid with a
higher authorization level than intended. If you do, the overall
administration of the system is compromised. (RUNAUTH(NONE) can be
specified from both the master and subordinate rulesets.)
December 1999 Shadow OS/390 Web Server User’s Guide 4-7

Web Transaction Security
The Master Ruleset
Web transaction definitions can be stored in one or more PDS datasets. Shadow
OS/390 Web Server implements the Distributed Transaction Administration
model by designating one of these datasets as the “master ruleset”. This
designation (the mid-level qualifier name) is obtained from the start-up parameter,
WWWEPROSET. If a value is not set for the parameter, the default is “WWW”.

The master ruleset contains:

� Procedures that were distributed with Shadow OS/390 Web Server and are
required for proper operation.

� A definition for the home page URL value (the URL containing only a single
slash (“/”) character).

How It Works

The master ruleset is designed to have limited accessibility and centralized
administration because it is intended to control the security attributes assigned to
transaction definitions that reside in subordinate rulesets. For this reason limit
access to trusted personnel who are responsible for security administration of the
Web server. Occasionally, you may need to grant limited access to a Web
transaction programmer tailoring NEON supplied definitions.

In a highly centralized environment, where tight security and administrative
control can be maintained, all Web transaction definitions can be placed in a
single dataset. However, a master ruleset must still be designated. The subsystem
aborts during start-up if 1) a master ruleset is not designated, or 2) the designated
master ruleset cannot be opened.

Coding Master WWW Rulesets

The following rules apply to Web transaction definitions that reside within the
master ruleset:

� The URL matching criterion can be composed of any 1 to 128-byte character
string. There are no restrictions upon the criterion value.

� All transactions defined within the master ruleset run with the following
security options in effect (unless explicitly overridden by parameters on the
/*WWW header statement):

− No generalized resource rule value is set. This means the URL value does
not undergo a generalized resource rule check.

− If the subsystem startup parameter, WWWDEFAULTAUTHREQ, is set
to NO (where AUTHREQ(NO) is the assumed default value), then:

� Client authentication information is not required, nor is it
processed if received. It has no affect upon permission to execute
the URL. (The URL is fully public).
4-8 Shadow OS/390 Web Server User’s Guide December 1999

Distributed Transaction Administration
� The effective userid for the transaction is the Web server’s default
userid.

� If the subsystem startup parameter, WWWDEFAULTAUTHREQ, is set to
YES (where AUTHREQ(YES) is the assumed default value), then:

− Client authentication information is required and it must be evaluated as a
valid MVS userid/password. The URL can only be executed if the end
user has a valid MVS userid. If not, the transaction is rejected with a “Not
Authorized” error.

− The client userid is used as the Web transaction's run-time effective
userid.

� Some security-related parameter values are only valid when coded within the
master ruleset and cannot be specified within a subordinate ruleset.
Specifically:

− A third-party proxy userid can only be specified for the RUNAUTH
parameter by a rule within the master ruleset.

− AUTHREQ is always honored within the master ruleset regardless of its
operand value. (AUTHREQ(NO) is ignored under some conditions when
specified in a subordinate ruleset).

� At subsystem startup time, transactions defined within the master ruleset are
enabled before transactions that reside in any subordinate ruleset. (This
prevents timing-related security exposures during subsystems startup.)

Subordinate Rulesets
You can use a master ruleset to define all your Web transactions. However, if other
Web definition datasets exist, they are automatically designated as subordinate
rulesets. These rulesets (and the Web transactions defined within them) are
subordinate to the security option controls specified in the master ruleset.

How They Work

Subordinate rulesets are intended for use on a departmental basis, where each
department has its own subordinate rulesets which it controls. Security attributes
are setup by centralized administration to ensure the transactions defined within a
subordinate ruleset cannot accidentally or intentionally misuse the subsystem's
special capabilities as an APF-authorized started task.

Coding Subordinate WWW Rulesets

Web transaction definitions, which reside within a subordinate ruleset, are subject
to the following restrictions:

� The URL matching criterion specified for each transaction definition must
begin with the characters “/xxxxxxxx”, where “xxxxxxxx” is the ruleset
December 1999 Shadow OS/390 Web Server User’s Guide 4-9

Web Transaction Security
name. This restriction directly relates each defined URL value back to the
ruleset in which it resides.

� Only a subset of the possible security related parameter option values can be
specified for transaction definitions that reside within a subordinate ruleset.
This limits some security processing attributes to the administrators of the
master ruleset. Specifically:

− A third-party proxy userid can not be specified as the operand of the
RUNAUTH parameter, since this parameter can only be used in the
master ruleset.

− AUTHREQ(NO) is ignored during processing of the Web transaction, if a
higher level, generic rule in the master ruleset was specified, like
AUTHREQ(LOCK).

Security Attributes Processing

Attributes Accumulated During the URL to
Transaction Search

When a new URL arrives in the system, or when a rescan event occurs while
processing a Web transaction, the value of the current URL is matched to all
enabled WWW event procedures.

Note:
This restriction:

• Eliminates the potential for duplicate URL values defined, or
impersonation of URLs between datasets.

• Ensures that each departmental unit has complete control
over its own portion of the URL name space apart from the
security administration function performed by personnel
authorized to update the master ruleset.

• Provides a crucial linkage between individual URL values
and the MVS dataset name. This linkage ensures that only
those end users which have read/write access to the subordi-
nate rule datasets can define/alter Web transactions with cer-
tain URL values.
4-10 Shadow OS/390 Web Server User’s Guide December 1999

Distributed Transaction Administration
Security Attribute Example

Refer to the event procedure libraries distributed with Shadow OS/390 Web
Server while you read this section. The product distribution master ruleset library
contains the following member, 'SWSCNTL'.

/*WWW /SWSCNTL* AUTHREQ(LOCK) RUNAUTH(CLIENT) RESOURCE(SWSCNTL)

When a URL for the product parameter displays/alters a transaction, /SWSCNTL/
PARMS arrives. It is matched to the master ruleset procedure before it is matched
to the more specific rule defined in the 'SWSCNTL' subordinate ruleset in the
member 'PARMS':

/*WWW /SWSCNTL/PARMS
/*REXX
...remainder of REXX-language procedure

The security attributes specified by the first match (made to the generic value,
/SWSCNTL*, in the master ruleset) are merged to the transaction specification at
the time the first match is made. Actual processing of specified attributes is not
performed at this stage.

The transaction level attributes are carried forward to point at which the second
match is made. (The second match is made to the specific value, /SWSCNTL/
PARMS, within the subordinate 'SWSCNTL' ruleset) is made.

Match Results

None found The system generates a rescan event to a URL (SYSTEM/ERROR/404) which
transmits a “URL Not Found” status.

To generic header-only rule The security attributes specified by the latest match are merged to the overall
attributes of the transaction. The search continues for additional matching rules.

To generic rule only (no other matches) The system generates a rescan event to a URL (SYSTEM/ERROR/404) which
transmits a “URL Not Found” status. This happens because no procedural
specification was found to process the URL request.

First match to non-generic rule The security attributes, if any, of the latest match are merged to the accumulated
attributes. The non-generic rule is then processed by applying the attributes,
performing security checks, and, if authorized, executing the defined procedure.

Searches for additional matches These always cease once a non-generic rule is located. However, if a rescan event
is generated by the transaction itself, or by the subsystem as part of an error
recovery procedure, the matching procedure is re-inaugurated with the new
current URL value.

Table 4–1. Possible Matches for URL to Transaction Search
December 1999 Shadow OS/390 Web Server User’s Guide 4-11

Web Transaction Security
Application of Security Related Attributes

During the URL matching search, if multiple generic header-only rules are
defined, various transaction level security attributes can be toggled on and off.
However, once matching activity crosses the boundary between master ruleset and
subordinate ruleset, only a subset of security related values can be altered,
regardless of the specifications made later.

� Non-overrideable. These security related attributes, which were set by
generic rules defined within the master ruleset, remain in effect and govern
the execution of a procedure matched within a subordinate ruleset.

� Overrideable. These attributes are set to the last specification made for the
attribute.

Application of security attributes is deferred until late in the processing of each
Web transaction to ensure that MVS security product, such as RACF or ACF/2,
processing overhead is not incurred unless it is actually required.

Security Processing Steps
When processing each inbound URL request, Shadow OS/390 Web Server
performs the a series of security related steps in the following order:

1. If authentication information was supplied with the inbound HTTP request,
the userid and password values are parsed out, but not verified at this stage. (It
is not known at this stage if authentication is required to execute the
transaction.) If the authentication is not required, Shadow OS/390 Web Server
completely bypasses processing this information to conserve CPU resources.

2. The security processing attributes of the transaction are set to known default
values, which are:

a. The AUTHREQ attribute of the transaction is set to the value specified by
the subsystem start-up parameter WWWDEFAULTAUTHREQ.

b. The RUNAUTH attribute is reset to indicate that no explicit RUNAUTH
specification was made. In the absence of an explicit RUNAUTH
specification, the run-time effective userid is determined. See “How an
Effective Userid is Determined” on page 4-5.

Note:
Because the second match is to a rule which contains a procedural
specification, authorization to execute the procedure along with the
internal operations required to set up the run-time effective userid
relationship must be performed. At this point (and not during the
previous attribute merge operation), the accumulated security
attributes are applied to the transaction.
4-12 Shadow OS/390 Web Server User’s Guide December 1999

Distributed Transaction Administration
c. The Generalized Resource Entity value is set to blanks to indicate that no
resource authorization check is performed.

3. The URL value is matched to one or more WWW event procedure definitions.

a. If no match for the inbound URL was defined, the transaction is rejected
by rescanning to the supplied “SYSTEM/ERROR/404” URL to transmit an
“Unknown URL” error message.

b. If a header-only WWW rule is matched, any security processing
parameters specified by the header-only rule are merged to the
transaction's security processing attributes. The security options are not
applied at this time.

4. Once a WWW rule, which contains a procedural specification (a definition for
an action to take place) is matched, Shadow OS/390 Web Server applies the
security attributes to determine:

a. If a client userid/password is required to access and execute the selected
transaction procedure.

b. If the generalized resource entity name was set to a non-blank value. If it
was set to a non-blank value, the client must supply a userid/password,
even if it was not required by other security related attributes.

c. Which userid was set up as the run-time effective userid for processing
the transaction.

5. Once these determinations are made, the server performs a logon of the client
userid, if required.

− If the client userid was not supplied or is invalid, the transaction is
rejected by rescanning to the supplied “SYSTEM/ERROR/401” URL
which transmits an “Unauthorized” error message. (If the client
password has expired, it rescans to the “PASSWORDEXPIRED” URL.)

6. If the client userid was required, it is validated against a generalized resource
rule to determine if the user is authorized to access the URL.

− If the Client is not authorized, the transaction is rejected by rescanning to
the supplied “SYSTEM/ERROR/403” URL which transmits a
“Forbidden” error message.

7. The effective userid value is set up in system control blocks. This allows the
transaction to run under the requested authorization.

8. The transaction's procedure definition is executed under the control of the
effective userid.

9. If the transaction definition or subsystem detected error conditions cause a
“rescan” operation to occur, the entire procedure is restarted at step 2.
December 1999 Shadow OS/390 Web Server User’s Guide 4-13

Web Transaction Security
See the Shadow OS/390 Web Server User’s Guide “Recovering From Server
Detected Errors”. It explains recovery actions taken by the server for specific
error conditions.

How to Implement Distributed Administration
The general method for implementing Distributed Administration is to:

1. Determine what default AUTHREQ/RUNAUTH value to start each URL
matching procedure with, then set the corresponding value for the subsystem
start-up parameter WWWDEFAULTAUTHREQ. For example:

a. If WWWDEFAULTAUTHREQ is set to 'NO', then AUTHREQ(NO) is the
default security attribute.

b. If WWWDEFAULTAUTHREQ is set to 'YES', then AUTHREQ(YES) is
the default security attribute.

2. Create an MVS Userid to be used as Shadow OS/390 Web Server’s Default
Userid, then specify this Userid as the value for the start-up parameter
WWWDEFAULTRUNAUTH.

3. Restrict access to the Shadow OS/390 Web Server’s master ruleset.
Administrative personnel require UPDATE authority to the dataset but all
other users should be restricted to READ access or prohibited entirely from
accessing the dataset.

4. Place a generic, header-only WWW rule within the master ruleset that
governs each of the subordinate WWW rulesets.

5. Enable each generic definition. Insure that the auto-enable event procedure
attribute is set, that way the rule is re-activated each time Shadow OS/390
Web Server is restarted.

6. Code security options on each generic rule to set up security attributes to
govern all WWW procedures residing within the specific subordinate ruleset
being controlled. Non-generic URL transaction definitions in each
subordinate ruleset can only specify whatever security overrides are allowed
by the generic rule in the master ruleset.

Note:
The Default Userid should not have write access to the Shadow
OS/390 Web Server’s LOAD library or to any of the server's
SEF event procedure datasets.
4-14 Shadow OS/390 Web Server User’s Guide December 1999

Specifying Web Transaction Security Parameters
Specifying Web Transaction Security Parameters
Web Transaction authorization capabilities are described in the Security
Overview. This section gives an overview of how to specify Web Transaction
security parameters. Refer to the Shadow OS/390 Web Server User’s Guide for
more information on these parameters.

Security parameter keywords are used to specify security authorization and
attributes of Web transactions. They can be specified on the event procedure
header statement for any WWW rule.

WWW Header Statement Keywords
A security-related parameter can be coded on any WWW event procedure header
statement. Each parameter is optional.

The following example illustrates how security parameters can be coded:

/*WWW /NEON/INLINE AUTHREQ(YES) RUNAUTH(CLIENT)
/*REXX
....a REXX-language procedure

WWW Header Keywords

Many keyword parameters can be coded on the “/*WWW” rule header statement.
These keywords are optional, but if coded, they must follow the required URL
matching criterion value.

Security Administration Controls

Other “/*WWW” statement keywords specify security administration controls that
are used to configure the run-time authorizations under which a transaction
operates. Some of these security related keywords can only be set by a Web server
administrator and are not available to the developer unless access has been given
to the master WWW ruleset.

These keywords are specifically related to server security administration, but can
also be applied generically to groups of WWW rules.

Note:
If you continue a “/*WWW” header statement onto multiple lines,
code a trailing dash (-) at the end of a line to indicate that the
statement is continued on the following line.
December 1999 Shadow OS/390 Web Server User’s Guide 4-15

Web Transaction Security
See “Event Procedure Header Keywords” in the Shadow OS/390 Web Server
User’s Guide for more information on security and non-security related WWW
rule keywords.

Configuring Secure Sockets Layer (SSL) Support
See the Installation Guide.

WWW Header Security Parameters and Keywords
The following are security parameters:

� AUTHREQ
� RUNAUTH
� RESOURCE
� SSL

Parameters Description

AUTHREQ(YES|NO|LOCK) Defines whether authentication of the client userid and password is
explicitly required for transaction execution. Actual client userid
authentication can be implied through the action of other security
related options.

RUNAUTH(NONE|CLIENT|proxy-id) Defines explicitly the run-time effective userid under which a Web
transaction procedure runs.

RESOURCE (string) Defines the generalized resource used for authorization to run the
specific URL.

SSL(NO|COND|YES|LOCK|LOCKCOND) Rejects, conditionally or unconditionally, and attempts to execute a
Web transaction procedure unless a Secure Sockets Layer (SSL)
session is in use between the server and client (that is, encryption of
the communications session is a requirement). See the Shadow
Installation Guide for information on configuring a Secure Socket
Layer.

Table 4–2. Security Administration Control Parameters
4-16 Shadow OS/390 Web Server User’s Guide December 1999

WWW Header Security Parameters and Keywords
AUTHREQ (YES | NO | LOCK)
AUTHREQ parameter and keyword specify whether end user authentication is
required to run the event procedure. If authentication is required, the end user
must use the browser to provide a valid MVS userid and password before the
server executes the defined transaction.

The following values can be specified for AUTHREQ:

Parameter Value Meaning

AUTHREQ(NO) The can be specified in either the master or a subordinate ruleset.

The client userid authentication processing is not required. If authentication
information was transmitted with the inbound URL, it is not processed. Under
certain conditions, client userid authentication can still be required, even when
AUTHREQ(NO) is in effect. When AUTHREQ(NO) is specified, and no explicit
RUNAUTH specification is made, RUNAUTH(NONE) is implied.

AUTHREQ(NO) is always honored when specified in a WWW master ruleset, but
it is ignored if it is used in a subordinate ruleset and a previous URL match has set
AUTHREQ(LOCK) into effect.

AUTHREQ(YES) This can be specified in either the master or a subordinate ruleset.

The client userid and password value must be supplied with the inbound
transaction request, which is validated by the MVS security subsystem.

In the absence of an explicit RUNAUTH specification, RUNAUTH(CLIENT) is
implied by AUTHREQ(YES).

AUTHREQ(LOCK) This can only be specified within the master ruleset. If specified within a
subordinate ruleset, the WWW header statement is flagged with an error and the
transaction definition is not enabled.

AUTHREQ(LOCK) is similar to AUTHREQ(YES), except it cannot be overridden by
any rule within a subordinate ruleset.

If AUTHREQ(LOCK) has been set as a transaction level security attribute,
AUTHREQ specifications made by subordinate ruleset rules are ignored and
AUTHREQ(LOCK) remains in effect.

AUTHREQ(LOCK) can be overridden by different AUTHREQ setting, only if it is
changed by matching to a WWW master ruleset rule.

Table 4–3. AUTHREQ Parameters and Values
December 1999 Shadow OS/390 Web Server User’s Guide 4-17

Web Transaction Security
RUNAUTH(NONE | CLIENT | proxy-id)
The RUNAUTH parameter and keyword specify which run-time effective userid
is used to execute the Web transaction. Default values for RUNAUTH are implied
by the AUTHREQ parameter. You can override these defaults by explicitly coding
the RUNAUTH keyword.

The following values can be specified for RUNAUTH:

Parameter Value Meaning

RUNAUTH(NONE) This can be specified in either the master or a subordinate ruleset. It overrides any
previously set or implied RUNAUTH attribute.

RUNAUTH(NONE) indicates the transaction procedure executes using the default
userid as the effective userid. The default userid is specified by the startup
parameter WWWDEFAULTRUNAUTH. If no value is specified, the userid
associated with the Shadow OS/390 Web Server address space is used.

If no matching transaction definition specifies RUNAUTH and the transaction
attributes are set to AUTHREQ(NO), then RUNAUTH(NONE) is the implied.

RUNAUTH(CLIENT) This can be specified in either the master or a subordinate ruleset. It overrides any
previously set or implied RUNAUTH attribute.

RUNAUTH(CLIENT) means that the client userid and password value, which is
validated by the MVS security subsystem, must be supplied with the inbound
transaction request. The Web transaction is executed with the client's MVS userid
set as the effective userid.

AUTHREQ(YES) always implies RUNAUTH(CLIENT) unless another explicit
RUNAUTH specification is in effect. Code AUTHREQ(YES) and omit
RUNAUTH(CLIENT) unless you need to override a previously matched-to explicit
RUNAUTH(NONE) or RUNAUTH(xxxxxxxx) specification.

RUNAUTH(xxxxxxx) This can only be specified in the master ruleset. If RUNAUTH(xxxxxxx) is used
within a subordinate ruleset, the WWW header statement is flagged with an error
and the event procedure is not enabled.

RUNAUTH(xxxxxxx) specifies the MVS userid to be used as a third-party proxy.
The Web transaction is executed using this userid as the effective userid and
operates with the third-party's MVS security authorizations. This proxy facility
allows you to create Web transactions which access MVS resources which the end
client would otherwise be denied access.

NOTE: The third-party is not notified by the server that his MVS userid is being
used as a proxy. Nor does any authentication procedure occur which involves the
third-party, since password authentication is not performed. A third-party userid
can be (mis) appropriated without the knowledge or consent of the owner.
Indiscriminate or unsupervised use of the RUNAUTH(xxxxxxxx) keyword can
lead to severe system-wide, security exposures.

If the WWW master ruleset must be shared widely in your organization, we
strongly suggests this facility be disabled.

Table 4–4. RUNAUTH Parameters and Values
4-18 Shadow OS/390 Web Server User’s Guide December 1999

WWW Header Security Parameters and Keywords
RESOURCE (string)
The RESOURCE parameter/keyword specifies the generalized resource rule
value to which the client userid must have read authorization before the URL can
be accessed. If the client does not have this authority, the transaction is rejected by
rescanning to the SYSTEM/ERROR/403 (Forbidden) event procedure. The
possible parameter values are:

Generalized resource authorization checks are performed before any transaction
procedure is executed. Resource checking is performed if:

� Any non-blank value has been merged to the transaction's attributes during
match processing.

Resource check is not performed if:

� The transaction's resource value is NULL (the RESOURCE parameter has not
been specified for any of the matching rules).

� AUTHREQ(NO) is in effect for the Web transaction.

Warning:
Because the RUNAUTH keyword is extremely powerful, server
startup parameters are provided to limit the use of the RUNAUTH
keyword. The WWWRUNAUTHLOCATIONS parameter can be
set to disallow the use of RUNAUTH entirely, or to restrict its use
outside the WWW master ruleset.

Specification of third-party userids with RUNAUTH(xxxxxxxx) can
be disabled using the WWWRUNAUTHFORMATS start-up
parameter.

Parameter Value Meaning

RESOURCE(xxx) When specified in the master ruleset, the value (a 1 to 39 byte string) replaces the
transaction's current generalized resource value (if any).

When specified in a subordinate ruleset, the value specified is appended to the
transaction's current generalized resource entity value.

An anomaly arises if a RESOURCE() value is specified in a subordinate ruleset,
but a value was not previously set by any master ruleset definition. This condition
is handled by forcing the transaction's resource value to the subordinate ruleset
name before the new value from the subordinate ruleset is appended. If the
AUTHREQ keyword is not coded for a WWW rule that uses the RESOURCE
keyword, the server assumes AUTHREQ(YES).

Table 4–5. Resource Parameter and Values
December 1999 Shadow OS/390 Web Server User’s Guide 4-19

Web Transaction Security
SSL(NO | COND | YES | LOCK | LOCKCOND)
The SSL parameter/keyword specify whether a Secure Sockets Layer (SSL)
communications session must be in use before the transaction procedure can be
executed. SSL should also be used at the client end to verify that the server being
contacted is not impersonated by a third-party.

How It Works

At the time the server selects a transaction procedure for execution, the server
checks the SSL option. If an SSL connection is required, but an SSL connection is
not in use, the server rejects execution by issuing an internal rescan to SYSTEM/
ERROR/SSL.

The SYSTEM/ERROR/SSL procedure can be either a 403 (Forbidden) response
or a 301 (URL Has Moved) response. Shadow OS/390 Web Server attempts to
automatically reconnect the client's browser using SSL.

� When the server is configured for SSL support, an SSL connection is required
for any transaction procedures where an SSL() option has been set into effect
(except “NO”).

� If the server has not been configured for SSL support, transactions that have
conditional SSL requirements, SSL(COND) or SSL(LOCKCOND), are allowed
to execute. Unconditional SSL requirements, SSL(YES) or SSL(LOCK),
cause the server to reject execution.

 The possible SSL parameter values are:

Note:
SSL encrypted connections should always be used by any
transaction which sends or receives sensitive data.

Parameter Value Meaning

SSL(NO) (Default value) To override an SSL option specified by a previously matched-to
/*WWW rule, you must explicitly specify SSL(NO).

When coded within a subordinate ruleset, SSL(NO) is ignored if a previous rule
match has “locked-in” the requirement for an SSL connection.

SSL(YES) When in effect, the option unconditionally requires the use of an SSL connection
to the client. If the server is not configured for SSL support, no transaction
procedure can be run.

SSL(YES) can be overridden by an individual /*WWW rule. To disallow overrides,
use SSL(LOCK).

Table 4–6. SSL Parameters and Values
4-20 Shadow OS/390 Web Server User’s Guide December 1999

Shadow OS/390 Web Server Subsystem Security
Shadow OS/390 Web Server Subsystem Security
This section covers security processing issues related to the operation and
administration of Shadow OS/390 Web Server subsystem with a view towards
protecting the server and your MVS system from tampering. If you are using
Shadow OS/390 Web Server only within the confines of your corporate Intranet,
some of these issues do not apply.

Setting Limits for the Subsystem
Shadow OS/390 Web Server relies on the controlled transaction paradigm to
protect your MVS system resources from unauthorized use. This means the server
does not service any end user request without an explicitly defined transaction
procedure. However, the server does run as an MVS APF-authorized started task
with an inherent ability to carry out privileged operating system requests. This
access should be denied to unauthorized programs.

The server’s security processing model explicitly defines a means of using third-
party proxy userids for run-time authorization processing of Web transaction
procedures. These userids can be set into effect without specifying a password, or
any real-time authentication procedure which would make the owner of the userid
aware of its use.

The highly sensitive nature of this type of processing is not uncommon to other
OLTP subsystems, such as CICS, IMS, or JES. However, it does require enhanced
security surveillance along with tight administrative control procedures to ensure
that the facilities of the product are not misused to compromise your MVS System
or some portion of the data residing there. We suggest that the following
guidelines be followed:

SSL(LOCK) This is equivalent to SSL(YES), except it cannot be overridden by a /*WWW rule
defined in a subordinate ruleset. Use SSL(LOCK) on a generic rule in the master
ruleset only for the use of SSL connections for a group of transactions.

SSL(LOCK) can be overridden by another /*WWW rule which resides in the master
ruleset. Do not code SSL(LOCK) except for master ruleset /*WWW rules.

SSL(COND) If the server is configured to support SSL, then this option operates exactly like
the SSL(YES) option. However, if the server is not configured for SSL support,
transactions are allowed to execute without an SSL connection.

Many of the /*WWW rules distributed with the server use SSL(COND), rather than
SSL(YES). This allows new customers to operate before configuring SSL
support in the server.

SSL(LOCKCOND) If the server is configured to support SSL, then this option operates exactly like
the SSL(LOCK) option. If the server is not configured for SSL support,
transactions are allowed to execute without an SSL connection.

If the server is started with SSL configured, you can use this option to “lock-in”
SSL connection requirements.

Parameter Value Meaning

Table 4–6. SSL Parameters and Values
December 1999 Shadow OS/390 Web Server User’s Guide 4-21

Web Transaction Security
Create a Separate Default RUNAUTH Userid

We strongly recommend that you:

� Create a unique userid to be used as the WWWDEFAULTRUNAUTH userid.

� Make sure the WWWDEFAULTRUNAUTH parameter is set during server
start-up.

In the absence of an explicit WWWDEFAULTRUNAUTH specification, the
server userid (and corresponding authorization level) is used for execution of all
Web transactions, including those with public access. Because the server's userid
must have write authority to Web transaction definitions, along with other
security-related control values, you are leaving your system open if you do not
create a new “default” userid.

As you configure the new userid, Shadow OS/390 Web Server assumes a low-
level of authorization for it.

Configuring the New “Default” Userid

The primary use for the default userid is to provide a set of security subsystem
permissions, under which fully public World Wide Web transactions are run.
When configuring the default userid:

� Establish minimum permissions for the userid to allow operation of your
public Internet applications. The default userid should not possess authority to
access any MVS resource that you do not want shared with the entire Internet
community.

� Do NOT grant write access to:

− Any event procedure ruleset.

− Any MVS load or procedure (such as, CLIST or TSO REXX) library.
This includes signing-on to a TSO/E session. (Even with the
recommended sign-on restrictions, the userid can still be used by the
server to execute transaction procedures within one of the server
maintained out-board TSO server regions.)

You must balance the limitations placed on the default userid against the level of
administrative management exercised over Web transactions defined in
subordinate rulesets. For example:

� When administrative management is tight, you can place a higher reliance
upon the controlled transaction paradigm, because no transactions can be
defined by developers which might damage the system.

� When administrative management is loose, you must limit the capabilities of
this userid in order to protect against intentional or accidental misuse of the
system. The more powerful the default userid, the more room there is to
define Web transactions which could expose your MVS system to damage.
4-22 Shadow OS/390 Web Server User’s Guide December 1999

Shadow OS/390 Web Server Subsystem Security
Associate the SWS Started Task With Its Own Userid

In addition to the Web transaction default userid, the Shadow OS/390 Web
Server’s started task is associated with some userid during the start-up process.
We recommend that you:

� Always associate a UNIQUE userid with the Shadow OS/390 Web Server
started task.

� Grant the unique userid the minimum authorization possible over any
resources which directly belong to the Shadow OS/390 Web Server address
space.

� Do not grant any authorization over other MVS resources which are not
directly owned by the subsystem address space. Doing otherwise can provide
a window of opportunity for malicious Web transaction developers.

Depending on the MVS security product installed on your system, if you set up a
unique userid in this way, it can that ensure spin-off authorizations are not
inadvertently assigned to the subsystem userid.

Limit the Subsystem's Access to Its Own Datasets

The subsystem userid should not have any more authorization to access its own
datasets than it absolutely requires for proper operation. Nor should the
subsystem's userid have write access to the product load library (which is APF-
authorized), or to the user program library (from which high-level language Web
transaction programs are fetched).

See the Installation Guide for the access level required by the subsystem’s userid
and datasets.

Note:
Files, which are shared or cached using DD name or DS name, and
which specify the SECURITY(SUBSYS) attribute, can be accessed
by the default userid. This happens because the subsystem's
authority is used to open, read and close these shared datasets. All
information within these files can potentially be distributed across
the World Wide Web.
December 1999 Shadow OS/390 Web Server User’s Guide 4-23

Web Transaction Security
Protecting Subsystem Command and Control
Interfaces

Use the Generalized Resource Rules

Define generalized resource lists to protect both the subsystem resources (such as,
TRACEBROWSE, SEF, PARMS) and to provide limited access to URLs. Be sure
the resource class name values are set for the subsystem's startup parameters
RESOURCETYPE and URLRESOURCETYPE.

Be sure to limit access to the subsystem's “SEF” resource to developers
responsible for implementing Web transaction definitions.

Protect the Subordinate WWW Rulesets

Limit access to the subordinate WWW rulesets to just transaction developers.
Allow write access to only those libraries which an individual developer requires
in order to define transactions for which the developer is directly responsible.

Provide Oversight and Administration for the Master
WWW Ruleset

Because third-party proxy userids may be specified within the master ruleset, be
sure to have tight control on write access to this library. You might want to only
grant write access to:

� Security Administrative Personnel who are responsible for creating and
maintaining generic WWW rules which govern security processing within
each of the subordinate rulesets.

� System Programmers (occasionally/temporary) who need it to apply
maintenance or upgrades to the Shadow OS/390 Web Server.

� Developers (Temporary) who tailor NEON Systems supplied Web definitions.

If the master WWW ruleset cannot be tightly controlled because of special needs
within your organization, consider disabling the entire third-party proxy userid
mechanism. To do this, set the parameter WWWRUNAUTHFORMATS to
NOPROXY during server startup.

Limit Access to the Supplied /SWSCNTL URLs

Be sure the minimum requirement to execute the NEON Supplied URLs which
are prefixed with /SWSCNTL is a valid MVS userid/password. If these transactions
are unprotected, any outside user can exert control over the Shadow OS/390 Web
Server's operational parameters.
4-24 Shadow OS/390 Web Server User’s Guide December 1999

Shadow OS/390 Web Server Subsystem Security
Limit Access to Uncensored Trace Data

The server's wrap-around trace is a powerful diagnostic and auditing tool which
can contain sensitive data by recording and displaying each step of WWW
transaction execution, including many run-time data values.

This is indispensable when:

� Deploying new applications on the Web.

� Creating archival copies of the wrap-around trace as a permanent record of
the interactions between the server, your application, and the end user.

Because new applications are generally developed with test data, the values
recorded and displayed are usually not sensitive. They are, however, crucial to
developers debugging new applications.

For example, problems can occur when:

� Transaction definitions require a valid MVS userid and password for
execution. The trace captures these values when the inbound HTTP request is
recorded.

� You deploy a payroll application on the Web using Shadow OS/390 Web
Server. The wrap-around trace facility records and can later playback
sensitive data values such as an employee's social security number or salary.

Trace Browse Censorship Options

In order to provide censorship of the wrap-around trace, you must first define and
activate the server's built-in generalized resource rules. (See the Installation
Guide.) Censorship of the wrap-around trace information is based on:

� Users with READ access to both TRACEDATA and TRACEBROWSE
resources can view uncensored data values and the underlying binary contents
of trace records.

� Users with READ access to only TRACEBROWSE resource can view
censored values. These users are denied access to the underlying binary trace
contents.

� Users without access to either can not use the wrap-around trace facility.

Warning:
In a production environment, trace records can contain sensitive data
values which should only be visible to authorized personnel. The
original developers of the application can be restricted from viewing
the actual data values being processed, yet still be allowed access to
a trace the logical flow of application executions.
December 1999 Shadow OS/390 Web Server User’s Guide 4-25

Web Transaction Security
The following server startup parameters control how wrap-around trace data
censorship is applied:

Parameter Default Action

CENSORURLQUERYDATA No If set, all values derived from the HTML form’s input fields
are masked (that is, query data values sent as part of an
inbound HTTP request). This censorship is applied to the trace
of the inbound HTTP data stream, and to the trace of server
created variables (traces activated by the PARSETRACE
option).

CENSORURLAUTHDATA Yes User authentication data transmitted inbound as part of the
Authorization: HTTP request header is censored.

CENSORHTTPRESP No Outbound response data is censored. This includes all data
buffered for output using the SWSSEND API interface which
is recorded when the SENDTRACE option is active. It also
includes any individual data values inserted into an HTML
skeleton by the HTML extension facility when the
HTXTRACE option is active.

CENSORAPIDATAVALUES No Data values normally traced when the server's API tracing is
active is censored. This includes the values of variables which
are retrieved or set using the SWSVALUE API.

UNCENSORZOOMONLY Yes This controls how the trace appears to an authorized user. If set
to YES, an authorized user has the same view of the trace as an
unauthorized user (that is, records appear in their censored
form). If set to NO, authorized users see uncensored
information.

In both cases, an authorized user can view the uncensored
binary information. This option only affects how the text
format display appears.

Table 4–7. Trace Browse Censorship Parameters and Values

Note:
Censorship of the wrap-around trace is applied to the text format
view of the data, not to the actual data captured. The underlying
binary trace records still contain potentially sensitive information.
For this reason, you should restrict users from directly accessing the
underlying VSAM Linear dataset in which the trace information is
recorded, along with any datasets created to archive the wrap-around
trace.
4-26 Shadow OS/390 Web Server User’s Guide December 1999

CHAPTER 5:

Writing Web Transactions in REXX

Refer to either the Shadow Programming Guide or the online HTML for addition information
regarding Shadow/REXX. Refer to the online HTML for information on Shadow REXXTOOLS by
Open Software Technologies, Inc.

Shadow/REXX
The interpretive REXX language provides a powerful platform to create
prototypes or low volume Web transactions. To create a REXX transaction, code a
WWW event procedure with a REXX process section. This executes Shadow OS/
390 Web Server’s own Shadow/REXX interpreter which:

� Contains most of the facilities supported in standard REXX.
� Implements a pre-compiled step that speeds run-time execution.

Shadow OS/390 Web Server also includes a built-in interface to Shadow
REXXTOOLS, which provides support for many add-on functions, such as the
ability to access VSAM data sets.

/*REXX Process Sections
The /*REXX Process Section has its own set of keywords.

/*REXX Statement Keywords
The following keywords and operand values can be coded on the /*REXX process
section header. Normally, you only want REXX procedures to be invoked when
processing an actual event.

INIT

Parameter Value Meaning

INIT(NO) (default) This specifies that the REXX coding within the event procedure is not
invoked when the encompassing rule is enabled.

INIT(YES) This specifies that the REXX coding within the event procedure is invoked when
the encompassing rule is enabled. When invoked for enablement, the event
related variable, PHASE, is set to the value “INIT”.

Table 5–1. INIT Parameter Values
December 1999 Shadow OS/390 Web Server User’s Guide 5-1

Writing Web Transactions in REXX
PROC

TERM

Coding the Process Section
Code Shadow/REXX procedures immediately after the /*REXX process section
header statement. Shadow OS/390 Web Server reads and compiles the REXX
code at the time the event procedure is enabled.

Shadow/REXX procedures can invoke external REXX-language subroutines, if
they reside within:

� The same PDS dataset as the calling member.
� The SYSEXEC dataset.

Shadow/REXX Built-in Functions
Shadow/REXX implements all the standard REXX built-in function routines in
addition to the standard REXX routines. The API index chart (online or in the
Shadow Programming Guide) shows Web specific functions that you can use.

Parameter Value Meaning

PROC(NO) This specifies that the REXX coding within the event procedure is not invoked
when an actual event matches the event procedure criterion.

PROC(YES) (default) This specifies that the REXX coding within the event procedure is
invoked when an actual event is matched to the rule. When invoked for
enablement, the event related variable, PHASE, is set to the value “PROC”.

Table 5–2. PROC Parameter Values

Parameter Value Meaning

TERM(NO) (default) This specifies that the REXX coding within the event procedure is not
invoked when the event procedure is being disabled.

PROC(YES) This specifies that the REXX coding within the event procedure is invoked when
the event procedure is being disabled. When invoked for disablement, the event
related variable, PHASE, is set to the value “TERM”.

Table 5–3. TERM Parameter Values

Note:
By pre-compiling the REXX code, errors can be detected which
would not be seen by other REXX interpreters until execution time.
5-2 Shadow OS/390 Web Server User’s Guide December 1999

CHAPTER 6:

File Serving Using Shadow
OS/390 Web Server

URL Values and the UNIX File System
The UNIX file system is organized hierarchically with files stored within a
directory or nested subdirectories (the file path). Individual file names appear in
“dot notation” (filename.filetype) in which the first component is a unique
file name, and the second is the file type value (such as, .htm or .txt). Most URL
values are structured using this file naming convention, “/path/../path/
filename.filetype”.

Web servers have an intrinsic operation at their core around which all other
functions (such as CGI and security processing) are built. Typically an inbound
URL value references a file on the server which transmits something back to the
client. For many Web transactions, the URL is the path and the file to be
transmitted.

MVS File System
Native MVS file systems are not organized like the UNIX-based hierarchical files
systems nor is the file naming convention the same. For this reason, Shadow OS/
390 Web Server does not use the hierarchical method to process transactions. We
did not implement a server that would require MVS-type file references for all
URLs because:

� The URLs would look foreign from those implemented by all other servers.

� MVS lacks the concept of file type. That meant another method was still
required to determine the type of data to be transmitted.

Because there was no intrinsic linkage, we defined alternate URL mapping.
Shadow OS/390 Web Server matches URLs to rules, not files. This means, no
MVS dataset can inadvertently be referenced, because none of the files are
directly mapped. By using the controlled transaction paradigm, all gateways into
the MVS system are closed until explicitly opened.

Note:
URL values are, in fact, tied to the MVS file system within Shadow
OS/390 Web Server, but only indirectly. The URLs string defined
(unless contained within the master WWW ruleset) are linked, by
name, to the ruleset in which the transaction definition resides.
December 1999 Shadow OS/390 Web Server User’s Guide 6-1

Shadow OS/390 Web ServerFile Serving Using Shadow OS/390 Web Server
This places the security subsystem in control in which Web developers are
allowed to define specific combinations of URL values by relating the URL value
back to a ruleset owned by the developer.

Files Supported Directly by Shadow OS/390 Web
Server

The server directly supports the use of MVS resident data that is contained within
QSAM, BPAM, or PDSE datasets. External datasets can be referred to using
either:

� A DD name, allocated to the server's address space, at either start-up time or
dynamically any time thereafter.

� A fully-qualified MVS dataset name. The use aliases for these datasets is
supported.

VSAM datasets are supported, in-directly, through the use of the Shadow
REXXTOOLs VSAM Functions for REXX.

User written HLL transaction programs can access any type of MVS resident
dataset using pre-allocated DD names, dynamically allocated datasets and one of
the other MVS file organizations.

File Sharing and Caching
Shadow OS/390 Web Server contains facilities for sharing MVS PDS, PDSE, and
sequential datasets across all transactions’ subtasks. Sharing files has a number of
advantages:

� Fewer CPU cycles are consumed because file open and close operations do
not occur for each file reference.

� Information within the datasets can be cached so most file-based transactions
require only a few milliseconds for execution.

� Files can be managed by the server according to parameter values instead of
individually by each API referring to the same information.

File sharing is implemented as a part of all server API interfaces and not just for
/*FILE process sections. Whenever a server interface references an MVS
sequential dataset or a PDS member, the server attempts to obtain the information
from a globally shared file using cached PDS directory entries or cached copies of
the data itself, when its available. When a globally shared file is not accessible,
each Web transaction uses a privately opened dataset copy.

When new /*FILE rules are accessed for the first time, a server start-up
parameter allows all previously unseen files to be made globally shared
dynamically. If you do not want this support, you can explicitly specify which
datasets are to be shared or cached. The start-up parameters which control file
sharing can be viewed at /SWSCNTL/PARMS.
6-2 Shadow OS/390 Web Server User’s Guide December 1999

How Shadow OS/390 Web Server Handles Files
Explicitly Shared Files

To designate files as explicitly shared include DEFINE FILE statements in the
start-up parameterization REXX routine, SWSxIN00. When you explicitly
designate shared files, the datasets are opened as part of the server initialization
processing. You can specify individual caching and control options for each
dataset.

Implicitly Shared Files

When a dataset is not designated during start-up processing as globally shared,
you can do so during execution by setting either or both parameters,
FILESHAREDSN and FILESHAREDDN, to YES. When a previously unshared
file is accessed by a Web transaction for the first time and these options are set to
yes, the dataset is globally shared dynamically.

How Shadow OS/390 Web Server Handles Files
Shadow OS/390 Web Server has a number of services which you can use to
request outbound transmission of file resident data in response to a Web
transaction. Chief among these is the /*FILE Process Section which is used
within a WWW rule.

Each /*FILE section defines:

� The exact mapping between the inbound URL value and the MVS resident
file to transmit.

� The relationship used to construct the correct response. For example, HTML
forms are not transmitted outbound as GIF images.

The /*FILE section allows you to map either discreet or generic URL values to
some entity within the MVS file system. You can define transactions which
service the bulk of all file based requests before proceeding to use other services
in developing specialized WWW applications.

Other server APIs allow you to reference and transmit files from within WWW
rule REXX procedures, or HLL transaction programs. Or, you can use REXX and
REXXTOOLs to create customized applications.

Building File Serving WWW Rules Using /*FILE
Whenever the WWW section has a /*FILE process sectionthe Web Server can:

� Map a discrete or generic URL value to an MVS dataset specification.

� Map requests to data contained within a sequential dataset (QSAM) or within
a single member of a PDS or PDSE dataset (BPAM).

� Allow you to use a special form of /*FILE to store and transmit data from
within the /*WWW rule.
December 1999 Shadow OS/390 Web Server User’s Guide 6-3

Shadow OS/390 Web ServerFile Serving Using Shadow OS/390 Web Server
Coding a /*FILE Process Section
This is an example of a /*FILE process section used within a WWW transaction
rule. When executed, it transmits a GIF image to the Web browser from a PDS(E)
library which was previously defined to the server.

Example

/*WWW /GIF/MYPICTURE
/*FILE DDNAME(GIFFILE) -
 MEMBER(JFFIMAGE) -
 CONTENTTYPE(image/gif) -
 FORMAT(BINARY) -
 DATATYPE(PDS)

To define a /*FILE process section, the /*FILE process section header statement
must follow the /*WWW rule header statement.

This example references:

� The PDS dataset using a DD name (‘GIFFILE’).
� An explicit reference to the PDS member (‘JFFIMAGE’).

When the URL value /GIF/MYPICTURE is matched, and this rule is executed, the
PDS member is transmitted to the client as MIME content type image/gif.

Because this example explicitly specifies all possible parameter values, the server
can only map the URL value to the single PDS member.

/*FILE Transaction Operation
The transaction processing built-in to /*FILE and other server file APIs (see
SWSFILE for REXX and SWSFILE for HLL Programs) handles the details of
creating the correct response headers. Each execution of a /*FILE process
section constitutes a whole and complete outbound transaction response.

The built-in transaction procedure handles the following items:

� Parses and uses portions of the inbound URL string to supplement explicitly
coded keyword values. This allows you to create mapping between URL
values and the file system.

� Substitutes a 304 (Not Changed) outbound response when the inbound
transmission contains an “If-modified-since:” header and the file has
not changed.

� Transmits only header information when the inbound transaction request is
made using the HEAD HTTP method.

� Transmits a “Last-modified:” outbound header when the last modification
data can be determined (this action is performed for PDS members only if
ISPF statistics exist for the member).
6-4 Shadow OS/390 Web Server User’s Guide December 1999

Building File Serving WWW Rules Using /*FILE
� Processes HTML extension statements, if any, within the data file before
transmission. These powerful Shadow OS/390 Web Server extensions can be
used to tailor text data.

� Translates information for text format data from EBCDIC to ASCII under
control of a national language mapping table. It strips extraneous blanks for
each record and adds a CR character.

/*FILE Statement Keyword Syntax
When coding /*FILE statements:

� Place the /*FILE process section header statement immediately following
the /*WWW rule header statement.

� If the /*FILE statement continues across multiple lines, indicate continuation
by coding a trailing dash (‘-’) on all except the last header statement line.

The DATATYPE Keyword

Use the DATATYPE keyword to describe the basic transaction operation type
performed. Allowable operands for the DATATYPE keyword are:

Run-Time Overrides and Defaults

We strongly recommend that the DATATYPE keyword always be coded
explicitly. If the keyword is omitted, the server assumes:

� DATATYPE(INLINE), if data lines are present following the /*FILE section
header.

� DATATYPE(PDS), if no user data lines is present.

Keyword Operand Transaction Operation Defined by This Operand

PDS This specifies that the WWW transaction transmits a member of a PDS dataset to
the Web client.

SEQ This specifies that the WWW transaction transmits the contents of a sequential
dataset to the Web client.

INLINE This specifies that the transaction transmits data to the Web client which is
present in the WWW rule. The transmitted data must immediately follow the
/*FILE header statement. When ‘INLINE’ is coded, at least one line of data
must be present.

Table 6–1. DATATYPE Keywords and Their Meaning
December 1999 Shadow OS/390 Web Server User’s Guide 6-5

Shadow OS/390 Web ServerFile Serving Using Shadow OS/390 Web Server
If the wrong type of MVS dataset is referenced (such as referencing a PDS dataset
when the definition specifies a sequential dataset, or vice versa), the server
overrides this keyword at execution time to ensure the correct file organization is
used.

The DDNAME Keyword

Use the DDNAME keyword to specify the MVS DD name of the PDS dataset
(BPAM) or the sequential dataset (QSAM) from which data is obtained. Note that:

� The Web server does not perform dynamic allocation processing for user
specified DD names.

� The DSNAME keyword cannot be coded if the DDNAME keyword is used.

� Do not code the DDNAME keyword when DATATYPE(INLINE) is specified.

The DD name must already be allocated to the Web server before the /*FILE
transaction executes. You can do this by:

� Including DD statements within the start-up procedure.

� Allocating the DD statements from within another WWW rule using the
dynamic allocation facilities of REXXTOOLs.

When the transaction is executed:

� If the coded DD name matches the DD name of a dataset that is being globally
shared by the server, the shared dataset is used during processing.

� If the DD name is not being globally shared by the server, then the setting of
the server's FILESHAREDDN start-up parameter is used to determine if the
file can be shared globally. If it can, the server globally shares the dataset the
first time the WWW transaction is executed.

� If the specified DD name is not currently allocated or no DD name or DS
name value can be determined, the Web transaction is rejected with a “URL
Not Found” error.

Run-Time Overrides and Defaults

If neither the DDNAME nor the DSNAME keywords are coded, the file
processing transaction parses the matching inbound URL, and attempts to use a
portion of it as a DD name value. The portion parsed out for use as a DD name
reference is:

Note:
An ‘INLINE’ data specification cannot be overridden at execution
time because the /*WWW rule must be re-enabled to remove (or add)
the ‘INLINE’ data records.
6-6 Shadow OS/390 Web Server User’s Guide December 1999

Building File Serving WWW Rules Using /*FILE
� PDS. The next-to-last blank delimited word of the matching inbound URL.
� Sequential. The last blank delimited word of the matching inbound URL.

See “Parsing URLs to Supply Missing /*FILE Keyword Values” on page 6-10 for
a complete description of how the URL string can be used to specify a run-time
DD name value.

The DSNAME Keyword

Use the DSNAME keyword to specify the fully qualified MVS dataset name from
which data is to be obtained.

� You do not need to code quotation marks surrounding the DSNAME keyword
operand.

� Do not code the DSNAME keyword when DATATYPE(INLINE) is specified.

� The DSNAME keyword cannot be specified if the DDNAME keyword is also
present.

The Web server does not perform dynamic allocation of datasets with user
specified DD names. DD name allocation must be done via the server start-up
JCL or using other Web transaction processing facilities (such as REXXTOOLs
Dynamic Allocation Interface).

When the transaction is executed:

� If the coded MVS dataset name matches the dataset name of a dataset which
is being globally shared by the server, the shared dataset is accessed. Sharing
occurs without regard to the DD name in use for the globally shared dataset.

� If the DS name is not being globally shared by the server, then the start-up
parameter FILESHAREDSN determines whether the dataset is shared. If
allowed, the server globally shares the named dataset the first time this Web
transaction is executed.

� The transaction procedure allocates the MVS dataset to the Web server
address space either permanently or temporarily, depending on whether the
dataset is globally shared.

Run-Time Overrides and Defaults

If neither a DDNAME nor DSNAME specification is made, the server attempts to
use a portion of the matching inbound URL value as a DD name specification, as
described above for the DDNAME keyword.

The MEMBER Keyword

Only use this keyword for DATATYPE(PDS) transaction definitions. Use the
MEMBER keyword to specify the 1-to-8 byte name of a member of the PDS
dataset which is referred to by the DDNAME or DSNAME keyword.
December 1999 Shadow OS/390 Web Server User’s Guide 6-7

Shadow OS/390 Web ServerFile Serving Using Shadow OS/390 Web Server
The server transmits only the single member named to the Web client. If the
member does not exist within the PDS dataset, the server rejects the WWW
transaction with a “URL Not Found” message.

Run-Time Overrides and Defaults

If the MEMBER keyword is not coded for a PDS dataset, the server parses the
matching inbound URL and attempts to use a portion of it as a member name. The
characters which precede a period (if any) within the last blank-delimited word of
the URL are used as the member name.

See “Parsing URLs to Supply Missing /*FILE Keyword Values” on page 6-10 for
a complete description of how the URL string may be used to specify a run-time
member name value.

The CONTENTTYPE Keyword

Use the CONTENTTYPE keyword to specify the MIME content type value to use
in generating the HTTP response header. You can use any 1-to-50 byte MIME
content type string, including values which are not defined within the server’s
internal MIME table.

Coding the Keyword

When you code this keyword, any string specified is considered to be a valid
HTTP MIME content type string by the server if it contains a “/” character. Once
the server finds an embedded “/” character, it performs no further validations
upon the operand value, but simply transmits the specified value as part of the
outbound response header.

Specifying File Extensions

Instead of coding an HTTP MIME content type string, you can specify a 1-to-8
byte file extension value, such as ‘TXT’, ‘HTM’, or ‘HTML’. The server converts
standard file extension names into the appropriate MIME type.

The server performs this conversion by determining if the string contains a “/”
character. If it does not, the server assumes a file extension value was coded and
references the MIME Table to find the corresponding MIME content type string.

If the value is not a known file extension name, the server assumes ‘TXT’ and
yielding a MIME content type of ‘text/plain’.

Run-Time Overrides and Defaults

If the execution time content type was not derived from any other source, the
server parses and attempts to use a portion of the matching inbound URL as a
standard PC-LAN file type designation. This designation, if present, is in turn
transformed to a MIME content type value.

The portion of the URL which is parsed is any characters which follow a period
within the last blank delimited word of the inbound URL.
6-8 Shadow OS/390 Web Server User’s Guide December 1999

Building File Serving WWW Rules Using /*FILE
See “Parsing URLs to Supply Missing /*FILE Keyword Values” on page 6-10 for
a complete description of how the URL string may be used to specify a run-time
content type value.

The FORMAT Keyword

Use the FORMAT keyword to specify the basic data contents of the file data sent.
Valid operands for this keyword are:

Run-Time Overrides and Defaults

If the format of the data is not specified using this keyword, the server attempts to
derive the expected file contents format by checking the MIME content type
against the MIME table. The table contains a list of anticipated file content
formats matching each of the known MIME types and file extension values.

The HTX Keyword

Only use the HTX keyword when the file contents is FORMAT(TEXT). The HTX
keyword is invalid if FORMAT(BINARY) has been specified explicitly for the
/*FILE statement.

The HTX keyword specifies if or how HTML Extension Statements are processed
before the contents of the file (which are altered by such processing) are
transmitted. Valid keyword operand values are:

Keyword Operand Contents of File Data and Server Processing

BINARY Binary format denotes information which the server transmits to the Web client
as is, without modification.

The data can be an encoded object, such as a Graphics Interchange File (GIF), or
text data which is stored in ASCII with a trailing carriage return character at the
end of each line (X'0A'). In most cases, this data was placed onto the MVS
(perhaps using FTP), and is unintelligible to MVS.

It is extremely difficult to properly store binary format data within a WWW
event procedure as ‘INLINE’ data. We strongly recommend that you not attempt
to do so.

TEXT Text format denotes information which the server automatically translates from
EBCDIC to ASCII before transmission. Trailing blanks are removed from each
line and a carriage return character is appended to each line before transmission.
These files usually originated on the MVS system and would be unintelligible to
a Web browser without this translation.

Table 6–2. FORMAT Keyword Operands
December 1999 Shadow OS/390 Web Server User’s Guide 6-9

Shadow OS/390 Web ServerFile Serving Using Shadow OS/390 Web Server
Parsing URLs to Supply Missing /*FILE Keyword
Values

The built-in /*FILE transaction processor attempts to use portions of the
matching inbound URL to supply values that are missing at execution time. This
allows you to create /*FILE WWW rules that operate generically by mapping a
part of the URL to the MVS file specification.

This section covers how the server implements the URL parse and then uses the
portions derived. The steps in parsing the URL are:

1. The server begins the URL parse by replacing all “/” characters within the
matching URL with blanks. It then divides the URL into a series of blank
delimited words.

2. The last blank delimited word of the URL string is examined to see if it
contains an embedded period. If it does, the last word is split into two separate
words, at the point where the period occurs.

3. After this parsing operation, the server processes two or three portions of
these elements, depending on whether the /*FILE rule refers to a PDS or a
sequential dataset. Any portion, which is not present, is assumed to be blank.

Example

Given an example URL string, “/NEON/HTMFILE/FILESECT.HTM”, the server
derives and maps portions of the URL as follows:

Keyword Operand Operation Of Transaction Processor

HTX(NO) This surpresses the HTML Extension Statement processing of the file data. The
server transmits the information without alteration

HTX(YES) (default) HTML Extension processing is normally performed for all text
members.

HTX(REXXRULES) When HTML extensions are processed, if an uninitialized variables is
encountered, the server replaces the uninitialized variable with a NULL string.

However, you can code to override the normal processing of uninitialized
variables. When this processing is requested, uninitialized variables are replaced
with the uppercase name of the variable itself (similar to REXX interpreter
processing)

Table 6–3. HTX Keyword Operands
6-10 Shadow OS/390 Web Server User’s Guide December 1999

Building File Serving WWW Rules Using /*FILE
When any portion of a parsed URL is used by the transaction processor, it must:

� Contain characters that are valid for MVS DD names or PDS member names.

� Be the correct length.

File extension values can be 1-to-8 bytes in length and must be a value present
within the MIME Table.

MIME and File Extensions Table

Shadow OS/390 Web Server contains a table that relates common PC-type file
extension values to recognized MIME (Multipurpose Internet Mail Extensions)
types and vice versa.

This table is used by /*FILE sections when default PDS processing is used to
determine a PDS member name and the member format (binary or text), or output
content type by parsing values from the URL.

Two types of look-up operations are performed:

� An attempt to use a 2 to 8 byte file extension value (for example, html) to
obtain a matching MIME content type value

� An attempt to use the MIME content type value to determine if the source
member is in binary or text format

Description of URL
Segment

Parsed Segment
of URL

Use for PDS Dataset
References

Use for Sequential Dataset
References

Any segment(s)
preceding the next-to-
last blank-delimited
word located in step 1

NEON Not Used Not Used

The next-to-last blank-
delimited word located
in step 1

HTMFILE Used as DD name when
DDNAME and DSNAME
keywords are omitted

Not Used

The portion of the URL
preceding a period, as
described in step 2

FILESECT Used as PDS member name when
MEMBER keyword is omitted.

Used as sequential file DD name
when DDNAME and DSNAME
keywords are omitted

The portion of the URL
following a period, as
described in step 2

HTM Used as a file extension and
converted to a MIME Content
Type when CONTENTTYPE
keyword is omitted. File
FORMAT value can also be
derived, if not otherwise
specified.

Used as a file extension and
converted to a MIME Content Type
when CONTENTTYPE keyword is
omitted. File FORMAT value can
also be derived, if not otherwise
specified.

Table 6–4. Example of How the Server Maps “/NEON/HTMFILE/FILESECT.HTM”
December 1999 Shadow OS/390 Web Server User’s Guide 6-11

Shadow OS/390 Web ServerFile Serving Using Shadow OS/390 Web Server
Each entry in the following table shows the file extension value that the Web
server recognizes, and the “Content-type:” value that is used for outbound
transmission. The final column shows the storage format which the processor
assumes for a data set member.

Type of Match What It Does

No Match (File Extension) When a file extension look-up operation is performed and no match is found, the
Web server assumes a file extension value of “.txt”. This yields a MIME type
of “text/plain” and an input data format of text.

No Match (Content Type) When a MIME content type name look-up is performed and the content type
value is unmatched, Shadow OS/390 Web Server assumes an input data format of
binary, and uses the content type value as specified.

Questionable If in doubt, the server uses the presence or absence of an embedded “/” (slash)
character to determine if a file extension look-up or a content type name look-up
is being performed. All valid content type values have an embedded slash
character.

Table 6–5. MIME Matches

File Extension MIME Content Type Storage Format

.htm .html .mdl text/html Text

.txt text/plain Text

.jpg .jpe .jpeg image/jpeg Binary

.gif image/gif Binary

.gz application/x-gzip Binary

.z application/x-compress Binary

.pac application/x-ns-proxy-autoconfig Binary

.jf .ls .mocha application/x-javascript Binary

.tcl application/x-tcl Binary

.csh application/x-csh Binary

.ai .eps .PS application/postscript Binary

.exe .bin application/octet-stream Binary

.cpio application/x-cpio Binary

.gtar application/x-gtar Binary

.tar application/x-tar Binary

.shar application/x-shar Binary

.zip application/x-zip-compressed Binary

Table 6–6. Only Shows File Extensions that Shadow OS/390 Web Server Recognizes
6-12 Shadow OS/390 Web Server User’s Guide December 1999

Building File Serving WWW Rules Using /*FILE
.sit application/x-stuffit Binary

.hqx application/mac-binhex40 Binary

.avi video/x-msvideo Binary

.qt .mov video/quicktime Binary

.mpeg .mpg .mpe video/mpeg Binary

.wav audio/x-wav Binary

.aif .aiff .aifc audio/x-aiff Binary

.au .snd audio/basic Binary

.fif application/fractals Binary

.ief image/ief Binary

.bmp image/x-MS-bmp Binary

.rgb image/x-rgb Binary

.ppm image/x-portable-pixmap Binary

.pgm image/x-portable-graymap Binary

.pbm image/x-portable-bitmap Binary

.pnm image/x-portable-anymap Binary

.xwd image/xwindowdump Binary

.xpm image/x-pixmap Binary

.xbm image/x-bitmap Binary

.ras image/x-cmu-raste Binary

.tiff .tif image/tiff Binary

.texi .texinfo application/x-texinfo Binary

.dvi application/x-dvi Binary

.latex application/x-latex Binary

.tex application/x-tex Binary

.rtf application/rtf Binary

File Extension MIME Content Type Storage Format

Table 6–6. Only Shows File Extensions that Shadow OS/390 Web Server Recognizes
December 1999 Shadow OS/390 Web Server User’s Guide 6-13

Shadow OS/390 Web ServerFile Serving Using Shadow OS/390 Web Server
Inline File Processing
Inline processing means the /*FILE process section of a WWW event procedure
contains the data to be transmitted to the Web client. For example:

/*WWW /SAMPLEDATA
/*FILE
<HTML>
<BODY>
<P>

This is a sample inline HTML data stream.

</BODY></HTML>

The HTML data stream transmitted to the Web client is contained within the
WWW event procedure. Because ‘INLINE’ is the default value if any data
records follow the /*FILE section header statement, it was not necessary to code
DATATYPE(INLINE) as a keyword.

Only the DATATYPE(INLINE), CONTENTTYPE, FORMAT, and HTX
keywords can be coded for ‘INLINE’ data transmission.

Examples of /*FILE Rules
The following examples show various methods in which /*FILE process section
rules can be defined, which include different types of access and level of
administrative control.

Sequential Example 1

For the following Web transaction rule:

/*WWW /SEQDATA/*
/*FILE DATATYPE(SEQ)

If the inbound URL value is ‘/SEQDATA/GIF.TIF’, the transaction attempts to
send the sequential dataset allocated to the GIF DD name. A MIME content type
of ‘image/tiff’ is generated in the outbound response. The content format is
implied to be binary, so no HTML extension processing is performed.

If the inbound URL value is ‘/SEQDATA/GIF/’, then the transaction attempts to
send the sequential dataset allocated to the GIF DD name. A MIME content type
defaults to ‘text/plain’ because no other specification was made or located either
by the URL parse or by a keyword operand.

Note:
We strongly recommend that you only use ‘INLINE’ data streams
for data formatted as TEXT.
6-14 Shadow OS/390 Web Server User’s Guide December 1999

Building File Serving WWW Rules Using /*FILE
Sequential Example 2

For the following Web transaction rule:

/*WWW /SEQDATA/*
/*FILE DATATYPE(SEQ) -
 DDNAME(MYFILE)

If the inbound URL value is ‘/SEQDATA/ABC.TIF’, the transaction attempts to
send the sequential dataset allocated to the MYFILE DD name (‘ABC’ is not used
because the DD name is explicitly specified in the rule).

A MIME content type of ‘image/tiff’ is generated based on the input URL parse
of the ‘.TIF’ extension. Because the content format is implied to be binary, no
HTML extension processing is performed.

Sequential Example 3

For the following Web transaction rule:

/*WWW /SEQDATA/*
/*FILE DATATYPE(SEQ) -
 DSNAME('CSD.AI38.S.TEXTDATA') -
 CONTENTTYPE(text/plain) -
 FORMAT(TEXT)

Any inbound URL value which begins with the string ‘/SEQDATA/’, transmits
the explicitly specified file as MIME content type ‘text/plain’. Because the
content format is implied to be text, HTML extension processing is performed.

PDS Example 1

For the following Web transaction rule:

/*WWW /GIF/*
/*FILE DATATYPE(PDS) -
 DDNAME(GIFFILE) -
 CONTENTTYPE(image/gif) -
 FORMAT(BINARY)

The inbound URL is parsed to yield the unspecified PDS member name value.
The member is transmitted as MIME Content Type ‘image/gif’. Because the
content format is binary, no HTML extension processing is performed.

For the URL value, ‘/GIF/XYZ.ABC’, the XYZ member of the PDS is
transmitted.

PDS Example 2

For the following Web transaction rule:

/*WWW /DOCDATA/*
/*FILE DATATYPE(PDS) -
 DDNAME(DOCFILES)
December 1999 Shadow OS/390 Web Server User’s Guide 6-15

Shadow OS/390 Web ServerFile Serving Using Shadow OS/390 Web Server
Each inbound URL value is parsed to yield a PDS member name and file
extension value. The specified member is sent using a MIME Content Type
derived from the file extension value. If no file extension is parsed from the URL,
the default used is ‘text/plain’. HTML extensions are processed when the MIME
Content Type indicates a text format member.

The URL, ‘/DOCDATA/FILESECT.HTM’ transmits the ‘FILESECT’ member as
‘text/html’.

The URL, ‘/DOCDATA/FILEPICS.JPG’ transmits the ‘FILEPICS’ member as
‘image/jpeg’.
6-16 Shadow OS/390 Web Server User’s Guide December 1999

CHAPTER 7:

HTML Extension Facility

Shadow OS/390 Web Server supports a run-time facility that allows you to create customized HTML
forms and Web pages in response to run-time execution conditions. By including HTML-like
statements in your source file, Shadow OS/390 Web Server evaluates the HTML statements and
customizes the response either the client's request or the current operational state of the server. More
powerful capabilities are available when this operation is combined with other server processing
facilities, such as
/*EXECSQL.

Using the HTML Extension Facility
The following describes the functions and limitation available.

Insert Variable Text Into the Output
Run-time event related variables, global variables, server provided information
values, or merge processing data (such as DB2 result set column data) can be
inserted into a text member before it is transmitted to the end user. These text
insertion extention statements specify what run-time value should be placed in the
output text stream. That value replaces the original HTML extension statement.

HTTP Response Control Statements
HTML extensions can be used to generate page-specific HTTP response header
information. The API, SWSRESP, allows rules to generate HTTP response
headers. See the Shadow Programming Guide for more information.

Conditional Statements
Conditional expressions can be coded as HTML extension statements using
<%if%>, <%else%>, and <%endif%> statements. Conditional statements allow
you to select which group(s) of lines within a text member are actually
transmitted. The selection is based on run-time evaluation of a condition.

Iteration Statements
One or more text lines, delimited by iteration statements, can be repetitively
processed during evaluation. The number of repetitions is controlled by run-time
evaluation of a variable value.

Repetitive line groups are used primarily in conjunction with the /*EXECSQL
merge processing interface.
December 1999 Shadow OS/390 Web Server User’s Guide 7-1

HTML Extension Facility
Other Control Statements
Other HTML extension directives allow you to control processing during a file
tailoring operation. For instance, you can abort file tailoring, or cause the DB2
result set row cursor to be advanced.

Merging Data From Other Server Facilities
The server implements specialized merge processing for some built-in facilities,
such as /*EXECSQL. These special interfaces allow you to tailor output streams
using variable information available only through the built-in component. For
instance, when file tailoring is invoked by a /*EXECSQL components, the
interface makes each DB2 column available to the HTML extension processor,
along with other information pertaining to the execution of the SQL request.

These special interfaces provide an extremely powerful, flexible, turnkey
formatting capability.

Scope and Limitations of the Facility
HTML extension statements are coded within a text member, just like any other
HTML tag. The HTML extension processor uses escape delimiters, which are
similar-to, but not part of, the HTML tag language. These escape delimiters
enclose all HTML extension statements, denoting them as separate from the rest
of the source file text.

During transmission processing, all HTML extension statements are removed
from the source file and evaluated. Text insertion statements are replaced within
the source file by the evaluated variable or data item to be inserted.

Processes for Text-type Files Only

The key criterion used by Shadow OS/390 Web Server in whether HTML
extensions are processed is the format of the source file and the transmission
mode. HTML extensions are processed only within text format data members,
never binary, nor can the HTML extensions be processed when the output
transmission operation is binary.

Processes for All Text Files - Regardless of MIME Type

Extensions are processed within all text format data files, regardless of the MIME
content type being used to transmit the data. HTML extensions are recognized and
processed within a data member, even if the member is transmitted to the Web
client as some type other than “text/HTML” or “text/plain”.

HTML Extension Processing is Enabled by Default

By default, extension processing is enabled for all text format transmissions. To
suppress processing of HTML extension statements, you must use keywords to
explicitly request that it is not performed.
7-2 Shadow OS/390 Web Server User’s Guide December 1999

Using the HTML Extension Facility
Supports for All Web Server File Interfaces

Extension statement recognition and processing occur for all transmission
operations initiated by:

� /*FILE process sections.
� /*EXECSQL process sections.
� The SWSFILE API Function.
� The HLL File API Interface.

Pre-Compiled for Execution-Time Efficiency

For source file data retained in cache by the server, the HTML extension facility
generates and caches an internal p-code array during the first outbound expansion/
transmission request. This speeds evaluation for subsequent expansion/
transmission operations because the source file does not need to be re-scanned.

Limits on Various Syntactical Elements

The chief priority of the server development team is to ensure that the server uses
the smallest amount of CPU time and other machine resources. Because the
HTML extension statement processing occurs frequently during server operation,
it performs many text scan/replace operations, which by their very nature,
consume CPU cycles.

We have made the HTML extension processor as efficient as possible by
conforming to various Web server internal architectural conventions, such as
avoiding extra CPU time expenditures that would otherwise be required to handle
the few special cases of especially large or complex source files.

The HTML extension processor imposes the following limitations on source file
data contents and evaluation time processing:

� No single variable value longer than 16000 bytes in length.

� No individual text line can exceed 32000 bytes in length.

� ‘If’ statements cannot be nested within encompassing ‘if/endif’ statements
more than 10 levels deep.

� ‘Do’ groups cannot be nested within encompassing ‘do/enddo’ groups more
than 10 levels deep.

� No more than 30 statement labels can be present within a single source file.

� No more than 20 pairs of HTML statement escape delimiters (‘<%’ ... ‘%>’)
can be present on a single source line and no more than 1 pair for all statement
types except insertion statements.

� During pre-scan, before evaluation, no more than 30 unresolved ‘leave’
statements can be remembered before the matching ‘enddo’ statement is
scanned.
December 1999 Shadow OS/390 Web Server User’s Guide 7-3

HTML Extension Facility
This allows enough space for a total of approximately 550 HTML extension
statements to be coded within any one source file. Extension processing fails if
too many statements are present within a single source file.

Rules for Coding HTML Extension Statements
HTML extension statements are coded within a source file just like any other
HTML tag, except these delimiters are not part of the HTML tag language. The
following covers the rules for coding HTML extension statements.

HTML Extension Statement Escape Delimiters
Escape delimiters must enclose all HTML extension statements. This keeps the
statements separate from the rest of the source file text. Each HTML extension
statement must:

� Begin with a ‘<%’ delimiter.
� End with the ‘%>’ delimiter.

During evaluation/expansion processing, the entire statement (including the
delimiters) is removed from the source file before output. Executable statements
are evaluated and processed to perform the action(s) indicated. Insertion
statements are replaced by the run-time value of the statement operand.

Escape Delimiters Recognized In All Locations

The opening and closing delimiters (and the extension statement within it) are
recognized regardless where they appear in the source file. The HTML extension
facility processes the extension statement delimiters when they are coded:

� Within quoted text.
� Inside a regular HTML markup tag.
� Within an HTML comment markup.

If you need to actually transmit the character strings, ‘<%’ or ‘%>’, you must use
the HTML entity reference mechanism to specify these as text values. For
example:

� Code ‘<%’ in place of the opening delimiter value ‘<%’.
� Code ‘%>’ in place of the closing delimiter value ‘%>’.

Use Escape Delimiters to Add Comments

HTML Extension Statement Comments must be wholly contained on a single text
line by themselves, with no other leading or trailing non-blank text. Each HTML
extension comment:

� Begins with ‘<%!’ delimiter.
� Ends with ‘%>’ delimiter.

Text within these delimiters, and the delimiters themselves, are removed when the
HTML extensions are processed.
7-4 Shadow OS/390 Web Server User’s Guide December 1999

Rules for Coding HTML Extension Statements
In this example, only lines 000001 - 000006 are comments.

No Continuation of Statements
Each HTML extension statement must:

� Be entirely contained on a single input text line; extension statements cannot
be continued across multiple lines.

� Have the same number of opening and closing delimiters.

Single Statement Per Source Record (Except
Text Insertions)

For all HTML extension statement types, except text insertions, the statement
must be coded on a source file line with no other non-blank text preceding or
following it. Only one statement can appear on a source line.

Text insertion type statements can be located anywhere, even intermingled among
other source file text. Multiple insertion type statements can be present on a single
source file input line.

Text insertion statements can be nested within other statements to de-reference
variable data.

Mixed Case Coding Allowed
HTML extension statements can be coded in upper, lower, or mixed case.

***** ***************************** Top of Data****************************
 000001 <%!***%>
 000002 <%! Note that this text document contains Shadow OS/390 Web Server HTML
*%>
 000003 <%! Extensions and is used to dynamically generate 4 different %>
 000004 <%! pages, depending on which query variables and cookies are *%>
 000005 <%! transmitted on the in-bound request. *%>
 000006 <%!***%>
 000007 <HTML>
December 1999 Shadow OS/390 Web Server User’s Guide 7-5

HTML Extension Facility
Reserved Words Not Valid as Variable Names
The following words are reserved. They cannot be used as the names of variables
or as statement labels. Nor can they be inserted into an HTML extension
statement at run-time using nested insertions statements.

Using Statement Operands
Each operand of an HTML extension statement can be one of the following:

� A numeric literal
� A string literal
� A reference to one of the variable types
� A pseudo-function call

When variables are referenced, the maximum variable name size that can be used
in an HTML extension statement is 50 bytes.

Numeric Literals

� Are coded as an integer value with or without a leading minus sign. The range
of values is limited to plus or minus 2,147,483,647.

� Can be used as operands of <%do%> and <%if%> statements; however, they
cannot be used as text insertion statement operands.

String Literals

� Are coded as a sequence of bytes enclosed within single or double quotation
marks. The maximum length supported is 256 bytes.

� Can be used as operands of <%do%> and <%if%> statements; however, they
cannot be used in text insertion statements.

REXX Dynamic Variables

� Can be referenced by name as a statement operand. The server obtains the
current value of the REXX variable from the REXX variable pool using the
IRXEXCOM interface.

if leaves abort ge

else next contains lt

endif advance eq le

do noadvance ne

enddo exit gt
7-6 Shadow OS/390 Web Server User’s Guide December 1999

Rules for Coding HTML Extension Statements
� Are only accessible when the file transmission operation is invoked by a call
from REXX to the SWSFILE API function. If you attempt to reference a
REXX language dynamic variable value outside this environment, the
variable is uninitialized/undefined.

WWW Event-Related Variables

The name of one variable (created for each inbound Web transaction event) can be
specified as an operand. For example, WWW.USERID

Global Variables

The name of one variable can be specified as an operand. For example,
GLOBAL.COMPANY.NAME

GLVEVENT Temporary Variables

The name of one variable can be specified as a statement operand. For example,
GLVEVENT.USER.VALUE

� No variables of this type exist until explicitly initialized by a Web transaction
procedure.

� ‘GLVEVENT.’ variables are the only type of task level variable that can be
created by HLL programs for use in HTML extension processing.

Built-in HTXINDEX Variable

The special variable names, HTXINDEX or HTXINDEX.label, can be referenced
as statement operands. HTXINDEX variables only exist while HTML extension
processing is underway.

An HTXINDEX variable:

� Is always evaluated as an integer value that matches the iteration count of a
<%do%> group.

� References the counter of the inner-most <%do%> group currently being
executed.

� If no group is running, the variable references the final count value of the
most recently ended group. If no group has ever been executed, the referenced
value is zero.

A variable in the form, “HTXINDEX.label”, refers to a specific <%do%> group
iteration counter by name. The “label” reference must match the label name coded
for a <%do%> statement within the source file. If this group hasn't been executed,
the referenced value is zero. If the group has terminated, the final iteration count
value for the named group is returned.
December 1999 Shadow OS/390 Web Server User’s Guide 7-7

HTML Extension Facility
Special Merge Processing Variables

When HTML extension processing is invoked automatically by other Shadow OS/
390 Web Server components, special variables are made available to the interface
for merge processing. These variables are only available when HTML extension
processing is invoked indirectly by certain Web server components, such as
/*EXECSQL process section definitions.

“Merging Data From Other Server Facilities” on page 7-2 for a description of the
special variables available to each interface.

SWSINFO Pseudo-Function Call

You can specify a pseudo-function call upon the SWSINFO built-in function as
the operand of an HTML extension statement by using the following format:

SWSINFO(item)

The value of item can be any of the character strings used as an input argument for
the SWSINFO built-in function. (Do not put quotation marks around the operand.)

Run-time Operand Evaluation
The following rules govern run-time evaluation of HTML extension statement
operands.

Uninitialized Variable References

If the requested value of a variable cannot be obtained because the variable is
uninitialized, or not available within the environment from which the output
operation was invoked, the evaluated value of the operand depends on options set
when the HTML extension facility was invoked.

The default action is to substitute a NULL string in place of the variable. You can
request that uninitialized variables be replaced with the uppercase name of the
variable itself, but you must explicitly request this type of handling. This
algorithm corresponds to the way in which REXX handles undefined/uninitialized
variables.

REXX Type Stem Variables Not Resolved By HTML
Extension Facility

Each variable name operand must be a fully resolved name. The interface does not
support the use of stem variables (as in REXX), where each portion of the variable
name is evaluated before the final variable name is derived and evaluated.

For example, assuming the following values were set up for REXX variables:

B.A = "CDE"
B.2 = "ABC"
A = '2'
7-8 Shadow OS/390 Web Server User’s Guide December 1999

Rules for Coding HTML Extension Statements
If B.A is used as an HTML extension statement operand, the evaluated result is
the string ‘CDE’, not the string ‘ABC’.

Insertion Statements May be Nested

HTML extension text insertion statements can be nested within other extension
statement types. Nested statements are resolved at run-time from the inner-most to
the outer-most nesting level.

� A nested insertion statement cannot be used to specify the overall statement
operation type (such as ‘if’ or ‘do’), nor can it use any other HTML extension
statement reserved word.

� A nested insertion statement can be used to parameterize an HTXINDEX
reference. For example, “HTXINDEX.<%var1%>” where “var1” contains a
valid label name string.

� All other label name operands references cannot be made using a nested
insertion statement. For example, “<%leave <%var1%>%>”, where “var1”
is intended to supply the label name, is not a valid use of nesting.

� Because nested insertion statements must be completely resolved during
output processing, and cannot be pre-compiled, they require somewhat more
CPU time for processing than non-nested operand references.

An example of operand nesting

1. Assume the run-time variable, “A”, is set to the value “2”, and that the
variable “B.2” is set to the value “ABC”.

2. Assume the following nested reference is coded in a source file being
evaluated by the HTML extension Facility:

<%B.<%A%>%>

The facility resolves the inner-most expression, ‘<%A%>’, as ‘2’, yielding the
intermediate string ‘<%B.2%>’. This intermediate expression is evaluated as
‘ABC’, which is the value of the variable ‘B.2’.

HTML Extension Text Insertion Statement
A text insertion statement causes the statement operand to be evaluated by the
extension facility. The evaluated value replaces the entire text insertion statement.

Statement Syntax

An insertion statement consists of a single operand reference enclosed by
extension statement delimiters. During processing, the entire statement is replaced
with the value of the operand; numeric and string literals cannot be used as text
insertion statement operands.

Code text insertion statements as follows:
December 1999 Shadow OS/390 Web Server User’s Guide 7-9

HTML Extension Facility
<%operand%>

Here, a single operand reference value, ‘operand’, is coded. At evaluation time,
the value of operand replaces the entire HTML text insertion statement.

Refer to:

� Statement operands for a list of supported HTML extension statement
operand types.

� Run-time operand evaluation for details about uninitialized variable handling
and nesting of insertion statements.

Substitution Example

The following table shows the actual source file text used to specify a text
insertion operation and the resultant output after the substitution has been
performed. The substitution operation actually takes place when the page is
retrieved by the server.

At run-time, the value of the WWW.USER_AGENT event related variable is
substituted for the HTML extension escape sequence. The second row of the table
should contain the User Agent value transmitted by your Web browser.

HTML Extension Run-time Condition Checking
You can tailor source file output by testing conditions at run-time using the HTML
extension statements <%if%>, <%else%>, and <%endif%>.

<%if%> Statement Syntax
The ‘<%if%>’ statement tests a run-time condition and repositions source file
evaluation based on whether the condition is true or false.

Each ‘<%if%>’ statement consists of:

� The reserved keyword, ‘if’ (in either upper or lowercase).
� Two operand values to be compared against each other.
� Each operand separated by a condition keyword.

The ‘<%if%>’ statement is coded as follows:

<%if oper1 condition-keyword oper2%>

HTML Text Insertion Operation Example

Text Within This File The User Agent value for the browser you are currently
using is ‘<%WWW.USER_AGENT%>’.

Results After Substitution The User Agent value for the browser you are currently
using is ' '
7-10 Shadow OS/390 Web Server User’s Guide December 1999

HTML Extension Run-time Condition Checking
� The ‘if’ statement must appear as the first blank delimited word in the HTML
extension statement.

� Both ‘oper1’ and ‘oper2’ must be present. See “Using Statement Operands”
on page 7-6 for more information.

The ‘condition keyword’ must be one of the following reserved words:

� Each ‘if’ statement in the source file must have a matching ‘endif’ statement.

� If both ‘oper1’ and ‘oper2’ can be evaluated as integral values, the
comparison is performed using integer values rather than a string comparison.

� When the ‘contains’ condition is evaluated, the search for an occurrence of
‘oper2’ within the ‘oper1’ value is conducted as a string comparison. The
search is conducted as a caseless comparison by folding both operands to
uppercase.

<%else%> Statement Syntax
The ‘<%else%>’ statement allows you to delimit source statements to be
evaluated when the preceding ‘if’ statement is false. Each ‘else’ statement
consists of:

� The reserved keyword ‘else’ (in upper or lowercase),

The ‘<%else%>’ statement is coded as follows:

<%else%>

‘else’ can only be specified within a ‘if/endif’ statement group.

<%endif%> Statement Syntax
The ‘<%endif%>’ statements marks the end of source statements evaluated by a
preceding ‘if’. Each ‘endif’ statement consists of:

Condition Keyword Description

EQ operand 1 equal to operand 2

NE operand 1 not equal to operand 2

LT operand 1 less than operand 2

LE operand 1 less than or equal to operand 2

GT operand 1 greater than operand 2

GE operand 1 greater than operand 2

CONTAINS operand 1 contains the string operand 2

Table 7–1. IF Statement Condition Keywords
December 1999 Shadow OS/390 Web Server User’s Guide 7-11

HTML Extension Facility
� The reserved keyword ‘endif’ (in upper or lower case),

The ‘<%endif%>’ statement is coded as follows:

<%endif%>

‘endif’ can only be used to terminate a preceding ‘if’ statement group.

Condition Statement Example
The following shows the use of a condition statement to test the value of query
variables:

Example

<HTML>
<BODY>
<p>
<%if www.field.0 EQ 0%>
 No query variables were sent with this URL.
<%else%>
 <%www.field.0%> query variables were sent with this URL.
<%enddo%>
</BODY>
</HTML>

HTML Extension Iteration Statements
One or more source file lines can be grouped and repetitively evaluated a
specified number of times by using the following HTML extension facility
statements:

� The ‘<%do%>’ statement initiates the iteration loop and specifies an iteration
count.

� The ‘<%leave%>’ statement is coded within the group to cause evaluation
processing to exit the group.

� The ‘<%next%>’ statement is coded within the group to cause evaluation
processing to skip to the top of the group and begin the next (if any) iteration.

� The ‘<%enddo%>’ statement marks the end of the source lines included
within the iteration group.
7-12 Shadow OS/390 Web Server User’s Guide December 1999

HTML Extension Iteration Statements
Using Named Iteration Groups
If you label an iteration group, you can:

� Explicitly specify which group a ‘leave’, ‘next’, or ‘enddo’ statement refers to
without ambiguity.

� Refer to the group's iteration count value by name, using an
‘HTXINDEX.label’ reference.

A label name is assigned to an iteration group by defining the label within the
HTML extension ‘do’ statement which inaugurates the group. All label names
must:

� Be 1 to 8 characters in length.
� Begin with an alphabetic character.
� Be either alphabetic or numeric after the first character.

If ‘do’ groups are nested and no label names are defined, ‘leave’ or ‘next’
statements refer to the inner-most group. When label names are assigned, ‘leave’
and ‘next’ statements can refer to outer groups by name using the
‘HTXINDEX.label’ operand. The simple form ‘HTXINDEX’ always references
the inner-most iteration count.

<%do%> Statement Syntax
The HTML extension ‘<%do%>’ statement begins each iteration group and
specifies, by operand, the number of times the group should be repeated.

Each ‘<%do%>’ statement consists of:

� An optional label name for the iteration group.

� The reserved keyword, ‘do’ (in either upper or lowercase).

� An operand reference which provides the iteration count limit as a positive
integer value.

� An optional keyword that indicates automatic cursor advance (used for
/*EXECSQL merge processing).

Use the following format to code the statement:

<%label: DO oper1 ADVANCE%>

The statement label is optional, but if coded, it must:

� Be 1 to 8 alphabetic or alpha-numeric characters.
� Have a colon at the end of the label name.
� Have at least one blank after the colon to terminate the label name.

The reserved word, ‘do’, must appear as the first blank delimited word within the
HTML extension statement, or as the second word when a label name is present.
December 1999 Shadow OS/390 Web Server User’s Guide 7-13

HTML Extension Facility
The iteration count limit, ‘oper1’ follows the ‘do’ keyword. The operand can be of
any type discussed in “Using Statement Operands” on page 7-6. The operand is
evaluated at run-time to obtain the iteration count limit. If the operand does not
evaluate to a positive integral value, zero is used at the count limit.

The ‘ADVANCE’ keyword parameter is optional and has meaning only when the
source file is transmitted by the /*EXECSQL interface. If present, ‘ADVANCE’
indicates that the DB2 result set row cursor should be advanced to the next row
each time the group is repeated.

<%leave%> Statement Syntax
The HTML extension statement ‘<%leave%>’ forces an immediate exit from an
iterative group, regardless of the current repetition count.

Each ‘leave’ statement consists of:

� The research keyword ‘leave’ (in upper or lowercase).
� An optional label name.

Use the following format to code this statement:

<%LEAVE label%>

‘Leave’ can only be specified within a ‘do’ group, and is invalid if used outside of
a delimited group.

If a ‘leave’ is encountered without a label, it causes processing of the current,
inner-most ‘do’ group to be completed. A label can be used to specify the
completion of a ‘do’ group at an outer, higher nesting level.

<%next%> Statement Syntax
The HTML extension statement ‘<%next%>’ causes a logical skip to the top of an
iterative group.

Each ‘next’ statement consists of:

� The research keyword ‘next’ (in upper or lowercase).
� An optional label name.

Use the following format to code the statement:

<%NEXT label%>

‘Next’ can only be specified within a ‘do’ group, and is invalid if used outside of a
delimited group.

If a ‘next’ is encountered without a label, it causes a logical skip to the top of the
current, inner-most ‘do’ group to be completed. A label can be used to specify a
skip to the top of a ‘do’ group at an outer, higher nesting level.
7-14 Shadow OS/390 Web Server User’s Guide December 1999

HTML Extension Iteration Statements
<%enddo%> Statement Syntax
The HTML extension statement ‘<%enddo%>’ indicates the end of a ‘do’ group,
and must be present for the group to be valid.

Each ‘enddo’ statement consists of:

� The reserved keyword, ‘enddo’ (in either upper or lowercase),

� An optional label name, which must match the name coded for the preceding
‘do’ statement.

Use the following format to code this statement:

<%enddo label%>

‘Enddo’ delimits the end of the last group initiated by the last unterminated ‘do’
statement. If the label name is used, it must match the label name specified on the
‘do’ statement.

Operation Of Iterative Groups
During evaluation processing, when each ‘do’ statement is first encountered, the
HTML extension facility resets that group’s HTXINDEX value to zero and then
evaluates the repetition count operand. If the evaluation:

� Yields a positive integral value, that value is used as the repetition limit for the
group.

� Does not yield an integral value, zero is assigned as the limit and evaluation
proceeds with the source line following the terminating ‘enddo’ statement.

During the first iteration of the group, the index value is set to one. The cursor
advance option for the group is ignored. At each subsequent iteration, the current
index value (HTXINDEX) is compared to the repetition limit value.

� If the index value, plus one, exceeds the repetition limit value, the group is
terminated and evaluation proceeds with the source line following the ‘enddo’
statement.

� If the index value, plus one, is less than the repetition limit value, the index
value is incremented by one. If the ‘ADVANCE’ option was coded, the DB2
result set cursor is advanced to the next row. This action occurs only when
HTML extension processing is invoked by the /*EXECSQL interface,
otherwise, it is ignored.

A ‘leave’ statement encountered during evaluation of the group causes immediate
termination of the group.

A ‘next’ statement encountered during evaluation of the group causes evaluation
to skip to the top of the group.
December 1999 Shadow OS/390 Web Server User’s Guide 7-15

HTML Extension Facility
Iterative Group Example
The following illustrates the use of an iterative group and the HTXINDEX
variable, including nested references to HTXINDEX and use of a label name.

<HTML>
<BODY>
<p>
<%if www.field.0 EQ 0%>
 No query variables were sent with this URL.
 </BODY>
 </HTML>
 <%exit%>
<%else%>
The values of query variables sent with this URL are:
<%enddo%>

<%loop: do www.field.0%>
 <P>Variable <%htxindex.loop%> Name =
 '<%www.field.<%htxindex.loop%>.name%>'.
 <P>Variable <%htxindex.loop%> Value =
 '<%www.field.<%htxindex.loop%>.value%>'.
<%enddo loop%>

</BODY>
</HTML>

The next example illustrates how iteration is used in conjunction with the
/*EXECSQL process section to display DB2 result rows. “Name”, “job”, and
“salary” are DB2 column names.

<HTML>
<BODY>
<p>
Salaries of all non-management personnel:
<TABLE BORDER>
<THEAD>
<TH>Name
<TH>Salary
</THEAD>
<TBODY>
<%do EXECSQL.ROWS ADVANCE%>
 <%if JOB EQ 'MGR'%>
 <%next%>
 <%endif%>
 <TR>
 <TD><%name%>
 <TD><%salary%>
<%enddo%>
</TBODY>
</TABLE>
</BODY>
</HTML>
7-16 Shadow OS/390 Web Server User’s Guide December 1999

Other HTML Extension Statements
Other HTML Extension Statements
The following extention statements are available:

<%date(_)%> Statement Syntax
The HTML extension ‘<%date(_)%>’ statement causes the processor to insert
the date at this point in the output stream. The date can be generated in the
following formats:

If an invalid date option is specified or if date() is specified, date(n) is assumed.
Date(h) generates an HTTP formatted date according to current specifications. If
the HTTP specification changes, the output of this selection also changes.

<%time(_)%> Statement Syntax
The HTML extension ‘<%time(_)%>’ statement causes the processor to insert
the time at this point in the output stream. The time can be generated in the
following formats:

If an invalid time option is specified or time() is specified, time(n) is assumed.

Format Description Output

date(e) European DD/MM/YY

date(j) Julian YYDDD

date(o) Ordered YY/MM/DD

date(s) Standard YYYY/MM/DD

date(n) Normal DD MMM YYYY

date(u) USA MM/DD/YY

date(h) HTTP DAY, DD MMM YYYY HH:MM:SS GMT

Table 7–2. The <%data(_)% Statement Syntax

Format Description Output

time(c) Civilian HH:MMxx where xx = AM or PM.

time(l) Long HH:MM:SS.nnnnnn

time(n) Normal HH:MM:SS

Table 7–3. The <%time(_)% Statement Syntax
December 1999 Shadow OS/390 Web Server User’s Guide 7-17

HTML Extension Facility
<%exit%> Statement Syntax
The HTML extension ‘<%exit%>’ statement causes the processor to immediately
terminate expansion of the current source file. It is equivalent to encountering the
end of the input source file.

Each ‘<%exit%>’ statement consists of the reserved keyword, ‘exit’ (in either
upper or lowercase). Code this statement as follows:

<%exit%>

DB2 Result Set Cursor Advance
When output file tailoring is invoked by /*EXECSQL, only the first result set row
from the DB2 query is available unless you force the internal row cursor to
position on subsequent rows.

There are two types of cursor advance:

� Auto advance at each iteration of a code the ‘<%do%>’ statement by coding an
‘ADVANCE’ keyword. This forces the row cursor to advance to the next row
each time the iteration group is restarted.

� Explicitly controlled cursor advance using the <%advance%> statement.

HTTP Response Control Statement
An HTML extension “response” statement is used to customize the HTTP
protocol response headers transmitted when a dynamic page is output. The only
response function supported in the this release is addheader. It allows you to
create customized HTTP response header output.

<%Response.AddHeader%> Statement Syntax

The HTML extension ‘<%response.addheadert%>’ statement causes the
processor to invoke the SWSRESP(“add”) function to buffer a customized HTTP
protocol response header.

Each ‘<%response.addheader%>’ statement consists of:

� The reserved keyword, ‘response.addheader’ (in either upper or lowercase).
� A string literal giving the HTTP response header name.
� The operand value of the HTTP response header.

Code this statement in the following form:

<%RESPONSE.ADDHEADER "name" "value"%>

<%Response.AddHeader%> Usage

Use this extension statement to indicate how a particular page is to be handled by
the browser. Some possible uses are:
7-18 Shadow OS/390 Web Server User’s Guide December 1999

HTML Extension Merge Processing
� Specify a back-dated “Expires:” response header or “Pragma: no-
cache” to ensure the Web browser does not re-display a page from it's cached
copy by coding the following:

<%response.addheader "Expires" "Mon, 01 Jan 1997 12:01:00
GMT"%><%response.addheader "Pragma" "no-cache"%>

� Force the browser to set a cookie value if the current page is ever retrieved by
coding:

<%response.addheader "Set-cookie" "SeenThisPage=YES"%>

� Force the page to be displayed in a new browser window by coding:

<%response.addheader "Window-target" "_blank"%>

HTML Extension Merge Processing
The HTML extension Facility has special merge processing interfaces to other
Shadow OS/390 Web Server turn-key components. With merge processing you
can insert the results of special queries directly into an HTML page.

Interface With /*EXECSQL
When a /*EXECSQL process section is executed, it can automatically invoke file
output processing for:

� Generation and output of a input form, when the INPUTFORM keyword is
specified.

� Tailoring of the actual SQL statement before execution.

� Generation and output of an output page, when the OUTPUTFORMAT
keyword is specified.

Special statement types and variable values are made available by the HTML
extension facility when processing the output of a DB2 query. These statements
and variables are available for use only when the source file, specified by an
OUTPUTFORMAT keyword of an /*EXECSQL process section, is expanded.

Special /*EXECSQL Variables
When a DB2 result set is being formatted by the HTML extension facility, the
following special variables are available for customizing source file output:
December 1999 Shadow OS/390 Web Server User’s Guide 7-19

HTML Extension Facility
EXECSQL Variables Description

EXECSQL.ROWS Contains the number of result set rows returned by the execution of the SQL
statement It is provided primarily for use as the iteration limit operand of a
‘<%do%>’ statement, but it can be used anywhere.

EXECSQL.ROW Contains the current result set row number, beginning with row 1.

EXECSQL.SQLSTMT Contains the fully expanded text of the SQL statement actually executed.

EXECSQL.PARTIAL Used to indicate if a partial result set was returned for a query.

• NO = The result set was not truncated.

• YES = The result set was truncated based on the limitations specified by
MAXROWS or MAXBLOCKS parameters of EXECSQL.

EXECSQL.COLUMNS or
EXECSQL.COLUMN.0

Are synonymous. They evaluate to an integer count of the number of result set
columns returned by the DB2 query.

EXECSQL.COLUMN.n There is one EXECSQL.COLUMN.n variable built for each column of the result
set. The evaluated value of this operand is the column name.

By requesting double evaluation of this symbol, you cause the underlying column
data to be referenced:

• <%EXECSQL.COLUMN.3%> is evaluated as the name of the third result set
column.

• <%<%EXECSQL.COLUMN.3%>%> is evaluated as the contents of the third
result set column within the current result set row.

Result Set Column Names Each result set column, within the current result set row, can be referenced
directly using the name of the column.

For the SQL statement, “select name, job, salary from Q.staff”,
reference the variables, “name”, “job” and “salary” within a source file as
HTML extension statement operands.

When a result set column has no pre-assigned name, such as when the SQL
statement, “select avg(salary) from q.staff” is executed, the server
assigns column names in the form “COLn' where 'n' is the column number relative
to one. In this example, the name would be “COL1”.

If a pre-assigned column name has embedded blanks, Shadow OS/390 Web
Server replaces these with underscore characters.

Table 7–4. Special /*EXECSQL Variables
7-20 Shadow OS/390 Web Server User’s Guide December 1999

CHAPTER 8:
Automated State Management Facility (ASMF)

This chapter discusses the Automated State Management Facility, what it does, why it’s important, and
how it works. If you need more information on protocols, refer to Chapter 1, “An Overview,” or see
the Shadow OS/390 Gettting Started Guide.

What is a Stateless Protocol?
HTTP is a stateless protocol, which means there are no inherent mechanisms in
the protocol that relate any transaction to those that precede or follow it. This
stateless quality exists partly because no permanent communications session
exists following each individual request/response interaction, such as the sessions
used for 3270 terminal communications. When a long-lived session exists, both
client and server implicitly retain an active 'bind' to their session partner. As long
as the bind exists, the partners do not change; this allows the execution sequence
to be tightly controlled.

Persistent Session Support
Because HTTP allows 'Persistent Session Support', it is sometimes misinterpreted
as a means to remember application-dependant state information. HTTP's
'Persistent Session Support' only allows an existing communication pathway to be
reused without tearing-down and re-building overhead. The HTTP protocol
explicitly limits 'Persistent Session Support' to only this type of path reuse,
because there is absolutely:

� No guarantee that the session will be reused.

� No requirement about the sequence in which additional requests and
responses are transmitted over the open session.

� No assumption that the pathway is actually connected with the original
partner.

What is ASMF?
When you create complex web-based applications, you usually need a series of
client/server interactions to remain logically related to ensure proper operation.
ASMF implements many basic interfaces that are necessary to maintain in-flight
application “state” information across multiple HTTP request/response
interactions. These include:

� The Server-side token API

� Persistent GLOBAL. variable support
December 1999 Shadow OS/390 Web Server User’s Guide 8-1

Automated State Management Facility (ASMF)
� A means to dynamically insert application-generated data values into
outbound HTML pages

� Easy access to inbound query variables and HTTP cookies

� The ability to control 'Set-Cookie:' and other HTTP response headers

Why use ASMF?
ASMF encapsulates the details of these basic Server interfaces into a unified,
powerful, and simple-to-use interface. By automatically handling HTTP protocol-
related issues and other details involved when using the basic Server interfaces,
developers can devote their full attention to application requirements.

What Constitutes 'State' Information?
'State' information is any piece of information that must be 'remembered' at the
completion of a client/server interaction, because it has some bearing on a future,
anticipated interaction. It could be:

� A single data value, such as an account number that is keyed only once by the
end user, but remembered and used across many subsequent client/server
query interactions.

� A very complex collection of 'state' elements which 'remember' user choices,
control user or application generated 'holds' on resources, or even determine
future processing sequences.

Whatever information is 1) known by any single client/server interaction and 2)
must also be remembered or re-generated in order for completion of subsequent
interactions, constitutes 'state'.

Transmitting State Information
State information must temporarily or permanently reside at either the client or the
server between HTTP transactions. HTTP client's almost always bear
responsibility for saving and later communicating some fragment of the state
information to the server as part of the inbound request, while the HTTP servers
almost always bear the responsibility for setting everything up for the exchange. It
is only the server that has any interest-in or knowledge-of the information needed
for subsequent state transaction processing.

The Transmission Process

Step 1: Client sends a single request to the server.

The client is only allowed to transmit a single request and to receive a single
response; no additional handshaking is possible between the client and server
within the confines of an individual interaction. This means the client must
predictively transmit all the information needed on the inbound request.
8-2 Shadow OS/390 Web Server User’s Guide December 1999

What Constitutes 'State' Information?
Step 2: Server accesses and interprets the request.

If enough information is received and it is valid, the server processes the
request. If there is not enough information or the information is invalid, the
server does a rescan and returns an error message.

Step 3: Server prepares the information to transmit.

The server must predictively generate directions for the client that instruct the
client in creating its next request. This means that between requests,
application-dependent information must be stored somewhere. This
information could:

� (Often the best choice) Reside wholly on the client in the form of a cookie
or an HTML hidden form variable.

� (Recommended if security an issue) Be divided between both the client
and the server.

� Reside entirely on the server. (This is often impossible to do, but if
possible, it is not recommended.)

Usually, HTTP servers are not able to unilaterally save and then restore
application-level state information because most IP addresses are 'leased'
temporarily from a network controller. The same gateway IP address
could be shared consecutively by many downstream clients, because each
unique IP address can only be related to a specific client for the duration
of a single transaction. (This may not be true for some, very tightly
controlled, hard-wired Intranet configurations, but such a configuration is
extremely rare!)

Step 4: The server transmits information back to the client.

HTTP clients (typically web browsers) are able to save state information as
either HTTP cookies or HTML hidden form variables.

HTTP cookies: The server must transmit the cookie to the client, and specify
under what future conditions each cookie should be transmitted with inbound
requests. The HTTP clients must be configured to accept cookies for this to
work.

HTML forms: The server must transmit appropriately coded HTML pages to
the client. The client saves the information as form values and then transmits
these values to the server as query variables. If the server does not transmit
these values correctly, the client cannot generate them. It is the responsibility
of the application to code the HTML pages as the server does not scan or
modify the HTML.

Step 5: Client attempts to receive information by using one of the following:

HTTP cookies: If cookies are used, the HTTP clients may or may not be
configured to handle or store them. The cookies could be discarded and the
state information would not be available to send the next request.
December 1999 Shadow OS/390 Web Server User’s Guide 8-3

Automated State Management Facility (ASMF)
HTML Pages: If the information is not received in the appropriate HTML
format, the client will be unable to generate the necessary query variable for
its next inbound request.

Step 6: The Client attempts to send another request.

The client attempts to send another request to the server.

� Sends state information. The client transmits the state information to the
server either as a query variable or an inbound HTTP cookie.

� Does not send state information. If, for any reason, the client does not
transmit any state information, then it is unlikely that the server will be
able to continue with the series of related transactions. The server needs a
guide for retrieving or reconstructing server-side values, and other client-
supplied information upon which to base continuing state operations. The
lack of any state information from a client constitutes a null or 'starting'
state that can be usefully interpreted by the server application.

Step 7: These steps are repeated.

The process of sending and receiving information continues until either:

� The cycle is complete and all transactions in the series have been
generated and returned to the client.

� An error occurs.

Server-Side State Information
Due to security-related concerns or other application considerations, you can keep
most of the state information out of direct view of the client by storing it at the
server. The server will always require some value from the client (if only a null
set) in order to determine which set of saved information to use.

There are two methods of retaining state information on the server.

Method 1: Using the Server-side Token Facility

Shadow OS/390 Web Server's server-side token facility provides:

� A generic means for retaining server-side state information.
� A means for disposing of the information after a preset timeout period.

State information can be stored within a server-token, and associated with a
unique 24-byte token key. Only the 24-byte token key is transmitted to the client.
During subsequent interactions, and upon receipt of a valid token key from the
client, the original state information can be retrieved at the server. The server can
also detect if the token data and key have become invalid because the inactivity
timeout has passed or because the server has been restarted.
8-4 Shadow OS/390 Web Server User’s Guide December 1999

What Constitutes 'State' Information?
Method 2: Using ASMF

ASMF options automate the use of the Web Server's basic token service for
retaining state information at the server and handling the token key lookup
process when the key is transmitted from the client. ASMF handles token-based
service requests using either HTTP cookies or HTML form variables.

The current version of Shadow OS/390 Web Server does not provide persistence
for basic server-side tokens. After a product restart, token keys become invalid,
because the tokens, their keys, and associated data are lost when the product is
shutdown. If you need to use persistent server-side state information, you must
save and restore the data from within your application. Although you will not be
able to use the built-in token processing options, ASMF can readily be used for
handling application "key and data" values via HTTP cookies.

Although the Web Server's generalized token facility is used internally by the
ASMF, do not attempt to use both interfaces simultaneously. Data values stored
by the ASMF facility should not be retrieved using direct calls upon the token
access API routines, and the token access API routines should never be used to
update the data values held by the ASMF facility.

Using HTTP Cookies
HTTP cookies, originally implemented in Netscape browsers, have become the
state information transport of choice for most applications during the last two and
a half years. They:

� Allow more robust methods for saving and transmitting state information than
do HTML form/query variables.

� Provide a means for disposing of stale information.

� Can be made persistent for long periods of time.

� Can be limited in scope so that they apply only to specific URL requests.

� Can be sent by the browser whenever it accesses your host domain and the
specific or general URL path within it. (Your application-generated HTML or
hyperlinks do not need to be preset in the brower’s window for this to occur.)

Remember

When designing an application:

� Individual users can block the use of HTTP cookies. This is usually done out
of fear that personal or sensitive information could be wrongly used. (Such
fears are only partially rooted in fact. See CIAC Bulletin I-034 of March 1998
for a discussion of these security-related issues.)

� Some browsers discard HTTP cookies under a variety of circumstances.
December 1999 Shadow OS/390 Web Server User’s Guide 8-5

Automated State Management Facility (ASMF)
Application designers should take these issues into account and weight the
benefits of HTTP cookies against the possible problems, which can occur when
they are not re-transmitted as anticipated.

Using HTML Forms
Client browser software allows state information to be saved as HTML form
variables during 'think time', and it even provides the means to transmit these
values as query variables on a subsequent interactions. To mask the state
information from direct view, use the 'type=hidden' form variables. This does not,
however, prevent the end user from examining the information when viewing the
HTML source text unless the information has been enciphered.

The ASMF can be used to automate storage and retrieval handling of application
state values using server-tokens that have been placed in hidden HTML form
variables. It is your application's responsibility to ensure the token key is properly
embedded into the HTML forms transmitted to the client. The server does not
scan or modify the HTML.

Using State Information Sets
ASMF supports three variations of information sets: COOKIE, CTOKEN, and
FTOKEN.

COOKIE This uses HTTP cookies as a communications transport. The actual
encoded value data, not a token ID, is sent to and from the client.

CTOKEN This uses HTTP cookies as a communications transport. A server-
side token ID is sent to and from the client. The value data is stored
within the server-side token, and is accessed indirectly using the
token ID.

FTOKEN This uses URL query variables as a communications transport. A
server-side token ID is sent to and from the client. The value data is
stored within the server-side token, and is accessed indirectly using
the token ID.

Each type defines how state information is transmitted to and from the client, and
whether server-side tokens are used to indirectly access information held at the
server.
8-6 Shadow OS/390 Web Server User’s Guide December 1999

Using State Information Sets
State Information Set Name
Each State Information Set must have a unique, application-assigned name. State
information names:

� Must be from 1 to 16 bytes in length.

� Must start with one of the U.S. English alphabetic characters, A through Z.

� Must use the following characters in the remainder of the name:

� U.S. English alphabetic characters, A through Z
� The digits, 0 through 9
� The underscore (EBCDIC x'6D') character

� Can be any combination of upper and lower case letters, but it is always
processed internally as an uppercase string.

Characteristics COOKIE CTOKEN FTOKEN

HTTP Cookies are used for transmission of state
information.

X X

Query variables are used to transmit state information
from the client to the server.

X

Value data and keys are transmitted to and from the client
in encoded form.

X

Value data and keys are stored in a server-side tokens.
Only the server token ID is transmitted to and from the
client.

X X

The value data and keys remain valid so long as they are
retained and retransmitted by the client.

X

The server token expires after a preset timeout period after
which the value data and keys can no longer be accessed.

X X

The server automatically generates the HTTP "Set-
cookie:" response header which is sent to the client when
the information set is created.

X X

The server automatically re-creates the information set
when it receives a specially formatted HTTP "Cookie:"
request header.

X X

The application, not the server, is responsible for
predictively setting up the appropriate query variable
information which the client will send on each inbound
request.

X

December 1999 Shadow OS/390 Web Server User’s Guide 8-7

Automated State Management Facility (ASMF)
State Information Set Variables
Each State Information Set conceptually consists of a collection of like-named
variables that the server specifically manages. Each variable in the collection has
a name which is, or begins with, the two-level qualifier:

GLVSTATE.setname

where "setname" is the application-assigned name of the State Information Set.

Applications use the server's built-in variable access functions to read or write
these special collection variables. The server, while working in the background,
intercepts all references to these variables and automates many of the chores
required for maintaining the transaction state.

A web transaction program can:

� Create, delete, or re-initialize an information set by assigning a pre-defined
value to the collection's Control Variable.

� Determine the validity of the state information by interrogating the
collection's Status Variables.

� Specify options for handling the state information set by setting the
collection's Option Variables.

� Save or retrieve application-dependent data values by setting or interrogating
the collection's Value Variables.

� Refer to state information sets or keyed value data indirectly using Indexed
Access Variables.

GLVSTATE. Variable Inventory
The following table lists all valid GLVSTATE. variable name symbol forms along
with an indication of each one's general usage and applicability to each type of
information set.

Variable Name Variable Type: Applies To:

GLVSTATE.setname Control & Status Variable Any Set

GLVSTATE.setname.STATUS Status Variable, Read-Only Any Set

GLVSTATE.setname.TYPE Status Variable, Read-Only Any Known Set

GLVSTATE.setname.TOKENID Status Variable, Read-Only Token-Based Sets

GLVSTATE.setname.TIMEOUT Option Variable Token-based Sets

GLVSTATE.setname.DOMAIN Option Variable Cookie-based Sets

GLVSTATE.setname.PATH Option Variable Cookie-based Sets
8-8 Shadow OS/390 Web Server User’s Guide December 1999

Using State Information Sets
The following values in the above table are used to denote user-selectable names
or index numbers values.

GLVSTATE. variable symbol cannot exceed 84 bytes in length; this includes all
qualifiers. It is impossible to use both the maximum size setname and the
maximum size keyname for most, otherwise valid, symbol name combinations.

GLVSTATE.setname.EXPIRES Option Variable Cookie-Based Sets

GLVSTATE.setname.SECURE Option Variable Cookie-Based Sets

GLVSTATE.setname.VALUE Value Data Any Known Set

GLVSTATE.setname.VALUE.keyname Value Data Any Know Set

GLVSTATE.setname.KEY.0 Indexed Access, Read-Only Any Known Set

GLVSTATE.setname.KEY.keyindex Indexed Access, Read-Only Any Known Set

GLVSTATE.setname.KEY.keyindex.VALUE Indexed Access Any Known Set

GLVSTATE.0 Indexed Access, Read-Only All Known Sets

GLVSTATE.setindex Indexed Access, Read-Only All Known Sets

GLVSTATE.setindex.<suffix> Indexed Access All Known Sets

GLVSTATE.0.TRACE Facility Control All Known Sets

GLVSTATE.0.DELETE Facility Control All Known Sets

Value Description

setname User selected name of the State Information Set.

keyname User selected name of a value data key that is only used with keyed value
sets. Valid value key names are from 1-to-48 bytes in length and must be
composed of the same characters used for valid set names (such as, begin
with alphabetic character, contain only alphanumeric characters plus
underscore).

keyindex Positive integer corresponding to the Nth value data key (used only with
keyed value sets).

setindex Positive integer corresponding to the Nth State Information Set known to
the application.

<suffix> Indicates that any trailing name suffix(s) is valid for use with a non-
indexed GLVSTATE.setname. Reference can also be used in this position
for indirect indexed access.

Variable Name Variable Type: Applies To:
December 1999 Shadow OS/390 Web Server User’s Guide 8-9

Automated State Management Facility (ASMF)
Collection Control Variable Name
An information set's control variable is the primary means of controlling the set or
determining whether a set exists. The control variable name is:

GLVSTATE.setname

where "setname" is the application-assigned name of the State Information Set.

Evaluation of GLVSTATE.setname

When you interrogate the value of an information set's control variable, one of the
following two status values is returned. (These are the only two values that are
ever returned, even if the query is made by a REXX-language procedure against a
previously unknown/un-initialized variable.)

NULL A NULL (zero-length) string is returned if the value information
within this set is un-usable. For example, if the set does not exist
('UNKNOWN' status), or if it is associated with an expired server-side
token ('EXPIRED' status), this value will be returned as an overall
indication of the non-usability of the set.

'VALID' This string is returned only if the State Information within the set is
usable by the application. For example, it is returned for sets that have
either an 'ACTIVE' or 'RESTORED' status.

Assigning Values to GLVSTATE.setname

By assigning a pre-defined value to a set's control variable, the underlying state
information set is created, deleted, or re-initialized. The following values can be
assigned:

Pre-defined Value Description

'NEW(type,timeout)' Used to create the set. If a set with this name already exists, the existing
set will be destroyed and a new one will be created with the same name.

Only the string, 'NEW', is required; the parentheses, type, and timeout
parameters are optional. If omitted, the server assumes the value
'NEW(COOKIE)'.

The type parameter indicates the type of State Information Set to be
created; it must be a COOKIE, CTOKEN, or FTOKEN.

The timeout parameter:

• Is only valid with CTOKEN and FTOKEN. It is not valid with
COOKIE and must be omitted with 'NEW(COOKIE)'.

• Must be coded as an unsigned integer that specifies the time limit (in
seconds) to be applied to the server-side token associated with the
information set. The server-side token is destroyed if it is not used
within that time limit.

If it is not coded, the default time limit for all server tokens is used.
8-10 Shadow OS/390 Web Server User’s Guide December 1999

Using State Information Sets
Collection Status Variables
Status variables allow you to determine the exact status and type of a set. These
variables are read-only and derive their evaluated values from internal state
information set processing activities. The status variables are:

GLVSTATE.setname.STATUS
GLVSTATE.setname.TYPE
GLVSTATE.setname.TOKENID

where "setname" is the application-assigned name of the state information set.

'DELETE' Used to destroy the State Information Set. If there is a server-side token
associated with the set, it is also destroyed at the same time.

If the set is currently unknown, no action occurs.

Deleting an information set at the host does not stop the information from
being retransmitted from the client. The server does not invalidate/expire
HTTP cookies or HTML form variables stored at the client.

'RESET' Reset is used to change the status of an existing information set.

• 'ACTIVE' Status - Resetting has no effect upon the information set.

• 'RESTORED' Status - Resetting places the set in 'ACTIVE' status.
For cookie-based information sets, the cookie is re-transmitted in the
next outbound response, but there is no substantive effect for
FTOKEN-type sets. The domain name, path, expiration date and
secure parameters used for HTTP cookie processing are not
re-constructed; they must be set separately, if needed.

• 'EXPIRED' Status - Resetting places the set in 'ACTIVE' status. A
new associated token ID and token are assigned. (The old token ID is
not re-used). This action does not re-create the expired value data and
for HTTP cookie-based sets does not re-construct the domain, path,
expiration date and secure parameter information.

Pre-defined Value Description
December 1999 Shadow OS/390 Web Server User’s Guide 8-11

Automated State Management Facility (ASMF)
Evaluation of GLVSTATE.setname.STATUS

When you interrogate the value of this variable, one of the following values is
returned. (These are the only values ever returned, even if the query is made by a
REXX-language procedure against a previously unknown/un-initialized variable.)

Evaluation of GLVSTATE.setname.TYPE

When you interrogate the value of this variable, a COOKIE, CTOKEN, OR
FTOKEN values is returned.

Variable Value Description

'UNKNOWN' This value is returned if the corresponding set does not exist
and is currently unknown to the server.

'ACTIVE' This string is returned by one of the following reasons:

• The state information was created during operation of
the current transaction.

• A 'RESTORED' set was reset.

For cookie-based sets, HTTP 'Set-cookie:' response headers
are generated automatically by the server when outbound
transmission buffers are flushed to the client.

'RESTORED' This string is returned for any state information set that has
been successfully re-created by the server using inbound
query or cookie information. All value data, originally saved
in the set when it was created, is usable by the application.

'EXPIRED' This string is only returned for token-based information sets.
Inbound query or cookie variables processed by the server
contain a server-side token ID. Because the token has
expired, all value data, originally saved in the set when it
was created, is no longer available.

Note:
These values are only returned for information sets that are
known to the server. For unknown sets, a null string is returned
to high-level-language callers. REXX-language callers will
receive a string containing the name of the variable, itself,
corresponding to the REXX-language specification for handling
of un-initialized variables.
8-12 Shadow OS/390 Web Server User’s Guide December 1999

Using COOKIE-Type Information Sets
Evaluation of GLVSTATE.setname.TOKENID

When you interrogate the value of this variable:

� The server-side token ID value (CTOKEN and FTOKEN). Information
sets are returned and displayed as a 24-byte, hexadecimal value, unique from
all other server-assigned token ID values.

� COOKIE-based and for unknown sets. A null string is returned to high-
level-language callers. REXX-language callers will receive a string
containing the name of the variable corresponding to the REXX-language
specification for handling of un-initialized variables.

Using COOKIE-Type Information Sets
HTTP cookies are:

� Used as the communications transport for application state information and
application information in encoded form.

� Transmitted directly to and from the client.

How Cookies Work
1. Create a cookie-type state information set.

2. Save the application data into it as either unkeyed or keyed data values.

3. Run the application.

4. Once application ends, the server generates a 'Set-Cookie:' response header
for every cookie-based information set your application has created. (This is a
normal end-of-transaction transmission process.)

The 'Set-Cookie:' response consists of a name / value pair. The name is
derived by prefixing the state information set name you assigned with the
specially-recognizable string, 'SWSSTATE_'. The value is a representation of
your application's data, in encoded form.

5. The Web browser re-transmits this name / value pair back to the server in an
HTTP 'Cookie:' request header.

6. As part of request parsing, the server checks all in-bound 'Cookie:' headers for
the special string prefix, 'SWSSTATE_'. If found, the server re-constructs the
original set of information saved by your application.
December 1999 Shadow OS/390 Web Server User’s Guide 8-13

Automated State Management Facility (ASMF)
Benefits of Using Cookies

HTTP cookies are the most versatile transport mechanism, because:

� The browser can send them whenever it accesses your host domain and the
specific or general URL path within it. (Your application-generated HTML or
hyperlinks do not need to be preset into the browser's window for this to
occur.)

� HTTP cookies can be made persistent. The browsers can continue to send the
cookies, even when it contacts your site infrequently.

Some Considerations

This type of information set is ideal for saving user profile information or other
non-sensitive data. Because your application's data is actually transmitted to and
from the browser, you:

� Must ensure the data's validity, since it can easily be spoofed or altered.

� Should avoid storing sensitive value data at the browser unless using SSL
communications sessions to/from a browser that is in a secured location.

Using CTOKENS and FTOKENS

Use CTOKEN-type or FTOKEN-type information sets instead of COOKIES, if
you:

� Need a short-term, server-controlled time limitation.
� Want to retain sensitive data only at the server.

Creating a Cookie-type Set
The following shows how to use Shadow/REXX statements to create a COOKIE-
type information set named, "EMPDATA", and save profile data into the set.

GLVSTATE.EMPDATA = 'NEW(COOKIE)' /* Create Cookie Set */
GLVSTATE.EMPDATA.VALUE.NAME = 'John F Fields'
GLVSTATE.EMPDATA.VALUE.TITLE = 'Product Author'
GLVSTATE.EMPDATA.VALUE.PRODUCT = 'Shadow Web Server'

GLVSTATE.EMPDATA = 'NEW(COOKIE)' /* Create or re-initialize */
GLVSTATE.EMPDATA.VALUE.NAME = 'John F Fields'
GLVSTATE.EMPDATA.VALUE.TITLE = 'Product Author'
GLVSTATE.EMPDATA.VALUE.PRODUCT = 'Shadow Web Server'
8-14 Shadow OS/390 Web Server User’s Guide December 1999

The unOfficial HTTP Cookie Specification
The unOfficial HTTP Cookie Specification
HTTP cookies, originally invented by Netscape to maintain persistent client state
information, were implemented in their 2.0 release. Although these specifications
were never officially adopted by the Internet's standards organizations, they have
been widely adopted by all modern Web browsers and Web servers. Attempts to
define an official standard for HTTP Cookies have not been successful, thus
Netscape's specification remains the de facto standard. (See Cookie I-D Drafts for
a list of the many revisions to the "official" RFC2109 HTTP Cookie
Specification.)

To open a separate window describing Netscape's original HTTP Cookie
specification, click this hyperlink: http://home.netscape.com/newsref/std/
cookie_spec.html. We strongly suggest you familiarize yourself with this
specification if you intend to use HTTP Cookies as a transport mechanism for
application state information.

Comments and suggestions for the use of HTTP Cookies in Shadow OS/390 Web
Server refer to the Netscape specification.

Anomalies You May Encounter
Although the Automated State Management Facility (ASMF) provided by
Shadow OS/390 Web Server normally hides all the details of working with HTTP
cookies, your application must be designed to appropriately use them. Failure to
take into account how Web browsers support and use HTTP cookies could result
in some or all of the following anomalies:

� No cookies are returned by the Web browser, as anticipated, for any
application's URLs.

� No cookies are returned by the Web browser, as anticipated, for some
application's URLs, but not for others. The inbound cookies are transmitted or
omitted in what seems to be a random pattern.

� Duplicately named cookies are sent by the Web browser for certain
application's URLs, but not for others -- again, in a seemingly random
fashion.

Making HTTP Cookies Work Reliably
Normally, anomalies arise because of MVS-centric thinking when authoring both
static HTML pages and dynamic applications. If you remember that the Internet
was originally devised and operated solely on UNIX-based platforms, and then
act accordingly, these problems are less likely to occur.

Keep the following points in mind:

� Most Internet URLs, like the UNIX file system, are normally formed as a
hierarchal directory and sub-directory path, with a filename specification at
the end. Although Shadow OS/390 Web Server allows you to map almost any
December 1999 Shadow OS/390 Web Server User’s Guide 8-15

Automated State Management Facility (ASMF)
URL string to a WWW rule definition, if your application deviates widely
from these assumed UNIX norms, you could experience problems using
HTTP cookies.

� Most UNIX file systems process names in a case-sensitive fashion. A file (and
by implication a URL) name, such as "/MYFILES/ABC.HTM", does not
designate either the same path or file as "/myfile/abc.htm", or "/MyFile/
Abc.htm".

� Leave nothing to chance. Most users will type a URL location into a browser
window in order to access the first page of an application, but few will
overtype a URL which has been linked-to within the application. The first
page of your application should specify explicit values for the host domain
and URL in all hyperlinks and HTML forms that route control back to your
application.

Some Suggestions
Here are some suggestions that should help ensure that HTTP Cookies operate
reliably in conjunction with your application.

Firewalls

When running inside a firewall:

� Give Shadow OS/390 Web Server a domain name during start-up, even if it is
not an officially registered name.

� Make sure that the domain name you assign looks like an officially registered
domain name with at least 3 qualifiers separated by periods (2 qualifiers if the
name ends with .com, .edu, .net, .org, .gov, .mil, or .int.

If you cannot assign a character-format domain name, then use the IP dot-notation
address instead.

Why?

Often a test MVS system (inside a firewall) will not have an official domain name
assigned. For HTTP, these systems are normally addressed using IP dot-notation
addresses. However, a problem can occur if your more expert in-house users have
populated PC-resident "HOSTS" or "LMHOSTS" files with short, character-
format names. When these names are used as a short-cut for specifying the longer
IP dot-notation addresses, particularly if the short names are also specified at the
server, problems will develop.

For example, if the short name "MVSA" has been assigned to one of your in-
house MVS systems as a shortcut for a longer IP address, such as 12.77.88.43.

Because these short, single-qualifier domain names do not fully conform to the
Netscape specification for domain names, HTTP cookies are sometimes not
transmitted as anticipated. Such a variance can be further complicated, not only by
the server's host domain name parameter setting, but by how the end-user
8-16 Shadow OS/390 Web Server User’s Guide December 1999

The unOfficial HTTP Cookie Specification
originally typed-in the domain name at the browser. This is often many
transactions before any application has even had a chance to generate an HTTP
"Set-cookie:" response.

Setting up a standard domain name for the server and then using the server
provided SWSINFO function to retrieve and insert it into outbound responses:

� Guards against the original, hand-typed domain name being used as a default
by the browser throughout a series of URL interactions.

� Ensures a conforming value will always be generated by the server itself.

Front-end (gateway) transactions and HTML pages generating outbound HTTP
cookies should be coded to explicitly specify the domain name in URLs used for
HTML form ACTION= parameters or HTML hyperlinks. This explicit domain
name will override the original URL domain name typed by the user.

Of course, these steps and warnings do not apply when your server has an
officially assigned Internet domain name.

Use only Lowercase Letters

If you place a domain name reference into an HTML document as a hyperlink or
as part of a form's ACTION= parameter, or within an HTTP response header, use
only lowercase letters.

Why?

Microsoft I/E Web browsers appear to store host domain names internally as
lowercase values.

We have observed instances in which HTTP cookies were not transmitted back to
a host when a document hyperlink explicitly specified the domain name using
uppercase letters.

For this reason, the server automatically converts the host domain name start-up
values to lowercase strings.

Coding URL Hyperlinks

Choose either upper or lowercase letters when coding all URL hyperlinks and
then use them consistently. Although Shadow OS/390 Web Server processes these
values in a caseless manner, some Web browsers do not.

Why?

Some Web browsers process URL path values in a case-sensitive manner. If you
set up an HTTP cookie for an uppercase URL such as "/MYPATH/xyz.htm", the
browser may not send it back if an embedded hyperlink specifies the URL in
lowercase, such as, "/mypath/xyz.htm".
December 1999 Shadow OS/390 Web Server User’s Guide 8-17

Automated State Management Facility (ASMF)
Path, Not Prefix

Where ever the original Netscape cookie specification uses the word, "path", it
literally means "path", not "prefix".

Why?

Browsers transmit HTTP cookies with any inbound request that has a "path"
matching the "path" explicitly specified, or implied, when the cookie was
originally received from the server.

The path specification, "/abc", will match URL requests such as "/abc/file1.htm"
or "/abc/prog02", but not URL requests, such as, "/abcfile1.htm" or "/abcprog02".
8-18 Shadow OS/390 Web Server User’s Guide December 1999

CHAPTER 9:

Executing User Programs

Shadow OS/390 Web Server has a built-in facility for executing user written transaction programs for
processing URLs. To implement this facility define a /*PROGRAM process section within a WWW rule
instead of a REXX (or other) process section.

Program Process Sections
Each /*PROGRAM process section header statement names the user program
executed, how the program is invoked, whether the user program is pre-loaded,
and specifies the parameter values passed to the program. Other parameters can be
specified on a /*PROGRAM header statement.

What Programs Can be Executed
You can execute user written Web transaction programs written in COBOL, C, or
PL/I. These programs must be compiled and linkage edited into a load library
accessible to Shadow OS/390 Web Server. User written transaction programs use
the High-Level Language (HLL) interface API (Application Program Interface) to
access data values sent inbound with the URL request and to transmit results back
to the Web browser.

If you need facilities that are unavailable within Shadow/REXX, you can execute
other REXX language interpreters. This is accomplished using the /*PROGRAM
process section interface. See “Using Other REXX Interpreters” on page 9-4.

� Consult the Shadow Programming Guide or the online HTML files for the
API Index of all REXX-Language and High-Level Language (HLL) interface
routines.

� Information specific to each of the three supported High-Level Languages can
be found on the following pages:

� “Writing COBOL Web Transaction Programs” on page 9-6
� “Writing C/370 Web Transaction Programs” on page 9-6
� “Writing PL/I Web Transaction Programs” on page 9-7

Where is CGI?
Shadow OS/390 Web Server does not provide a Common Gateway compliant
Interface (CGI) for user written transaction programs. Instead, a more efficient
programming interface is provided for thread based architecture using Shadow/
REXX.

Standalone command procedures and programs can be executed within an
Auxiliary TSO/E server address space. This environment provides the same
December 1999 Shadow OS/390 Web Server User’s Guide 9-1

Executing User Programs
essential characteristics of the CGI interface, but has the advantage of being a
commonly used MVS transaction processing environment.

A future release of Shadow OS/390 Web Server will provide additional CGI
compliance using these Auxiliary TSO/E servers. See Using TSO/E Services for
Web Transaction Processing for more information.

Where the Programs Must Reside
Programs to be executed as Web transaction processors must be named within a
/*PROGRAM process section of a WWW rule. Program load modules must reside
in one of the following locations:

1. A user program library, allocated to DD name ‘SWSRPCLB’ during Web
server subsystem start-up

2. The product's load library, allocated as STEPLIB

3. The MVS system's linklist libraries

The server always attempts to locate user programs within the libraries in the
order shown above. If programs are to be loaded from ‘SWSRPCLB’, the library
must be allocated at the time the subsystem is started; it cannot be dynamically
allocated once the server has been started.

Coding PROGRAM Process Sections
To define a PROGRAM process section, code the WWW event procedure
definition as follows:

/*WWW /aURLvalue ... WWW header stmt keywords ...
/*PROGRAM ... program header stmt keywords ...

Note:
We strongly recommend that user written High-Level Language
programs be loaded from the ‘SWSRPCLB’ dataset. Doing so avoids
possible naming conflicts with load modules that comprise the
Shadow OS/390 Web Server product.

The product's load library (allocated as STEPLIB) must be APF-
authorized. Updates to an APF-authorized library in most customer
sites requires special administrative procedures and authorization.
However, the user program library, ‘SWSRPCLB’, does not
inherently require APF-authorization.
9-2 Shadow OS/390 Web Server User’s Guide December 1999

Program Process Sections
The following keywords can appear on the /*PROGRAM statement:

Keyword Description

TYPE() (Required) Valid Operand Values:

• MODULE = This is the only supported operand value for this release. It
indicates that the NAME keyword specifies the name of an MVS load mod-
ule to be executed.

NAME() (Required) Valid Operand Values:

Specify the name of the MVS load module to be executed to process this Web
transaction.

INVOKE() (Required) Valid Operand Values:

• CALL = Specifies that the load module is invoked using a BASR instruc-
tion.

• LINK = Specifies that the load module is invoked using the MVS LINK
SVC.

PRELOAD() (Required) Valid Operand Values:

• YES = Specifies that the load module is pre-loaded into storage when that
WWW rule is enabled.

• NO = Specifies that the module is loaded into storage each time it is used.

HEADERS() (Optional) Valid Operand Values:

• YES (default) = Specifies that a simple HTTP response header is generated
automatically by the system. The HTPP response header includes only the
standard status “code (200)”, the “Server: response element”, and
specifies “Content-type: text/html”.

• NO = Specifies that the module is completely responsible for generating the
outbound HTTP response header.

PARM() (Optional) Valid Operand Values:

A 1 to 100 byte string. The value coded for this keyword is passed to the load
module using standard MVS linkage conventions (register 1 point to a full word
containing the address of the two-byte parameter string length followed by the
string).

Table 9–1. Program Statement Header Keywords
December 1999 Shadow OS/390 Web Server User’s Guide 9-3

Executing User Programs
Using Other REXX Interpreters
Shadow OS/390 Web Server supports the use of Shadow/REXX as well as other
REXX interpreters for coding REXX-language process sections directly within
WWW rules definition. You might need one of these other interpreters if you
have special addressing environments which are supported only from TSO/E or
CA-OPS/MVS REXX.

Executing a Non-Shadow/REXX Interpreter
To execute a non-Shadow/REXX interpreter name, enter the REXX interpreter as
the user program module in the /*PROGRAM process section. Because almost all
batch-mode REXX interpreters take the name of the procedure to be interpreted as
a parameter, you pass the procedure name using the PARM operand of the
/*PROGRAM header statement.

For example, in order to execute an IBM TSO/E REXX routine named INFOSYS,
request that the IBM interpreter load module, IRXJCL, be executed. The REXX
procedure name, INFOSYS, is passed as the parameter value:

SUBSYS() (Optional) Valid Operand Values:

Specifies the name of the DB2 subsystem needed for the current application. The
connection is completed before control is passed to the application program. This
eliminates the need for the application program to use DSNALI to set up its own
DB2 thread.

You can specify "?" in place of an actual 4-byte DB2 subsystem name. When
SUBSYS(?) is coded, the Server substitutes the value of the
DEFAULTDB2SUBSYS start-up parameter in place of "?".

The DB2 subsystem must be active when the program is started. If the DB2
subsystem is not active, the program is not executed.

When any SUBSYS keyword operand is coded on a /*PROGRAM statement, it
is required that the PLAN keyword also be explicitly coded.

Note: If your program does not use DB2, you should not code either the
SUBSYS or PLAN keywords, or as an alternative, code SUBSYS(NONE) and
PLAN(NONE).

PLAN() (Optional) Valid Operand Values:

Specifies the name of the DB2 plan which is used to establish a connection to
DB2. The connection is completed before control is passed to the application
program. This eliminates the need for the application program to use DSNALI to
set up its own DB2 thread.

You can specify "?" in place of the actual 8-byte DB2 plan name. When PLAN(?)
is coded, the Server substitutes the value of the DEFAULTDB2PLAN start-up
parameter in place of "?".

The DB2 subsystem must be active when the program is started. If the DB2
subsystem is not active, the program is not executed.

When the PLAN keyword is used, the SUBSYS keyword must also be specified.

Keyword Description

Table 9–1. Program Statement Header Keywords
9-4 Shadow OS/390 Web Server User’s Guide December 1999

Using Other REXX Interpreters
Example

/*PROGRAM TYPE(MODULE) -
NAME(IRXJCL) -
INVOKE(LINK) -
PARM(INFOSYS other parameter values)

Or, to execute a CA-OPS/MVS REXX procedure, name the OPS/MVS
interpreter, OI, as the program module. This passes the REXX procedure name as
a parameter.

Run-time Environment of Other REXX
Interpreters

Other REXX interpreters are executed as a Web transaction processing subtask
within Shadow OS/390 Web Server's address space. If you code procedures using
TSO/E (or other) REXX interpreters, remember that Shadow OS/390 Web
Server's address space is not a TMP (Terminal Monitor Program). The run-time
environment within the server's address space supports only those functions which
are available for batch-mode execution of the interpreter.

Most commands of the "ADDRESS TSO" host command environment are NOT
AVAILABLE regardless if you are executing TSO/E REXX or Shadow/REXX.
Do not count on:

� The use of ADDRESS TSO within TSO/E REXX to support dynamic
allocation functions (the ALLOC and FREE TSO commands).

� Any other TSO/E command processor.

� Using any ISPF facilities which do not operate in batch execution mode.

Note:
NEON Systems ships two sample members within the NEON
WWW ruleset which illustrates how to invoke a CA-OPS/MVS
procedure as a Web transaction procedure. The supplied procedure
performs an MVS "D A,L" operator command and returns the
results to the Web browser.

To enable and run this sample, you must have Computer Associate's
CA-OPS/MVS installed on your system. Comments within the
OPSMVS member of the NEON WWW ruleset describe steps you
must take to enable and run this sample application. The supplied
URL value is "/NEON/OPSMVS/DAL".
December 1999 Shadow OS/390 Web Server User’s Guide 9-5

Executing User Programs
Web Server APIs for Other REXX Interpreters
Refer to the Shadow Programming Guide or to the online HTML to see which
REXX built-in functions and which language codes are available by non-Shadow/
REXX interpreters. When used with other REXX interpreters, some restrictions or
operational differences can apply to the built-in functions. Even if you are familiar
with using the functions from Shadow/REXX, consult the documentation for any
differences before assuming that the operation is exactly the same.

Writing C/370 Web Transaction Programs
To compile and successfully execute Web transaction programs written in C and
compiled with IBM's C/370 compiler, observe the following restrictions and
conventions:

� Include the following pragma at the top of all main routines:

#pragma runopts(noexecops,nospie,nostae,plist(mvs))

This pragma applies to V2 R1 version of the IBM C/370 compiler. The
options specified could be different for other releases of the compiler.

� Include the API definition header file, ‘sccphd.h’, supplied within Shadow
OS/390 Web Server's routine. This file contains definitions for constants and
external entry points used to invoke Web server API services.

#include "sccphd.h"

� The header file contains typedef statements which define Web server API
parameter argument types.

� The member, ‘SWCW1’, in the NEON-supplied sample library, contains a
functional C/370 example that you can compile and link. It illustrates the
required structure of C/370 Web transaction programs and some simple Web
server API invocations.

Writing COBOL Web Transaction Programs
To compile and successfully execute Web transaction programs written in
COBOL, observe the following conventions and restrictions:

� For COBOL II, specify the following compile time options:

S,XREF,NORES,NODYNAM,NORENT,MAP,LIST,APOST,TRUNC(BIN)

And these options for the linkage editor:

XREF,LET,LIST,MAP,NORENT,AMODE(31)

� For COBOL/370, specify the following compile time options:

S,XREF,LIB,MAP,LIST,APOST,RENT,TRUNC(BIN)
9-6 Shadow OS/390 Web Server User’s Guide December 1999

Writing PL/I Web Transaction Programs
And these options for the linkage editor:

RETN,AMODE=31,RMODE=ANY

� Copy the API definition file, ‘SBCPHD’, supplied with Shadow OS/390 Web
Server. This file contains definitions for constants and external entry points
used to invoke the server's API services.

DATA DIVISION.
WORKING-STORAGE SECTION.
COPY SBCPHD.

� The supplied ‘SBCPHD’ member contains 77-level constants relating API
function names (such as SWSSEND, SWSVALUE, or SWSTOKEN) to their
actual load module entry point names (such as SWCPSN, SWCPVL,
SWCPTK). These constants are supplied for reference purposes only.

When calling Web server API routines from COBOL, you must specify the
actual load module entry point name (such as, SWCPSN). Failure to do so can
result in compiler generated dynamic loading of subroutines. This is not
allowed or supported within Shadow OS/390 Web Server's address space.

For instance, to invoke the SWSSEND function, code the API invocation as:

CALL 'SWCPSN' USING ... parameters ...

� The member, ‘SWCBLW1’, in the NEON-supplied sample library contains a
functional COBOL example that you can compile and link. It illustrates the
required structure of COBOL Web transaction programs and some simple
Web server API invocations.

Writing PL/I Web Transaction Programs
To compile and successfully execute Web transaction programs written in PL/I,
observe the following conventions and restrictions:

� Declare the main entry point of your PL/I program as follows:

WEBPGM: PROC(PARMSTRING) OPTIONS(MAIN,REENTRANT);
DCL PARMSTRING CHAR(100) VARYING;

This example illustrates the required OPTIONS values as well as shows that a
standard MVS parameter list can be passed in varying character format.

� Copy the API definition file, ‘SPCPHD’, supplied with Shadow OS/390 Web
Server. This file contains definitions for constants and external entry points
used to invoke Web server's API services.

%INCLUDE SPCPHD;

� Make the following declaration within your main routine to suppress certain
PL/I run-time options.
December 1999 Shadow OS/390 Web Server User’s Guide 9-7

Executing User Programs
DCL PLIXOPT CHAR(100) VARYING INIT('NOSPIE,NOSTAE')
STATIC EXTERNAL;

� Do not use FETCH or RELEASE statements if SSL is used for encryption of
session data. This is due to the language environment restrictions for VM and
MVS.

The member, ‘SWPLIW1’, in the NEON-supplied sample library contains a
functional PL/I example which you can compile and link. It illustrates the
required structure of PL/I Web transaction programs and some simple Web server
API invocations.
9-8 Shadow OS/390 Web Server User’s Guide December 1999

CHAPTER 10:

Writing DB2-Based Web Applications

You can create DB2-based Web transactions using Shadow OS/390 Web Server in many different
ways. You can:

� Write a High-Level Language application program which executes SQL
statements and returns the output to the Web client.

� Write a REXX-language WWW procedure which uses the facilities of
Shadow REXXTOOLS to execute SQL statements.

� Create transaction definitions using an /*EXECSQL process section.

Shadow/REXXTOOLs DB2/SQL Interface
The documentation on Shadow/REXXTOOLs tools is in the HTML online files
under the topic heading, Writing DB2-Based Web Applications.

/*EXECSQL Process Sections
Shadow OS/390 Web Server has a built-in facility for executing host-based DB2
operations. This facility is implemented by defining an EXECSQL process
section within a WWW rule instead of a REXX (or other) process section.

Each EXECSQL process section header statement:

� Names the DB2 subsystem and plan to use.

� Gives the SQL statement to execute.

� Specifies how the results of the DB2 operation should display.

� Specifies the input HTML form used to collect query statement parameter
values.

EXECSQL process sections provide a simple, yet extremely powerful, means of
porting complex DB2 queries to the World Wide Web.

Operation of EXECSQL Sections
When a URL matches a WWW rule containing an EXECSQL section, a
transaction procedure is initiated which performs the following actions:

� (optional) Transmits an input HTML form to the end user to collect input
values which are substituted as parameter values into the SQL statement.

� Opens a thread to the requested DB2 subsystem and plan.
December 1999 Shadow OS/390 Web Server User’s Guide 10-1

Writing DB2-Based Web Applications
� Specifies which SQL statement in the EXECSQL section is executed.
Parameter values can be used to control the size of a query result set.

� Processes the returned result set to create an end user display. Options allow a
DB2 result set to be formatted automatically as an HTML table or DB2
column data that can be inserted into an output form.

The EXECSQL process section intrinsically handles the:

� Display of input forms.
� Connection to DB2.
� Execution of an SQL statement.
� Formatting of a result set.

Most DB2 queries can be constructed using EXECSQL in a matter of minutes.

Coding EXECSQL Process Sections
To define a EXECSQL process section, code the WWW event procedure
definition as follows:

/*WWW /aURLvalue ... WWW header stmt keywords
/*EXECSQL ... EXECSQL header stmt keywords
 SQL statement to be executed

In this example, the /*EXECSQL definition consists of three elements:

� The WWW header statement
� The EXECSQL process section header statement
� An SQL statement to be executed

EXECSQL Header Statement Keyword

Each keywords which can appear on the /*EXECSQL statement are listed in the
following table. Some keywords enclose nested keyword values.

Keyword Description

SUBSYS() Specify the DB2 subsystem targeted for the SQL operation being executed. If the
SUBSYS keyword is not coded, the start-up parameter, DEFAULTDB2SUBSYS,
is used to specify the DB2 subsystem name.

PLAN() Specify the name of the plan used for execution of the SQL statement. If the
PLAN keyword is not coded, the start-up parameter, DEFAULTDB2PLAN, is
used to specify the plan name.

Any DB2 plan name can be specified. However, the plan must contain the
NEON-supplied DBRM, ‘SWRXSQ’.

Table 10–1. Valid /*EXECSQL Parameters
10-2 Shadow OS/390 Web Server User’s Guide December 1999

/*EXECSQL Process Sections
MAXROWS() Specify an integer to limit the number of rows returned for the query. The
transaction is aborted if more than the specified number of rows are accessed.

If this operand is not specified, there is no limit on the number of individual rows
returned.

MAXBLOCKS() Specify an integer to limit the number of 50K blocks allocated to contain the
result set. If the block limit is exceeded, the SQL statement is aborted.

If this operand is not specified, the start-up parameter, PREFETCH, is used as the
limit of 50K blocks.

INPUTFORM() Specify this keyword to transmit an HTML entry form to the client. In order for
this to work, no query variables can accompany the inbound URL request. If they
do, the SQL statement is executed and the result set is formatted and transmitted.

If this operand is not specified, no entry form is transmitted to the client.

The following keywords are coded as sub-operands of the INPUTFORMAT
keyword. One of the sub-operands DDNAME and DSNAME must be specified.

• DDNAME()
Specifies the DD name of the dataset which contains the HTML form to be
transmitted. This sub-operand cannot be specified if the DSNAME sub-
operand is specified.

• DSNAME()
Specifies the dataset name which contains the HTML form to be transmit-
ted. This sub-operand cannot be specified if the DDNAME sub-operand is
specified.

• MEMBER()
Specifies the PDS member name which contains the HTML form to be
transmitted. This sub-operand is required if the dataset is a PDS.

AUTOFORMAT() Specify this keyword to automatically format the SQL result set as an HTML
table. Use either AUTOFORMAT or OUTPUTFORMAT as an EXECSQL
keyword. (If OUTPUTFORMAT is coded, do not specify AUTOFORMAT.)

The following keywords are coded as sub-operands of the AUTOFORMAT
keyword.

• TITLE()
(Required) The 1 to 64 byte string literal used as the title for the automati-
cally formatted HTML page. The operand can be enclosed in quotes.

• TABLE()
(Optional) Specifies the 1 to 64 byte string literal to be inserted into the
<TABLE> tag generated by the automatic format operation. If omitted, the
value 'BORDER' is assumed.

• BODY()
(Optional) Specifies the 1 to 64 byte string literal to be inserted into the
<BODY> tag generated by the automatic format operation. If omitted, a null
string is assumed.

• IGNORE()
Code up to 8, 30-byte column names to ignore during automatic formatting.
Ignored columns are not formatted as part of the HTML result set table. If
any names contain embedded blanks, enclose each column name in quota-
tion marks.

Keyword Description

Table 10–1. Valid /*EXECSQL Parameters
December 1999 Shadow OS/390 Web Server User’s Guide 10-3

Writing DB2-Based Web Applications
SQL Statement
The following apply to SQL statements:

� Code the SQL statement to be executed after the /*EXECSQL header
statement.

� The SQL statement can continue across multiple input lines.

To Parameterize the SQL Statement Using Variables

� Code the HTML extension insertion statements wherever user specified
parameter values are entered.

To Continue a String Literal across an Input Line
Boundary

� End the continued line with a plus sign (+). This signals continuation of a
literal and forces the next line to be concatenated immediately behind the
preceding line (after removing the plus sign).

OUTPUTFORMAT() Specify this keyword to format the SQL result set by invoking HTML Extension
processing; special merge processing interfaces are provided for this facility. Use
either AUTOFORMAT or OUTPUTFORMAT as an /*EXECSQL keyword. (If
AUTOFORMAT is coded, do not specify OUTPUTFORMAT.)

The sub-operands of this keyword specify the text file used as a template for
creating the resultant client display. The following keywords are coded as sub-
operands of the OUTPUTFORMAT keyword. One of the sub-operands
DDNAME and DSNAME must be specified.

• DDNAME()
Specify the 1 to 8 byte DD name of the dataset containing the output tem-
plate. This sub-operand cannot be specified if the DSNAME is specified.

• DSNAME()
Specifies the dataset name containing the output template. This sub-operand
can not be specified if the DDNAME is specified.

• MEMBER()
Specifies the 1 to 8 byte PDS member name of the dataset containing the
output template. This sub-operand is required if the dataset is a PDS.

• CONTENTTYPE()
Specifies the 1 to 50 byte string literal used as the MIME Content-type:
specification. If this operand is omitted, ‘text/html’ is assumed.

ERRORURL Specify this keyword to use an alternate Auxiliary Error URL to process the error.
This replaces the Neon supplied URL of SYSTEM/ERROR/AUX.

Keyword Description

Table 10–1. Valid /*EXECSQL Parameters
10-4 Shadow OS/390 Web Server User’s Guide December 1999

/*EXECSQL Process Sections
EXECSQL Examples

Sample One

The following example is one of the sample transactions supplied with the
Shadow OS/390 Web Server as URL “/NEON/SQLEXEC2”.

� When the transaction is first accessed, no query variables are sent inbound
with the request. The EXECSQL processor transmits the input form, instead
of processing the SQL statement.

� The end user completes the form and presses the submit button. The form runs
the same /*EXECSQL rule using the same URL value, except this time, query
variables are sent inbound.

� Because query variables are sent with the request, the EXECSQL processor
executes the SQL statement. The result set data is automatically formatted
into an HTML table and sent back to the end user.

Sample One's /*EXECSQL rule contains the following:

/*WWW /NEON/SQLEXEC2
/*EXECSQL MAXROWS(400) -
 INPUTFORM(DDNAME(HTMFILE) -
 MEMBER(SAMPSQL2) -
) -
 AUTOFORMAT(TITLE('Search Results') -
 BODY('bgcolor="#FFCC33"') -
)
 Select * from Q.Staff where job = '<%www.var.jobname%>'
 order by <%www.var.order%>

Sample Two

In this sample transaction, the URL, “/NEON/SQLEXEC3”, is processed in exactly
the same way as the first one, with an input form and automatic output formatting.
However, in this example, the input form solicits the user to key an entire SQL
statement, which is then executed.

If an invalid SQL statement is entered,/*EXECSQL routes controls to a special
server error procedure, “SYSTEM/ERROR/AUX”. This procedure sends an HTML
page specially formatted to present abnormal conditions encountered when
processing /*EXECSQL and other built-in server turn-key facilities. It formats
more complex reason information than does “SYSTEM/ERROR/500”.
December 1999 Shadow OS/390 Web Server User’s Guide 10-5

Writing DB2-Based Web Applications
Sample Two's /*EXECSQL rule contains the following:

 /*WWW /NEON/SQLEXEC3
 /*EXECSQL MAXROWS(400) -
 INPUTFORM(DDNAME(HTMFILE) -
 MEMBER(SAMPSQL3) -
) -
 AUTOFORMAT(TITLE('Search Results') -
 BODY('bgcolor="#FFCC33"') -
)
 <%www.var.sqlstmt%>

Sample Three

This sample transaction if for the URL “/NEON/SQLEXEC4”. It performs
approximately the same function as the first sample; however, this sample uses the
OUTPUTFORMAT parameter to specify a file in which the DB2 result data is
inserted. Shadow OS/390 Web Server HTML Extension Statements are used to
format the result set data in a customized Web page rather than as a standard
HTML table.

Sample Three's /*EXECSQL rule contains the following:

/*WWW /NEON/SQLEXEC4
/*EXECSQL MAXROWS(400) -
 OUTPUTFORMAT(DDNAME(HTMFILE) -
 MEMBER(SQLEXEC4) -
 CONTENTTYPE(text/html) -
) -
 select * from q.staff

Notes Regarding Samples

These sample WWW transactions were installed with Shadow OS/390 Web
Server; however, they may not be operational on your system due one of the
following reasons:

� The samples were deleted after the product was installed.

� A different DB2 subsystem name or plan name needs to be specified for these
WWW rules to execute properly.

� The sample DB2 table, Q.STAFF, is not present on your system.
10-6 Shadow OS/390 Web Server User’s Guide December 1999

CHAPTER 11:

Using TSO/E Services For Web
Transaction Processing

You can create Web transactions which use the services of TSO/E to perform a procedure and build a
client response. The TSO/E transaction processing environment is supported by Shadow OS/390 Web
Server through the auxiliary TSO/E address spaces.

How TSO/E Auxiliary Servers Operate
There are three basic functions to operating the TSO/E auxiliary server:

Starting When the auxiliary server facility is activated, Shadow OS/390 Web
Server issues the MVS START command(s) to initialize one or more
auxiliary TSO/E servers. The server always initializes the minimum
number of servers specified by the TSOMINSERVERS startup
parameter.

Monitoring
During operation, the server can start additional auxiliary server
address spaces, but it is limited by the maximum designated by the
TSOMAXSERVERS startup parameter. An additional auxiliary
server starts each time the “waiting for execution” command queue
reaches a threshold limit. The threshold limit is specified by the
TSOSRVQUEUEADD parameter.

Periodically during operation, Shadow OS/390 Web Server checks to
see if more auxiliary servers are started than the minimum server
value. If yes, and if any server has been dormant for a specified
period of time, the auxiliary server is terminated. (The dormancy time
value is set by the TSOSRVDORMANTTIME startup parameter.)
This action keeps the number of active auxiliary server address
spaces in line with the actual work load being processed by the server.

Stopping When the Shadow OS/390 Web Server is shutdown, it automatically
terminates all auxiliary TSO/E servers.

Auxiliary Server Operation
Although each auxiliary TSO/E server is initialized as an MVS started task, each
operates as a batch mode Terminal Monitor Program (TMP). During batch mode
operations, TSO/E:

� Reads each command to be processed from the ‘SYSTSIN’ dataset.
� Writes all responses to the ‘SYSTSPRT’ dataset.
December 1999 Shadow OS/390 Web Server User’s Guide 11-1

Using TSO/E Services For Web Transaction Processing
Direct terminal output (such as TGET and TPUT) cannot be used during batch
mode operation since there is no terminal session active.

JCL

The JCL used to start each auxiliary server contains a ‘SYSTSIN’ and
‘SYSTSPRT’ DD statement which specifies the SUBSYS= keyword instead of an
actual dataset location. The SUBSYS= keyword points to Shadow OS/390 Web
Server's MVS subsystem identifier. Only TSO/E address spaces that have been
initialized by Shadow OS/390 Web Server are allowed to connect to it via the
SUBSYS= DD statement.

When the TMP (IKJEFT01) opens the ‘SYSTSIN’ and ‘SYSTSPRT’ datasets,
these datasets are intercepted by Shadow OS/390 Web Server. The main Shadow
OS/390 Web Server’s address space is then able to send a command to the TSO/E
server by writing the command through the ‘SYSTSIN’ pipe. It intercepts the
output generated by each command by reading it from the ‘SYSTSPRT’ pipe.

Using TSO/E Commands in Web Transactions
TSO/E commands can be passed to an auxiliary address space (via ‘SYSTSIN’)
for execution as part of a Web transaction definition. The transaction waits for the
command to execute within the auxiliary server. When the command completes,
the original transaction reads the response (from ‘SYSTSPRT’) and creates a
response for the Web client.

Time Limits

When Web transactions are submitted with a TSO/E command for execution, the
server implements a time limit. If that limit is exceeded, the original Web
transaction is signaled that a time-out has occurred and it is not allowed to
continue operation. This facility keeps Web transactions from waiting for an
indefinitely long time, when a response is not forthcoming.

User IDs

Each time a new command passes through the ‘SYSTSIN’ pipe, the run-time
effective userid of the requesting Web transaction is propagated into the TSO/E
address space. This means any command operating within an auxiliary address
space is authorized to access the same MVS system resources that the original
Web transaction is allowed to access.

Restrictions on Commands Executed Within an
Auxiliary Server

Commands processed within an auxiliary server must conform to the constraints
of batch mode TSO/E operation. The commands cannot:

� Attempt to read or write to an actual terminal session.
11-2 Shadow OS/390 Web Server User’s Guide December 1999

Activating the TSO Server Facility
� Attempt to read additional data from ‘SYSTSIN’. Only the command, along
with additional parameters, can be passed to the TMP as a command request.
If a command procedure issues a READ or GET request to ‘SYSTSIN’, it is
cancelled by the server.

Resource Restrictions

Shadow OS/390 Web Server imposes limitations on the resources which any
single command can consume. Each command scheduled into an auxiliary server
is cancelled if:

� The original Web transaction's time limit is exceeded.

� It exceeds a fixed limitation on wall clock time allowed for execution of any
single command.

� It enters a sustained wait state which exceeds a fixed limitation on wall clock
time allowed for waits by any single command.

� It exceeds a fixed limitation on CPU time allowed for execution of any single
command.

� It generates excessive output which exceeds a fixed limitation on the amount
of output allowed per command.

If any of these limitations are exceeded, the server cancels the TSO/E command
procedure and re-dispatches the original Web transaction.

When a command is cancelled for one of the above reasons, the entire auxiliary
server is normally cancelled and restarted. This action is part of the timekeeping
function and is designed to ensure a “clean” operating environment for any TSO/E
commands subsequently scheduled.

Release Restrictions
This release of Shadow OS/390 Web Server does not support the use of Web
server Application Programming Interfaces from within an auxiliary TSO/E
address space. A future release of Shadow OS/390 Web Server will provide cross-
memory support for many of these API interfaces.

Activating the TSO Server Facility
Shadow OS/390 Web Server contains an optional facility which allows you to
create Web transactions using the capabilities of TSO/E. Because the server does
not operate as a Terminal Monitor Program (TMP), TSO/E services are not
directly available within the server's address space. However, Shadow OS/390
Web Server still allows you to use the services of TSO/E to create transactions.

The Web server does this by starting, monitoring and controlling up to 30
additional TSO address spaces. TSO/E commands can be scheduled into one of
December 1999 Shadow OS/390 Web Server User’s Guide 11-3

Using TSO/E Services For Web Transaction Processing
these out-board TSO tasks for execution. The output for each command is then
intercepted and used to create Web transaction responses.

To activate this optional facility, you must:

� Set up the out-board TSO server JCL.
� Configure Shadow OS/390 Web Server's start-up parameters.

Setting Up the SWSTSO Started-Task JCL
The SWSTSO member of the installation CNTL library contains the JCL
procedure needed to run each auxiliary TSO server address space. Shadow OS/
390 Web Server's main address space issues MVS START commands to bring up
the out-board TSO servers.

You must tailor the JCL (found in the ‘SWSTSO’ member) as follows:

1. Change the LOADLIB parameter to contain the name of Shadow OS/390
Web Server's load library or add your own load libraries to the STEPLIB
concatenation defined within the JCL.

2. Change the REXXLIB parameter to contain the name of Shadow OS/390 Web
Server's SYSEXEC library or add your own EXEC libraries to the SYSEXEC
concatenation defined within the JCL.

3. Tailor or add any other dataset definitions required to execute the TSO within
the out-board address space.

4. Copy the updated ‘SWSTSO’ member into a procedure library which is
searched by the MVS START command (this could be SYS1.PROCLIB).

If you are running a security product (like RACF, ACF/2, or Top Secret), you
might need to define a userid for the out-board TSO server address spaces. To do
this, associate the name with the SWSTSO start-up procedure, and then set up
access rules so the userid can access required datasets.

Configuring Initialization Parameters
You must set the values of various start-up parameter to configure the out-board
server facility. These are specified by coding additional statements within the
SWSxIN00 start-up parameterization EXEC procedure.

Example:

"MODIFY PARM NAME(TSOSRVACTIVE) VALUE(YES)"

The parameters, which control the auxiliary server facility, are explained in the
following table.
11-4 Shadow OS/390 Web Server User’s Guide December 1999

Activating the TSO Server Facility
Parameter Name Description

TSOSRVACTIVE • YES - Enables the out-board TSO server facility.
• NO - (default) Disables the out-board TSO server facility.

TSOSRVTIMELIMIT Specify a default time limit, in hundredths of a second, that a WWW rule waits
for a TSO command to complete. If the command takes longer, the WWW rule
revokes the command request.

TSOMINSERVERS Specify an integer value between 1 and 30 for the minimum number of out-board
TSO servers that the SWSS main task starts and monitors.

TSOMAXSERVERS Specify an integer value between 1 and 30 for the maximum number of out-board
TSO servers that the SWSS main task starts and monitors.

TSOSRVMAXQUEUE Specify an integer value giving the number of wait-for-execution queue entries
that the server manages.

TSOSRVQUEUEADD Specify a threshold value. Whenever the wait-for-execution queue reaches this
number of active entries, the server starts a new TSO server address within the
TSOMINSERVERS and TSOMAXSERVERS limitations.

TSOSRVDORMANTTIME Specify the time, in seconds, after which a dormant server is stopped, when more
than TSOMINSERVERS are running.

TSOSRVCMDRUNTIME Specify the maximum amount of wall clock time, in seconds, any single TSO
command is allowed to run. If the limit is exceeded, the TSO command process
(and server) is canceled with a S322 abend (and then restarted automatically, if
the MIN/MAX values allows it).

TSOSRVWAITTIME Specify the maximum amount of wall clock time, in seconds, any single TSO
command is allowed to place itself into a wait for state. If the limit is exceeded,
the command is canceled.

TSOSRVCPUTIME Specify the maximum amount of CPU time (in seconds) that any single TSO
command can use before being canceled with an S322 abend.

TSOSRVMAXLINES Specify the maximum number of PUT operations any single command can issue
to ‘SYSTSPRT’. The server cancels itself with S722 if this limit is exceeded.

TSOSRVPROCNAME Specify the name of the started procedure that SWS uses to start each server. The
default value is ‘SWSTSO’.

TSOSRVSWAPPABLE • YES. Makes each TSO server address space swappable.
• NO. Makes each TSO server address space non-swappable.

TSOSRVSTARTUPPARM Use this parameter to pass additional start-up parameters to the ‘SWSTSO’
procedure. The string specified here is appended to the START command issued
by SWSS

Table 11–1. Initialization Parameters for the Out-Board Server
December 1999 Shadow OS/390 Web Server User’s Guide 11-5

Using TSO/E Services For Web Transaction Processing
Building Shadow/REXX Based TSO/E Web
Transactions

As discussed in the Shadow/REXX documentation (see the online HTML
documentation), the services of TSO/E are not directly available to Web
transaction procedures written in Shadow/REXX. For example, the following
Web transaction procedure fails, because TSO/E is not available within the
Shadow OS/390 Web Server's main address space.

/*WWW /ThisFails
 /*REXX
 ADDRESS TSO
 "LISTA"

The LISTA command fails to execute because there is no TMP (Terminal Monitor
Program) available to process the command. (Only the EXECIO is supported in
this environment and only because NEON Systems has implemented EXECIO
directly within Shadow/REXX.)

To get around this limitation, Shadow OS/390 Web Server implements the
ADDRESS TSOSRV host command environment. ADDRESS TSOSRV differs
from the more familiar ADDRESS TSO interface, because it schedules execution
of the TSO/E command within an out-board address space where the TMP
(Terminal Monitor Program) is available.

ADDRESS TSOSRV - Command Types
When a command is passed to the ADDRESS TSOSRV host environment, it falls
into one of two command classes:

Pseudo-Commands
Pseudo-commands are processed directly by the ADDRESS
TSOSRV interface, and are used to parameterize the interface. For
instance, a pseudo-command can be used to specify the amount of
time the interface waits for subsequent TSO/E commands to complete
execution.

Any valid TSO/E Command
Any command string that is not a pseudo-command passes to an out-
board TSO server for execution. The results of these commands (the
output generated to the ‘SYSTSPRT’ dataset) are placed on the
REXX external data queue. The original command requestor can
retrieve this output, reformat it, as needed, and generate a browser
response.
11-6 Shadow OS/390 Web Server User’s Guide December 1999

Building Shadow/REXX Based TSO/E Web Transactions
Pseudo Command Formats
The following table lists the pseudo-commands that can be passed to the
ADDRESS TSOSRV interface.

Issuing a Pseudo-Command

Issue a pseudo-command as follows:

ADDRESS TSOSRV /* issue following to TSOSRV environment */
"settimeout 200" /* wait 2 seconds for command completion */

Return Values

If the operand of a pseudo-command is invalid, the interface sets the built-in RC
(return code) variable to 8. For successful execution of a pseudo-command, the
RC variable is set to the value 0.

Command Name Operand Command Action

SETTIMEOUT An integer between 1 and
90,000

Sets the time limit, in hundredths of a second, that the
interface waits for execution of a TSO/E command in an out-
board server.

GETTIMEOUT None Returns the current execution timeout value in a message on
the external data queue. For example:

TSO REMOTE EXECUTION TIMEOUT VALUE SET TO n

where n gives the current timeout value.

SETOUTPUTTRACE YES or NO Turns ‘SYSTSPRT’ tracing on or off within the interface.
When output tracing is on, each message that the TSO/E
command issues to ‘SYSTSPRT’ is logged in the wrap-
around trace

STRIPPROMPTS YES or NO Specifies handling of messages issued by the TMP. These
messages include the echoing of the TSO/E command string,
certain RACF or ACF/2 status messages, and the READY
prompt when each command completes.

Table 11–2. Pseudo Commands Used with ADDRESS TSOSRV
December 1999 Shadow OS/390 Web Server User’s Guide 11-7

Using TSO/E Services For Web Transaction Processing
TSO/E Command Formats

Command Formats

Except for pseudo-commands, any command string passed to the ADDRESS
TSOSRV interface is scheduled for execution within an out-board TSO server
address space. The command is executed, and the results are placed into the
external data queue of the REXX procedure that issued the ADDRESS TSOSRV
request.

Run-Time Userid

The run-time effective userid, under which the current Web transaction procedure
operates, is propagated to the TSO server when the command is scheduled for
execution. This means the authorization level of the command executed in the
out-board server cannot surpass the authorization of the original Web transaction
subtask that scheduled it.

TSO/E Commands for Out-board Execution

Almost any valid TSO/E command can be scheduled for out-board execution.
This includes simple built-in TSO/E commands, such as “LISTALC”, the name
of a REXX or CLIST procedure, or invocations of ISPF/PDF or other TSO/E
command processors. The command name and arguments pass as a single string
via the ADDRESS TSOSRV interface.

The maximum size of each TSO/E command (and it's arguments) is limited by the
interface to 320 bytes in length.

Return Values

The ADDRESS TSOSRV interface sets a return code value into the built-in RC
variable for each command issued. You need to examine this variable to determine
if the command was successful.

The following table lists the most common values returned in the RC variable
following the execution request. If the execution fails and the code is not in this
table, check the wrap-around trace or the MVS operator console. The server logs
text messages describing the failure to one or both of these locations.

Value of RC Variable Meaning

0 through 19 Execution was successful. If set to a non-zero value in this range, it indicates an
exceptional condition resulted from the execution of the command.

Less than 0 Execution failed.

The reason for the failure is logged in the server's wrap-around trace.

20 The out-board TSO server facility is not active.

Table 11–3. Return Values for ADDRESS TSOSRV
11-8 Shadow OS/390 Web Server User’s Guide December 1999

Building Shadow/REXX Based TSO/E Web Transactions
Queued Results

After successful execution of an out-board command, the results are saved to the
external data queue of the requesting procedure. From there, they can be re-
processed, if needed, by the requesting REXX procedure to generate an HTML
page or other response. You can use the REXX-language QUEUE() function to
interrogate the number of external data queue lines returned by the procedure, and
the PARSE PULL instruction to retrieve each data line.

For large result sets, you may need to specify a large value for the QUEUESIZE
parameter of the /*WWW rule header statement.

ADDRESS TSOSRV Example
The following example illustrates the use of ADDRESS TSOSRV in Shadow/
REXX language WWW procedure. The command, “lista”, is executed within an
auxiliary server address space and lists the allocations within the out-board server,
not within Shadow OS/390 Web Server's main address space.

32 Execution of an out-board TSO command was rejected by the server's authorization
facility.

48 Execution aborted. The command was scheduled for execution within an out-board
server, but it did not complete within the allowed time-out period.

Other The command could not be executed, or did not complete. The reason for the failure is
logged in the wrap-around trace, or as a message issued to the MVS operator console
from within the out-board server.

Scheduling command requests within an auxiliary address space is a complex procedure.
The interface can fail or cancel command execution for a number of reasons. For
instance, out-board execution of a command can be cancelled due to excessive CPU time
utilization (with an S322 abend), or invalid authorization to open a dataset (with S913).

Note:
The sample ‘SWSTSO’ started-task JCL supplied with the server
allocates only a few datasets within each TSO server address space.
Unless you modify this started-task procedure, or execute a
command procedure within the server which allocates additional
datasets, the LISTA command in the sample displays only 6-7
allocated datasets instead of the 100 or so allocated datasets you
would normally see.

Value of RC Variable Meaning

Table 11–3. Return Values for ADDRESS TSOSRV
December 1999 Shadow OS/390 Web Server User’s Guide 11-9

Using TSO/E Services For Web Transaction Processing
Example

/*WWW /listacmd QUEUESIZE(400)
/*REXX
 ADDRESS TSOSRV /* pass commands to TSOSRV envir. */
 "SETTIMEOUT 200" /* wait 2 seconds for response */

 "LISTA" /* issue LISTA in aux. server */

 if RC <> 0 then do /* handle bad return codes */
 ADDRESS SWSSEND /* switch environments */
 "HTTP/1.0 500 Error" /* generate HTTP response header */
 "Content-type: text/html" /* specify type */
 "" /* required NULL line */
 "<HTML><BODY>" /* generate error response page */
 "<H1>Error</H1>" /* heading */
 "<P>Execution of the command"
 "failed with RC="RC /* last part of message */
 "</body></html>" /* end of HTML page */
 return /* exit this WWW procedure */
 end /* end of error check */

 ADDRESS SWSSEND /* switch environments */
 "HTTP/1.0 200 OK" /* generate HTTP response header */
 "Content-type: text/plain" /* specify type */
 "" /* Required NULL line */
 "The LISTA command returned the following:"
 " " /* insert blank line */
 while queue() > 0 /* for each line returned by TSO */
 parse pull dataline /* get next SYSTSPRT line */
 dataline /* write line to output stream */
 end /* end of read loop */
 return /* exit this WWW procedure */

/*TSOSRV Process Sections
The Shadow OS/390 Web Server has a built-in facility for executing out-board
TSO/E server command requests. This facility is implemented by defining a
TSOSRV process section within a WWW rule. The TSOSRV process section is
coded instead of a Shadow/REXX process section which contains an ADDRESS
TSOSRV request.

Each TSOSRV process section header statement can specify the time limit placed
upon external TSO/E command execution and the input HTML form to be used to
collect query statement parameter values. TSOSRV process sections provide a
simple, yet extremely powerful, means of building out-board TSO/E command
procedure Web transactions.
11-10 Shadow OS/390 Web Server User’s Guide December 1999

/*TSOSRV Process Sections
Operation of TSOSRV Sections
When a URL matches a WWW rule containing an TSOSRV section, a transaction
procedure is initiated, which performs the following actions:

� An input HTML form can optionally be transmitted to the end user to collect
input values, which can be substituted as parameter values in the TSO/E
command statement.

� The TSO/E command statement specified in the TSOSRV section is
scheduled for execution within an out-board TSO/E auxiliary server address
space. Parameter values can be used as command arguments on the statement.

� The TSO/E command output is intercepted by the Shadow OS/390 Web
Server and transmitted directly to the end user.

The TSOSRV process section intrinsically handles the display of input forms,
submission of the command to the external TSO/E server address space, and error
recovery, if the command cannot be executed to completion.

Coding TSOSRV Process Sections
To define a TSOSRV process section, code the WWW event procedure definition
as follows:

/*WWW /aURLvalue ... WWW header stmt keywords
 /*TSOSRV ... TSOSRV header stmt keywords
 TSO/E Command statement to be executed

An TSOSRV definition consists of three elements:

� WWW header statement
� TSOSRV process section header statement
� Command statement to be executed in the auxiliary server

TSOSRV Header Statement Keyword

Each of the keywords which can appear on the /*TSOSRV statement are given in
the table below. Some of these keywords enclose nested keyword values.

Note:
The command procedure must directly create the out-board
response, including the HTTP response header, HTML, or other data
to be displayed.
December 1999 Shadow OS/390 Web Server User’s Guide 11-11

Using TSO/E Services For Web Transaction Processing
TSO/E Command Statement

Code the command statement to be executed, following the /*TSOSRV header
statement. The command statement may be continued across multiple input lines.

To parameterize the command statement, use variables by coding HTML
extension insertion statements wherever user specified parameter values should be
entered. To continue a string literal across an input line boundary, end the
continued line with a plus-sign (+). The plus-sign signals continuation of a literal
and forces the next line to be concatenated immediately behind the preceding line
(after it removes the plus-sign).

Keyword Description

TIMELIMIT() Specify an integer in the range of 10 to 90000, giving the time limit imposed for
command execution. The value specified is in hundredths of a second.

This operand limits the amount of time the TSO/E command may take to
complete. Execution of the command is canceled if the limit is exceeded.

INPUTFORM() Specify this keyword if you wish for the TSOSRV procedure to transmit an
HTML entry form to the client. The entry form is only transmitted if no query
variables accompany the inbound URL request. If query variables are present, the
command statement is executed and the result set transmitted.

If this operand is not specified, no entry form is transmitted to the client.

The following keywords are coded as sub-operands of the INPUTFORMAT
keyword. One of the sub-operands, either DDNAME or DSNAME, must be
specified.

• DDNAME()
Specifies the DD name of the dataset which contains the HTML form to be
transmitted. This sub-operand can not be specified if the DSNAME sub-
operand is specified.

• DSNAME()
Specifies the dataset name with contains the HTML form to be transmitted.
This sub-operand can not be specified if the DDNAME sub-operand is spec-
ified.

• MEMBER()
Specifies the PDS member name that contains the HTML form to be trans-
mitted. This sub-operand is required if the dataset is a PDS.

Table 11–4. TSOSRV Header Statement Keyword
11-12 Shadow OS/390 Web Server User’s Guide December 1999

/*TSOSRV Process Sections
TSOSRV Example
This example rule is handled by the server, as follows:

� When the transaction is first accessed, no query variables are sent inbound
with the request. The TSOSRV processor transmits the input form, instead of
processing the command statement line.

� The end user completes the form and presses the submit button. The form runs
the same /*TSOSRV rule using the same URL value, except this time, query
variables are sent inbound.

� Because query variables are sent with the request, the TSOSRV processor
schedules the command statement for execution within an auxiliary server
address space. The command procedure, MYCLIST, generates the resulting
outbound response.

The value of the run-time query variable WWW.VAR.FILENAME is substituted
into the command statement before execution.

� If execution of the command fails for any reason, the /*TSOSRV processor
regains control and transmits an error response page.

/*WWW /NEON/SQLEXEC2
 /*TSOSRV TIMELIMIT(400) -
 INPUTFORM(DDNAME(HTMFILE) -
 MEMBER(SAMPTSO))
 MYCLIST <%www.var.filename%>

Coding the External Command Procedure
The command procedure, executed within the auxiliary server, must create the
entire response for the Web transaction. The output generated by the procedure
(data written to ‘SYSTSPRT’), is sent directly to the Web client.

Data written to the ‘SYSTSPRT’ dataset is interpreted by the server as follows:

� NULL data lines cannot be written to ‘SYSTSPRT’, and are discarded by the
TMP (terminal monitor program). Do not attempt to write NULL data lines to
‘SYSTSPRT’, as the server is not able to intercept or process these.

� Any data line which beginning with a X'00' byte is interpreted by the server
to be a BINARY data line. The server removes the leading X'00' byte and
transmits the remainder of the data line unedited.

� If the data line begins with the five-byte sequence, X'FF'||NULL, the server
interprets this as a request to transmit a NULL data line. The server transmits
a CF/LF pair instead of the supplied data line.

� All other data sent to ‘SYSTSPRT’ is interpreted by the server as TEXT
output. Trailing blanks are removed, except the last one, if all of them are
December 1999 Shadow OS/390 Web Server User’s Guide 11-13

Using TSO/E Services For Web Transaction Processing
blank. The data line is translated from EBCDIC to ASCII, and a CF/LF
sequence is appended to the end of the line.
11-14 Shadow OS/390 Web Server User’s Guide December 1999

CHAPTER 12:

AutoHTML - Web Enabling
Transactions

In order to automatically generate Web transactions (AutoHTML), you must:

� Configure Shadow OS/390 Web Server to support the transaction server. See
the Installation Guide for more information.

� Generate input and output transaction data format maps using Shadow OS/
390 Web Server’s Data Mapping Facility.

� Use the Data Mapping Facility to generate the HTML to display the output
data on the Web browser.

� Build the rule to process the transaction.

IMS Implementation
Shadow OS/390 Web Server uses IMS/APPC in order to execute online IMS
transactions and commands.

Installation and Configuration Overview
In order to use this interface, you must:

1. Install and configure the IMS Transaction Server to support IMS/APPC.

� Configure IMS/APPC.
� Install the NEON-supplied IMS LU 6.2 User Edit Exit (DFSLUEE0).

2. Configure MVS/APPC Support within Shadow OS/390 Web Server MVS/
APPC Prerequisites.

3. Configure Shadow OS/390 Web Server for IMS transactions.

4. Enable IMS Transaction Server.

5. Verify the Installation.

Refer to the Installation Guide for detailed information.
December 1999 Shadow OS/390 Web Server User’s Guide 12-1

AutoHTML - Web Enabling Transactions
Enable Web Transactions
Once you have the APPC interface configured, you must Web enable your IMS
transactions using the Data Mapping Facility to convert your MFS Source to the
required format maps and generate the HTML page in the image of your output
MFS screen using the following steps:

Step 1: Generate Format Maps

Step 2: Generate the HTML

Step 3: Build an /#EXECIMS rule

Step 4: Generate the IMS Default HTML

See Chapter 13, “Data Mapping Facility,” for more information on using the Data
Mapping Facility.

Step 1. Generate Format Maps

Before using the Data Mapping Facility to generate your format maps, you must
know the following:

� The name of your map dataset. This is the dataset assigned to the
“SWSMAPP” ddname in Shadow OS/390 Web Server’s startup JCL.

� The name of your MFS Source library. Contact your IMS System
Administrator if you do not know the name of this library.

Using the Data Mapping Facility

In order to generate the input and output format maps from your MFS source:

1. Select the Data Mapping Facility from the Primary Option Menu.

2. Select the EXTRACT option from the Mapping Facility panel.

3. Select the Extract MFS option from the Mapping Facility panel.

The following screen appears:
12-2 Shadow OS/390 Web Server User’s Guide December 1999

IMS Implementation
Figure 12–1. The Extract MFS panel from the Data Mapping Facility

4. Enter the following information on the Extract MFS panel:

� Your MFS Source library name. This is the “Source Library”.
� Shadow OS/390 Web Server’s Map dataset name. This is the “Map

Library”.

The MFS Source member name can also be a member name mask. To extract
all members in the source library, enter an asterisk (*). To see the member
selection list, either:

� Enter a member name mask (such as A*).
� Do not enter a member name specification.

The member selection list is created by browsing each member in the MFS
source library. If a MSG, FMT or COPY statement is found in the member,
the member is added as a selectable entry. However, if a member is the subject
of a copy member in another member, it will be removed from the selection
list.

The replace option allows you to indicate that you do (Y) or do not (N) want
pre-existing data map members to be replaced within the Data Map library.

5. Make the Maps Available to the server.

Once you have extracted all the members you want to, press <PF3> (two
times) in order to back up to the Shadow Server Mapping Facility Menu. At
this screen, select the Map Refresh option. This makes your format maps
available to Shadow OS/390 Web Server.

 -------------- Shadow OS/390 Web Server MFS Source Extract ---------------

 COMMAND ===> __

 MFS Dataset Library: Map Dataset Library:
 Project . . . ________ Project . . . ________
 Group ________ Group ________
 Type ________ Type ________
 Member . . . ________

 Other MFS Dataset Name:
 Data Set Name . . . ___

 Other Map Dataset Name:
 Data Set Name . . . ___

 Replace Output Map . _ (Y or N)

 Enter END to EXIT
December 1999 Shadow OS/390 Web Server User’s Guide 12-3

AutoHTML - Web Enabling Transactions
Essentially, the extract generates the equivalent of a:

� Message Input Descriptor (MID).
� Message Output Descriptor (MOD).
� Device Output Format (DOF).

The Input Map (or MID)
The Input Map (or MID) is used to format data from the HTML page
for input to a specific transaction or command. Each HTML page
must contain a query variable named “SWSINMAP” which points to an
extracted map. The Input Map has a pointer to the Output Map. By
default, this Output Map will be used to parse the transaction output.
If you install the NEON supplied IMS LU 6.2 User Edit Exit
(DFSLUEE0), the Output Map (MOD) specified by the IMS
transaction will be used instead.

The Output Map (or MOD)
The Output Map (or MOD) is used to parse the output from the IMS
transaction and build SQL Column Names. These column names are
the same as those specified in the MFS Source. The Output Map
contains a pointer to the Output Screen.

The Output Screen (or DOF)
The Output Screen (or DOF) is used to define the literals displayed
in the HTML page as well as the placement of the SQL Column data
supplied by the online IMS transaction. The Output Screen Map
contains the name of the associated HTML dataset and member.

Step 2. Generate the HTML

The objective of this facility is to generate the HTML in the image of your output
MFS screen. This is accomplished by formatting the HTML from the “DEV” (or
Device Output Format (DOF)) portion of the MFS Source.

Before using the Data Mapping Facility, you must know the following:

� The name of your map dataset. This is the dataset assigned to the
“SWSMAPP” ddname in Shadow OS/390 Web Server’s startup JCL.

� The name of your output HTML Source library. You may create your own
dataset with the following specifications:

− Record Format is VB
− Record Length is 19036
− Block Length is 19040
− Dataset Organization is PO
12-4 Shadow OS/390 Web Server User’s Guide December 1999

IMS Implementation
Using the Data Mapping Facility

In order to generate HTML from your format maps:

1. Select the Data Mapping Facility from the Primary Option Menu.
2. Select the HTML Generation option.
3. Select the IMS HTML option.

The following panel appears:

Figure 12–2. The IMS HTML Generation panel

4. Enter Data on the Gen HTML panel. Enter:

� Your HTML Source library name as the “HTML Library”.
� Shadow OS/390 Web Server’s map dataset name.

HTML can only be generated from MFS screen images or DOF’s (Device
Output Formats). For this reason, you can only specify mapping dataset
member names that represent screen types.

To generate HTML for all “screen” type members within the data map
dataset, enter an asterisk (*). To see the member selection list, either:

� Enter a member name mask (such as A*).
� Do not enter a member name specification.

 -------------- Shadow OS/390 Web Server IMS HTML Generation --------------

 COMMAND ===> __

 Map Dataset Library: HTML Dataset Library:
 Project . . . ________ Project . . . ________
 Group ________ Group ________
 Type ________ Type ________
 Member . . . ________ Member . . . ________

 Other Map Dataset Name:
 Data Set Name . . . ___

 Other HTML Dataset Name:
 Data Set Name . . . ___

 Replace HTML member. _ (Y or N)
 HTML Heading . . . __

 Enter END to EXIT
December 1999 Shadow OS/390 Web Server User’s Guide 12-5

AutoHTML - Web Enabling Transactions
The HTML replace option allows you to indicate that you do (Y) or do not
(NO want pre-existing HTML sourcee members to be replaced within the
HTML library.

The HTML heading allows you to specify a title for the HTML page that is
created. This title is not reflected on the browser when using the default
AutoHTML environment. The default title is specified in the HTML frameset
found in *.NEON.EXEC(IMS).

5. Make the Format Available to the server.

Once you have generated all the members you want press <PF3> (two times)
in order to back up to the Shadow OS/390 Web Server Mapping Facility
Menu. At this screen, you need to select the Map Refresh option. This
makes your format maps available to Shadow OS/390 Web Server.

Step 3. Build an /*EXECIMS rule

If you need special processing for your IMS transaction, build a /*WWW rule using
an /*EXECIMS section.

How it Works

The /*EXECIMS section expects the input URL to contain query variables that
match the names of field names within the Input Map. It also expects to have a
query variable (SWSINMAP) passed on the input URL indicating which Input Map
to use in order to build the input transaction.

NEON Systems ships a standard IMS entry point named:

.../NEON/IMS

This entry provides an interface that allows the user to enter an IMS transaction or
IMS command.

Pressing <ENTER> on this page executes another Neon supplied rule which runs
your IMS commands and transactions. The second rule, which is also supplied by
neon, is:

.../NEON/IMSENTRY

With these two rules, the IMS LU 6.2 User Edit Exit (DFSLUEE0) installed and
HTML generated by Shadow OS/390 Web Server’s Mapping Facility, you should
be able to run the majority of your IMS transactions.

Note:
The HTML member name is only useful when specifying a
single data map member name. If you specify any type of mask
that results in a selection list, the data map member name is used
as the HTML member name.
12-6 Shadow OS/390 Web Server User’s Guide December 1999

IMS Implementation
Formatting /*EXECIMS Section

The format of the /*EXECIMS section is:

/*EXECIMS INPUTMAP((IMS MESSAGE INPUT FORMAT)
 OUTPUTMAP(IMS MESSAGE OUTPUT FORMAT)
 PARTNERLUNAME(IMS APPC LUNAME)
 LOCALLUNAME(IMS LOCAL LUNAME)
 MODE(VTAM LOG MODE)
 SYMBOLICNAME(SYMBOLIC DESTINATION NAME)
 USERID(USERID FOR SECURITY)
 PASSWORD(PASSWORD ASSOCIATED WITH USERID)
 PROFILE(SECURITY PROFILE)
 SECURITY(NONE | SAME | PROGRAM)
 CONNECTIONTYPE(IMS | IMC)
 OUTPUTHTML(DDNAME(DDNAMEVALUE)
 DSNAME(DSNAMEVALUE)
 MEMBER(MEMBERNAME))
 ERRORURL(AUXILARY ERROR RULE)

Parameters

Parameter Name Description

INPUTMAP This is the input map name stored within the Shadow OS/390 Web Server
Mapping Facility dataset.

Note: This parameter does not override the INPUTMAP query variable passed on
the input URL.

OUTPUTMAP This is the output map name stored within the Shadow OS/390 Web Server
Mapping Facility dataset.

Note: This parameter does not override the specification from the IMS LU 6.2
User Edit Exit (DFSLUEE0).

PARTNERLUNAME This is the APPC LU Name of the IMS System you want to execute the command
or transaction. This can be ascertained from the “/DIS A.” IMS command or from
your IMS System Administrator.

LOCALLUNAME The name of the Local LU from which the caller's request is to originate.

MODE This is the VTAM Log Mode to assign to the LU 6.2 connection. The log mode
defines the VTAM session characteristics to the conversation.

SYMBOLICNAME This is the symbolic name representing the Partner LU, the Partner TP_NAME
and the MODE name for the session.

USERID This is the userid to associate with all transactions or commands submitted using
this rule.

PASSWORD This is the password associated with the aforementioned userid.

PROFILE This is the security profile to associate with the user assigned to transactions or
commands submitted using this rule.

Table 12–1. Valid Parameters for the /*EXECIMS Section
December 1999 Shadow OS/390 Web Server User’s Guide 12-7

AutoHTML - Web Enabling Transactions
SECURITY This is the security level to associate with commands and or transactions
submitted using this rule.

The SECURITY parameter has three options:

• NONE. Doesn’t pass any security information to IMS/APPC during the exe-
cution of the transaction or command. This may be an acceptable option for
non-production IMS environments or environments where security is con-
trolled through application program interfaces rather than IMS system inter-
faces, like AGN, RACF, or CA-ACF2.

• SAME. Uses the security information associated with the user that signed
onto the Shadow OS/390 Web Server and passes it along with the IMS trans-
action. IMS is then able to authorize the transaction or command based upon
IMS system level security established during the IMS generation process.

• PROGRAM. Indicates that the userid and password will be passed from the
executing program. This would be controlled through the use of the
USERID and PASSWORD parameters.

CONNECTIONTYPE This is the security level to associate with commands and or transactions
submitted using this rule.

The CONNECTIONTYPE parameter has two options:

• IMS for non-conversational IMS transactions.

• IMC for conversational IMS transactions. This option maintains the APPC
conversation until the conversation is DEALLOCATED by IMS.

OUTPUTHTML This option allows you to specify an HTML page to use to display the response
from the IMS transaction or command.

• DDNAME. This is the DDNAME from which to obtain the HTML output.
When specified with the DSNAME subparameter, it specifies the DDNAME
to associate with the dataset specified by the DSNAME parameter. When
specified without the DSNAME subparameter, it specifies a DDNAME allo-
cated via the Shadow OS/390 Web Server startup JCL.

• DSNAME. This is the dataset name containing the HTML output.

• MEMBER. This is the member name within the dataset associated with the
DSNAME or DDNAME sub-parameter.

When using the OUTPUTHTML parameter, you must specify a complete path to
the dataset and member containing the HTML page. Nothing is defaulted nor
assumed.

ERRORURL This is used to specify an alternate Auxiliary Error URL used to process the error;
it replaces the Neon supplied URL of SYSTEM/ERROR/AUX.

STARTUPURL This is used to specify a URL where the user request is to be redirected when the
user presses the “CLEAR” button. This overrides the NEON supplied rule of
“.../NEON/IMSENTRY”.

EXITURL This is used to specify a URL where the user request is to be redirected when the
user enters a “/RCL” IMS Command. This overrides the NEON supplied rule of
“.../NEON/IMSEXIT”.

Parameter Name Description

Table 12–1. Valid Parameters for the /*EXECIMS Section
12-8 Shadow OS/390 Web Server User’s Guide December 1999

IMS Implementation
Example:

When a user logs onto IMS using a normal 3270 display station, IMS provides a
clear screen which allows the user to enter commands or transactions. Neon
supplies a rule “.../NEON/IMS” which provides the user the ability to enter IMS
commands or transactions. The following is the text of the rule:

/*WWW /NEON/IMS AUTHREQ(NO)
*
* IMS APPC ENTRY POINT
* SEND IMS ENTRY SCREEN
*
/*FILE DATATYPE(INLINE) HTX(YES)

<HTML><HEAD>
<TITLE> NEON APPC/IMS INTERFACE </TITLE>
</HEAD><BODY BGCOLOR=000000>

<FORM ACTION="/NEON/IMSENTRY" METHOD=POST>
<PRE>

 DATE: <%DATE(N)%>

 TIME: <%TIME(N)%>

 USER: <%WWW.USERID%>

 ENTER IMS COMMAND OR TRANSACTION CODE

 <INPUT NAME=IN1 TYPE=TEXT SIZE=119>

</PRE>
<INPUT TYPE=HIDDEN NAME=SWSINMAP VALUE="DFSMI1">
<INPUT TYPE=HIDDEN NAME=SWSCNVID VALUE="0000000000000000">
<INPUT TYPE=HIDDEN NAME=PFKIN VALUE="ENTER">
</FORM>

</BODY></HTML>

This rule displays the HTML page with a single entry line in which the users enter
their IMS Command or transaction code. By pressing the <ENTER> key, they
start the main IMS transaction/command processing rule .../NEON/IMSENTRY.
By using the defaults, this rule processes non-conversational, IMS transactions.
December 1999 Shadow OS/390 Web Server User’s Guide 12-9

AutoHTML - Web Enabling Transactions
Step 4. Generate the IMS Default HTML

IMS ships several default MFS screens. Most of these are used to display system
data upon various types of devices. Some of these are used as defaults for out-
bound messages where the transaction did not specify a MODNAME. NEON has
supplied default source that must be run through the MFS Extract and HTML
Generation process before any IMS commands or transactions may be executed.
The following source needs to be extracted:

hlq.SAMP(IMSENTRY)
hlq.SAMP(IMSMOD)

Once extracted, the following DOF names must have HTML generated:

DFSDF2
DFSDOF1
12-10 Shadow OS/390 Web Server User’s Guide December 1999

CHAPTER 13:

Data Mapping Facility

Data mapping allows Shadow OS/390 Web Server to map data from various sources. The term
"mapping" indicates that Shadow OS/390 Web Server maintains the characteristics of data columns
within rows of logical or physical data.

How It Works
Data maps are created with a series of ISPF panels that allow the user to specify a
dataset containing a listing of a program that contains a data definition. A data
definition in COBOL is a file or data definition; for PL/I, it is a DCL statement.
The information (such as, length, format, type, and offset) about each field
element is extracted from the data definition and then made available to Shadow
OS/390 Web Server.

Clients of Shadow OS/390 Web Server can use the data maps to manipulate or
view the logical or physical data.

Restrictions
Data mapping does not support "OCCURS" clauses which contain the "DEPENDING
ON" clause. Whenever the "OCCURS" clause is used, it appends a numeric suffix to
the corresponding column. For example, if you extracted the following on:
"FIELD-A"

05 FIELD-A occurs 3 times

you would see these column names:

FIELD-A-1
FIELD-A-2
FIELD-A-3

Getting Started
A limited subset of the Shadow Event Facility (SEF) is provided to support data
mapping.

1. Familiar yourself with the function provided in the panels.
2. Verify Shadow OS/390 Web Server is active.
3. Create the map.
4. View the map for correctness.
5. Modified if necessary, using the ISPF panels.

Maps are managed from a map library assigned to the Shadow OS/390 Web
Server started task.
December 1999 Shadow OS/390 Web Server User’s Guide 13-1

Data Mapping Facility
Recommendations
We recommend the following:

� Use one server as a “test” server and a second server as a "production" server.

� Use the DD statement ‘SWSMAPP’ as part of initial setup to identify the
dataset that contains the maps for your production server.

� For each server, allocate one or more datasets, as needed. To facilitate central
control of the production map dataset, allocate a "staging" dataset for interim
maps.

Data Mapping Checklist
� Identify the dataset that contains the compiler listings.

� Allocate a mapping dataset.

� Bring up the data mapping selection menu.

� Perform a Map Default to create the default settings for the library that will
contain the user defined data maps.

� Perform a Map Extract to create the data map from compiler listings.

� Perform a Map Refresh to load the newly created map into the server.

� Perform a Map Display to verify that the map extraction completed correctly.

� Select Map Copy, Gen RPC, or Map Merge, as needed.

� Give the END command to return to the Shadow OS/390 Web Server main
panel.
13-2 Shadow OS/390 Web Server User’s Guide December 1999

The ISPF Panels
The ISPF Panels
Select Data Mapping from the Shadow OS/390 Web Server Primary Options
Menu. The following panel appears:

Figure 13–1. The Data Mapping Facility Panel

Map Defaults
The Map Defaults panel allows for the default setting of the library that contains
user defined data maps. The library must:

� Be previously allocated as a partitioned organized (PO) dataset.

� Have a logical record length (LRECL) of at least 1024 bytes. Other
information, such as size and number of directory blocks, is usage dependent.

Figure 13–2. The Default Map Options Panel
December 1999 Shadow OS/390 Web Server User’s Guide 13-3

Data Mapping Facility
Entering Information

1. Enter the information in the Default Map panel.

If Auto Refresh is set to yes, a Data Map and HTML Data Set refresh is
automatically performed whenever you exit. This eliminates the need to
manually select the Map Refresh option.

2. Press <ENTER> after entering all the information on the panel.

The message "Profile Saved" appears on the Status Line. This means the
dataset name is saved in the ISPF user profile pool for Shadow OS/390 Web
Server.

Map Extract
Select Map Extract from the Data Mapping Facility panel and the following panel
appears:

Figure 13–3. Shadow OS/390 Web Server Mapping Facility Panel

COBOL Listing Requirements
The COBOL program must have been compiled using the compiler
options XREF(FULL) and MAP.

Note:
Auto Refresh can incur significant overhead if you have several
changes to make and you exit after each change. We recommend
that you either 1) turn-off Auto Refresh and use the Map
Refresh option when finished, or 2) make all your changes
before exiting.

-------------- Shadow Server Mapping Facility ------------- Subsystem SWSL

 OPTION ===> __

 1 Extract COBOL - Extract from COBOL listing
 2 Extract PL/I - Extract from PL/I listing
 3 Extract MFS - Extract from MFS source
 4 Extract BMS - Extract from BMS source
 5 Extract VSAM - Extract a VSAM definition

Enter END command to return to primary options.
13-4 Shadow OS/390 Web Server User’s Guide December 1999

The ISPF Panels
PL/I Listing Requirements
The PL/I program must be compiled using the compiler options
XREF(FULL), MAP, AGGREGATE, and ATTRIBUTES(FULL).

Extract MFS
Extracts are done from the MFS source; it is not compiled.

Extract BMS
Extracts are done from the BMS source; it is not compiled.

VSAM Listing Requirements
The VSAM program must be extracted using the COBOL or PL/I
listing requirements.

Entering Information

� Select the program and press <ENTER>.

The Map Extract Facility Panel appears.

Figure 13–4. The Map Extract Facility Panel

The Map Extract requires a listing dataset as input. The output from the extract is
a data mapping definition that will be placed in the named map library, or you can
specify another partitioned dataset for the listing and data map libraries.

The map library member name will be the name associated for this map by
Shadow OS/390 Web Server.

Listing Search Criteria Start Search Field
This is used to search the listing dataset for the starting point of the
language dependent data declaration. The search criteria must be
unique enough to find the specific declaration to be mapped. For best
results, use the full qualified name of the declaration as it appears in
the listing.
December 1999 Shadow OS/390 Web Server User’s Guide 13-5

Data Mapping Facility
End Search Field (optional)
If this is left blank, extraction starts with the level number of the line
found and continues until an equal or higher level is processed. If the
field is not blank, extraction continues until the ending search string is
found in the listing.

If the extract completes with no errors, a message "Extract Successful"
appears in the upper right hand corner of the panel. At this point, both the map
library and Shadow OS/390 Web Server contain the mapped structure definition.

The Offset Zero parameter indicates whether to set the Start Search Field offset to
zero, even if it is not a group level or the first definition in a group.

Map Display
Select Map Display from the Data Mapping Facility panel and the following panel
appears:

Figure 13–5. The Data Mapping Block, Panel 1

This option displays existing data maps.

Structure Name
This corresponds to the member names within the map dataset.

Type This corresponds to one of the following types of structure:

� ADABAS
� INPUT
� OUTPUT
� SCREEN
� LPTBL
� HEADER
� USER

The language, which is determined at the time of the extract, the creation date and
time are only used for informational purposes. The extracted map is independent
of language type.

Viewing the Next Panel

� Scroll to the right to view panel two.
13-6 Shadow OS/390 Web Server User’s Guide December 1999

The ISPF Panels
Figure 13–6. The Data Mapping Block, Panel 2

Creation dataset
This was used to create the extracted data map. The extractor’s user
identification are displayed for informational purposes.

Viewing the Individual Data Elements

Use option X on any row of the map to view the individual data elements. In
Figure 13–6, the structure EXCI was selected on the Map Display. The display
shows each field name, its corresponding column name, and the status of each
field.

Figure 13–7. The Data Mapping Element, Panel 1

Fields These can be enabled, disabled, and deleted in a similar fashion as the
structure is.

Column During Map Extract, column names were created using the field
names and translating any dash characters to underscores. The Map
Editor can be used to make column names more meaningful for users.
December 1999 Shadow OS/390 Web Server User’s Guide 13-7

Data Mapping Facility
Viewing the Next Panel

� Scroll to the right to see the next panel:

Figure 13–8. The Data Mapping Element, Panel 2

Field This acts as a point of reference from panel to panel.

Level This is maintained for informational purposes only.

Length This is of primary importance in the map element.

Format This is of primary importance in the map element. Various format
types are character, binary, date, time, packed, decimal, and group.

Offset This is of primary importance in the map element. An offset is
maintained as the relative position 0 displacement from the beginning
of the structure.
13-8 Shadow OS/390 Web Server User’s Guide December 1999

The ISPF Panels
Viewing the Next Panel

� Scroll to the right to see the next panel. The field name is displayed along with
the scale and precision of any decimal or packed data items.

Figure 13–9. The Data Mapping Element, Panel 3

Viewing the Next Panel

� Scroll to the right to see the next panel. The information on this panel is
intended for future use.

Figure 13–10. The Data Mapping Element Continued, Panel 4
December 1999 Shadow OS/390 Web Server User’s Guide 13-9

Data Mapping Facility
Viewing the Next Panel

� Scroll to the right to see the next panel. The information on this panel is
intended for future use.

Figure 13–11. The Data Mapping Element, Panel 5

Viewing the Next Panel

� Scroll to the right to see the next panel. It contains the original listing lines
from which the elements were extracted. For items that where entered with
the editor, these will not be available.

Figure 13–12. The Data Mapping Element, Panel 6
13-10 Shadow OS/390 Web Server User’s Guide December 1999

The ISPF Panels
Copy Map
The Map Copy function allows data maps to be copied from one map library to
another or from SDF to a map library.

Figure 13–13. The Map Copy Facility Panel

Refresh Map
When used, Shadow OS/390 Web Server checks the library for modifications, and
then refreshes the SDF in core map tables from the library. The message
"Refresh Successful" appears on the mapping facility menu options if it
completed without any errors.

The Shadow OS/390 Web Server Mapping Library

This library is assigned to DDNAME ‘SWSMAPP’ in the started task JCL. If you
are executing Shadow OS/390 Web Server in DEBUG mode, the DD can be
allocated to TSO prior to starting the server.

Generate RPC
This option generates RPC programs from an extracted data map by generating
the SQLBINDCOL statements into a new PDS member. It does this by using the
skeleton program provided in the same PDS. The skeleton program contains all
the language and application specific code required to perform the RPC task.
Within the skeleton are keywords that are needed to substitute information and
write the new specified member.
December 1999 Shadow OS/390 Web Server User’s Guide 13-11

Data Mapping Facility
Figure 13–14. The Generate RPC Facility Panel

Example

The following is an example of a skeleton COBOL program.

CBL APOST
 010010 IDENTIFICATION DIVISION.
 010020 PROGRAM-ID. DFSSAM02.
 010080 ENVIRONMENT DIVISION.
 010090 CONFIGURATION SECTION.
 010100 SOURCE-COMPUTER. IBM-370.
 010110 OBJECT-COMPUTER. IBM-370.
 010120 DATA DIVISION.
 010130 WORKING-STORAGE SECTION.
 COPY SBCPHD.
 77 SDF-RETURN-CODE PIC S9(05) VALUE 0.
 77 STATEMENT-HANDLE USAGE IS POINTER .
 77 SQL-PRECISION PIC S9(5) COMP VALUE 0.
 77 SQL-SCALE PIC S9(5) COMP VALUE 0.
 77 SQL-COLUMN-LEN PIC S9(5) COMP VALUE 1.
 77 SQL-COLUMN-NAME-LEN PIC S9(5) COMP.
 77 SQL-COLUMN-NUMBER PIC S9(5) COMP.
 77 SQL-COLUMN-NAME PIC X(30).
 77 ERROR-MESSAGE-AREA PIC X(256) VALUE IS SPACES.
 77 TRACE-MESSAGE-AREA PIC X(256) VALUE IS SPACES.
 77 STRING-PTR PIC S9(5) COMP VALUE IS 1.
 77 CONNECTION-HANDLE USAGE IS POINTER.
 77 ENVIRONMENT-HANDLE USAGE IS POINTER.
 77 ERROR-MSG-LENGTH-AREA PIC S9(5) COMP VALUE 0.
 77 NATIVE-ERROR-CODE-AREA PIC S9(5) COMP VALUE 0.
 77 SQLSTATE-DATA-AREA PIC X(6) VALUE IS SPACES.
 @DATABUFFER
 060110 LINKAGE SECTION.
 080010 PROCEDURE DIVISION.
 080020 INIT.
13-12 Shadow OS/390 Web Server User’s Guide December 1999

The ISPF Panels
 @SQLBINDCOL BEGIN
 MOVE @LENGTH TO SQL-COLUMN-LEN.
 MOVE @COLUMN_NAME_LENGTH TO SQL-COLUMN-NAME-LEN.
 MOVE @COLUMN_NAME TO SQL-COLUMN-NAME.
 MOVE @SEQ TO SQL-COLUMN-NUMBER.
 MOVE @PRECISION TO SQL-PRECISION.
 MOVE @SCALE TO SQL-SCALE.
 CALL 'SDCPBC' USING STATEMENT-HANDLE
 SQL-COLUMN-NUMBER
 SQL-C-DEFAULT
 SQL-SMALLINT
 SQL-PRECISION
 SQL-SCALE
 SQL-NO-NULLS
 @FIELD_NAME
 SQL-COLUMN-LEN
 SQL-COLUMN-NAME
 SQL-COLUMN-NAME-LEN.
 MOVE RETURN-CODE TO SDF-RETURN-CODE.
 IF SQL-INVALID-HANDLE OR SQL-ERROR OR SQL-NO-DATA-FOUND
 PERFORM 0000-ERROR-ROUTINE
 END-IF.
 @SQLBINDCOL END
 CALL 'SDCPTH' USING STATEMENT-HANDLE SQL-THROW-DONE.
 MOVE RETURN-CODE TO SDF-RETURN-CODE.
 IF SQL-INVALID-HANDLE OR SQL-ERROR OR SQL-NO-DATA-FOUND
 PERFORM 0000-ERROR-ROUTINE THRU 0000-ERROR-EXIT
 END-IF.
 080140 EXIT-RTN.
 080160 GOBACK.
 0000-ERROR-ROUTINE.
 MOVE 256 TO SQL-PRECISION.
 IF SQL-INVALID-HANDLE GO TO 0000-ERROR-EXIT.

* IF AN ERROR OCCURS CALL THE SQLERROR ROUTINE

 CALL 'SDCPSE' USING ENVIRONMENT-HANDLE CONNECTION-HANDLE
 STATEMENT-HANDLE SQLSTATE-DATA-AREA
 NATIVE-ERROR-CODE-AREA
 ERROR-MESSAGE-AREA
 SQL-COLUMN-LEN ERROR-MSG-LENGTH-AREA.
 MOVE RETURN-CODE TO WS-ODBCAPI-RETURN-CODE.
 IF SQL-SUCCESS OR SQL-SUCCESS-WITH-INFO
 PERFORM 0000-ERROR-DISPLAY-ROUTINE THRU
 0000-ERROR-DISPLAY-EXIT.
 0000-ERROR-EXIT.
 0000-ERROR-DISPLAY-ROUTINE.

* SEND THE ERROR MESSAGE TO THE CLEINT USING SQLRETURNSTATUS

 STRING 'HOST ERROR MESSAGE - ' ERROR-MESSAGE-AREA
 DELIMITED BY SIZE INTO TRACE-MESSAGE-AREA WITH
 POINTER STRING-PTR
 END-STRING.
December 1999 Shadow OS/390 Web Server User’s Guide 13-13

Data Mapping Facility
 CALL 'SDCPRS' USING CONNECTION-HANDLE TRACE-MESSAGE-AREA
 SQL-NTS NATIVE-ERROR-CODE-AREA.
 0000-ERROR-DISPLAY-EXIT.

The Example Explained

� The statement:

@DATABUFFER

directs the facility to substitute the originally extracted information into the
program at the location of this statement.

� The following statements declare the beginning and ending of the
SQLBINDCOL substitution. All of the statements between the begin and end
are replicated for the number of ENABLED fields in the map data.

@SQLBINDCOL BEGIN
@SQLBINDCOL END

� The following keywords can appear between the SQLBINDCOL BEGIN and
SQLBINDCOL END statements. These keywords are substituted with the
proper values for each ENABLED field in the data map.

@LENGTH . - the length of the field element
@COLUMN_NAME_LENGTH - the length of the column name.
@COLUMN_NAME - the column name used to identify the field
@TYPE - SQL data type of column data. All DB2 SQL data types
are supported except for graphic (DBCS) data.
@SEQ - a sequentially assigned number for this column
@PRECISION - the precision of the field
@SCALE - the scale of the field
@FIELD_NAME - the field name itself as defined in the
@DATABUFFER.

It should be noted that the skeleton can contain as many or as few statements as
you want. You do not need to use all the keywords to have a complete program.
For example, a skeleton member containing only:

@SQLBINDCOL BEGIN
@FIELD_NAME
@SQLBINDCOL END

would generate a list of ENABLED field names as defined in the data map.
13-14 Shadow OS/390 Web Server User’s Guide December 1999

The ISPF Panels
Merge Maps
This option allows a data map to be concatenated (merged) to a second data map,
resulting in a third (output) data map. The function recalculates the offsets of any
merged items from MEMBER 2 of the input map library and writes both
MEMBER 1 and MEMBER 2 into the MEMBER specified in the "To Map Library".

Figure 13–15. The Map Merge Facility Panel

HTML Generation
The HTML Creation panel specifies 1) which map library contains the user
defined maps and datasets and 2) which HTML library and datasets stores the
results.

Figure 13–16. The HTML Generation Panel

Choose IMS HTML to create a Web browser image that has the same format
(display of information) as the MFS source on the 3270 panel.
December 1999 Shadow OS/390 Web Server User’s Guide 13-15

Data Mapping Facility
Figure 13–17. The IMS HTML Generation Panel

Using Data Maps in Client Programs
The following are examples of the MAP parameter, used for CICS and IMS calls
to SDF.

Note:
Before you can generate the HTML, the MFS data must be extracted
and loaded into the map library, and the map refreshed before you
can generate the HTML. Refer to Chapter 12, “AutoHTML - Web
Enabling Transactions,” for more information.

 -------------- Shadow OS/390 Web Server IMS HTML Generation --------------

 COMMAND ===> __

 Map Dataset Library: HTML Dataset Library:
 Project . . . ________ Project . . . ________
 Group ________ Group ________
 Type ________ Type ________
 Member . . . ________ Member . . . ________

 Other Map Dataset Name:
 Data Set Name . . . ___

 Other HTML Dataset Name:
 Data Set Name . . . ___

 Replace HTML member. _ (Y or N)
 HTML Heading . . . __

 Enter END to EXIT

call shadow_cics('EXCI','EXCC','EXCI','DFH$AXCS',2,'FILEA ',' 1','',120,'',
'MAP(NAME(EXCI) FIELDS(*))')

call shadow_ims('IMS','PART','IMSLU62','SAME','3007228','MAP(NAME(PART)
FIELDS(*) FORMAT(HORZ))')

call shadow_ims('IMS','PART','IMSLU62','SAME','*','MAP(NAME(PARTLIST) FIELDS(*)
FORMAT(VERT))')
13-16 Shadow OS/390 Web Server User’s Guide December 1999

Using Data Maps in Client Programs
For more information on parameters for CICS and IMS calls, see the Appendixes
of the Installation Guide.

MAP Subparameter Description

NAME This entry should correspond to the name assigned to the map during extraction.

FIELDS There are two ways to return data from all columns that are enabled in the map
definition: either use an asterisk after FIELDS (as shown), or leave out FIELDS
altogether. To exclude some columns, enter the names of the enabled columns
you do want returned in the parentheses after FIELDS.

FORMAT This entry determines whether output will be oriented vertically or horizontally.
Note that for a CICS call, FORMAT is not valid; for IMS, use FORMAT(HORZ) or
FORMAT(VERT).

Table 13–1. Map Subparameters for CICS and IMS Calls
December 1999 Shadow OS/390 Web Server User’s Guide 13-17

Data Mapping Facility
13-18 Shadow OS/390 Web Server User’s Guide December 1999

CHAPTER 14:

Shadow ADABAS Server

The Shadow ADABAS Server provides a method of accessing existing ADABAS data from the
desktop.

This new add-on component to NEON’s Shadow products provide reliable, high-performance access
to ADABAS data. The architectural flexibility offered by the Shadow ADABAS Server provides
desktop client and Web browser access, as well as extends the life span and improves the investment
return of existing ADABAS data.

Figure 14–1. Shadow ADABAS Server Environment

How It Works
The Shadow ADABAS Server transforms a client SQL request into single or
multiple ADABAS direct calls. The client requests arrive via the CALL
SHADOW_ADABAS client interface.

The following example shows a SQL statement requesting the first name, birth
date and age of all employees whose last name is Jones:
December 1999 Shadow OS/390 Web Server User’s Guide 14-1

Shadow ADABAS Server

Figure 14–2. SQL Statement Example

Since ADABAS does not maintain a relational catalog describing information for
every table, the Shadow Server maintains the information in the Shadow Data
Mapping Facility. The proper ADABAS Control Block, Format Buffer, Record
Buffer, Search Buffer, Value Buffer and ISN Buffer are created based on the SQL
statement processing requirements as depicted in the following diagram:

Note:
You must include "CALL SHADOW _ADABAS" as part of your SQL
statement as shown in the example above.
14-2 Shadow OS/390 Web Server User’s Guide December 1999

Shadow Mapping Facility

Figure 14–3. SD ADABAS Server

Shadow Mapping Facility
Packaged with the Shadow ADABAS Server are two utility programs, SDADEX
and SDADDM. These programs extract the ADABAS file and field definitions,
also known as maps, for import into the Shadow Data Mapping Facility. The
definitions are used at execution time to formulate the information required to
build the ADABAS direct calls.

SDADEX
SDADEX extracts information from the DDDRUCK output using an ADAREP
report as input. The resulting data mapping statements represent all files and fields
extracted from the ADAREP report.
December 1999 Shadow OS/390 Web Server User’s Guide 14-3

Shadow ADABAS Server
The SDADEX extract program can (optionally) input ADAWAN definitions. The
ADAWAN long field names are used for the long column names within the
Shadow Mapping facility. If present, any MU and/or PE limiting specifications
are also carried into the Shadow Mapping Facility. For example, an MU limit of
10 in PREDICT causes SDADEX utility to generate 10 unique column names for
this ADABAS field, instead of the default of 191. Column names within Shadow
are limited to 30 characters, even though PREDICT allows up to 32 characters.

Figure 14–4. Extract Utility 1: SDADEX

Input for SDADEX

The optional input DDNAME ‘SYSIN’ can be used to control SDADEX
execution and to allow overrides to the generated definitions.

SUBSYS = xxxx
Here, xxxx is the four character name that identifies the ADABAS
router name assignment. If not specified, the default name will be
ADAB.

Note:
If the ADAREP report is created with no specific file specification,
then all of the data mapping definitions for the given database will
be generated. Multiple (optional) ADAWAN datasets can be
concatenated for input to the utility in this case.
14-4 Shadow OS/390 Web Server User’s Guide December 1999

Shadow Mapping Facility
DE_SEARCH_ONLY
This parameter causes the utility to generate control definitions that
allow the client to only use WHERE columns that are ADABAS
descriptors, such as, superde, subde, and hyperde.

MAP_PREFIX = xxx
This is a three character prefix which is appended to the five character
file number. It is used as the member name in the generation of the
MAP_NAME entry. SDADDM uses this name as the member name
of the mapping dataset.

MAX_MU = nnnnn
This is the maximum allowed MU columns generated. The default is
191, if not specified.

This override option is only valid when you extract using an
ADAREP report. When you extract using an ADAWAN report, the
number of MU occurrence is obtained from the ADAWAN report.

MAX_PE = nnnnn
This is the maximum allowed PE columns generated. The default is
91, if not specified.

This override option is only valid when you extract using an
ADAREP report. When you extract using an ADAWAN report, the
number of PE occurrence is obtained from the ADAWAN report

BEGIN_OVERRIDES
This card indicates the beginning of the field format/length overrides.

END_OVERRIDES
This card indicates the end of the field format/length overrides.

FILE = nnnnn
This is the file number to be overridden.

FIELD = xx
This is the two character ADABAS field name to be overridden.

FORMAT = x
This is the 1 byte format type to be overridden. The rules of
overriding a field format must be acceptable to the rules of data type
conversions that ADABAS permits; otherwise, an ADABAS
response code may be given due to conversion mismatch.

LENGTH = nnn
This is the (optional) length override.

SCALE = nn
nn equals the number of decimal places for a packed field. This
override is only valid when the format of the field is FORMAT=P.
December 1999 Shadow OS/390 Web Server User’s Guide 14-5

Shadow ADABAS Server
CONVERT_U_2_P
This informs the extract to convert all unpacked format fields to
packed format.

CONVERT_B_2_I
This informs the extract to convert all 4-byte and 2-byte binary fields
to integer and short integer formats.

PE_MU_COUNT
This causes the extract to generate a count field for all MU and PE
fields. The generated name is the PE or MU field name plus an
underscore followed by the letter “C”. For example, if the PE or MU
name is ACCOUNTS, the generated name will be ACCOUNTS_C.

EXAMPLE:

In this example, the client only uses ADABAS descriptors for searches. The
ADABAS subsystem name is ADAC and has two files.

� FILE 1 has field AH and AR defined as NATURAL dates. AR’s length will be
overridden to 4 bytes.

� FILE 2 has field AB. It will have a character format override.

� FILE 2 contains a packed field AT. Two decimal places are required.

//SYSIN DD *
DE_SEARCH_ONLY
SUBSYS = ADAC
BEGIN_OVERRIDES
 FILE = 1, FIELD = AH, FORMAT = D
 FILE = 1, FIELD = AR, FORMAT = D, LENGTH = 4
 FILE = 2, FIELD = AB, FORMAT = A
 FILE = 2, FIELD = AT, SCALE = 2
END_OVERRIDES
MAP_PREFIX = PRD
MAX_MU = 3
MAX_PE = 2

Output of SDADEX Using an ADAREP Report for the
Sample Employee File

If you use the following control card to extract data:

//DDDRUCK DD DSN=CSD.AI38.ADA100.ADAREP,DISP=SHR
//SYSIN DD *
BEGIN_OVERRIDES
 FILE = 1, FIELD = AH, FORMAT = D
 FILE = 1, FIELD = AR, FORMAT = D, LENGTH = 4
END_OVERRIDES
MAP_PREFIX = PRD
MAX_MU = 3
MAX_PE = 2
14-6 Shadow OS/390 Web Server User’s Guide December 1999

Shadow Mapping Facility
you will get the following output:

BEGIN TABLE DEFINITION
 DATABASE_NAME=NEON-DB
 ADABAS_DBID=00100
 ADABAS_FILE_NUMBER=00001
 FILE_NAME=EMPLOYEES
 SUBSYSTEM_NAME=ADAB
 MAP_NAME=PRD00001
 FIELD=01,AA,008,A AA AA
 FIELD=02,AC,020,A AC AC
 FIELD=01,AE,020,A AE AE
 FIELD=02,AD,020,A AD AD
 FIELD=02,AF,001,A AF AF
 FIELD=02,AG,001,A AG AG
 FIELD=01,AH,006,D AH AH
 FIELD=02,AI001,020,A AI001 AI001
 FIELD=02,AI002,020,A AI002 AI002
 FIELD=02,AI003,020,A AI003 AI003
 FIELD=01,AJ,020,A AJ AJ
 FIELD=02,AK,010,A AK AK
 FIELD=02,AL,003,A AL AL
 FIELD=02,AN,006,A AN AN
 FIELD=02,AM,015,A AM AM
 FIELD=01,AO,006,A AO AO
 FIELD=01,AP,025,A AP AP
 FIELD=02,AR01,004,D AR01 AR01
 FIELD=02,AR02,004,D AR02 AR02
 FIELD=02,AS01,005,P AS01 AS01
 FIELD=02,AS02,005,P AS02 AS02
 FIELD=02,AT01(001),005,P AT01001 AT01001
 FIELD=02,AT01(002),005,P AT01002 AT01002
 FIELD=02,AT01(003),005,P AT01003 AT01003
 FIELD=02,AT02(001),005,P AT02001 AT02001
 FIELD=02,AT02(002),005,P AT02002 AT02002
 FIELD=02,AT02(003),005,P AT02003 AT02003
 FIELD=02,AU,002,U AU AU
 FIELD=02,AV,002,U AV AV
 FIELD=02,AX01,006,U AX01 AX01
 FIELD=02,AX02,006,U AX02 AX02
 FIELD=02,AY01,006,U AY01 AY01
 FIELD=02,AY02,006,U AY02 AY02
 FIELD=01,AZ001,003,A AZ001 AZ001
 FIELD=01,AZ002,003,A AZ002 AZ002
 FIELD=01,AZ003,003,A AZ003 AZ003
 FIELD=04,H1,004,B H1 H1
 FIELD=06,AU,001,002
 FIELD=06,AV,001,002
 FIELD=04,S1,004,A S1 S1
 FIELD=06,AO,001,004
 FIELD=04,S2,026,A S2 S2
 FIELD=06,AO,001,006
 FIELD=06,AE,001,020
 FIELD=04,S3,012,A S3 S3
December 1999 Shadow OS/390 Web Server User’s Guide 14-7

Shadow ADABAS Server
 FIELD=06,AR,001,003
 FIELD=06,AS,001,009
END

Output of SDADEX - Using Both ADAREP and
ADAWAN Reports for the Sample Employee File

 If you use the following control card to extract data:

//DDDRUCK DD DSN=CSD.AI38.ADA100.ADAREP,DISP=SHR
//ADAWAN DD DSN=CSD.AI38.ADA100.ADAWAN,DISP=SHR
//SYSIN DD *
BEGIN_OVERRIDES
 FILE = 1, FIELD = AH, FORMAT = D
 FILE = 1, FIELD = AR, FORMAT = D, LENGTH = 4
END_OVERRIDES
MAP_PREFIX = PRD
MAX_MU = 3
MAX_PE = 2
//

and this ADAWAN report:

you will get the following output:

BEGIN TABLE DEFINITION
 DATABASE_NAME=NEON-DB
 ADABAS_DBID=00100
 ADABAS_FILE_NUMBER=00001
 FILE_NAME=EMPLOYEES
 SUBSYSTEM_NAME=ADAB
 MAP_NAME=PRD00001
 FIELD=01,AA,008,A EMPLOYEE_ID EMPLOYEE_ID
 FIELD=02,AC,020,A FIRST_NAME FIRST_NAME
 FIELD=01,AE,020,A LAST_NAME LAST_NAME

ADACMP COMPRESS 00000100
ADACMP FILE=1 00000200
ADACMP MINISN=1 00000300
ADACMP DEVICE=3380 00000400
ADACMP FNDEF='01,AA,08,A' EMPLOYEE-ID 00000500
ADACMP FNDEF='01,AC,20,A' FIRST-NAME 00000600
ADACMP FNDEF='01,AE,20,A' LAST-NAME 00000700
ADACMP FNDEF='01,AD,20,A' AALL-DLY-ORIG-ALLOC-SVL-GRP 00000800
ADACMP FNDEF='01,AI,9,U,MU(2)' HERE-IS-A-SHORT-MU 00000900
ADACMP FNDEF='01,AT,9,U,MU(10)' HERE-IS-AN-MU 00000910
ADACMP FNDEF='01,AQ,PE(20)' HERE-IS-A-PE 00001000
ADACMP FNDEF='02,AR,6,U' HERE-IS-1-PE-FIELD 00001100
ADACMP FNDEF='02,AS,6,U' HERE-IS-2-PE-FIELD 00001200
ADACMP FNDEF='02,AT,6,U' HERE-IS-3-PE-FIELD 00001210
ADACMP FNDEF='01,AZ,03,A' JUST-ANOTHER-FIELD 00001300
ADACMP SUPDE='01,S1,04,B' A-BIG-SUPER-DE 00001400
14-8 Shadow OS/390 Web Server User’s Guide December 1999

Shadow Mapping Facility
 FIELD=02,AD,020,A AALL_DLY_ORIG_ALLOC_SVL_GRP AALL_DLY_ORIG_ALLOC_SVL_GRP
 FIELD=02,AF,001,A AF AF
 FIELD=02,AG,001,A AG AG
 FIELD=01,AH,006,D AH AH
 FIELD=02,AI001,020A HERE_IS_A_SHORT_MU001 HERE_IS_A_SHORT_MU001
 FIELD=02,AI002,020A HERE_IS_A_SHORT_MU002 HERE_IS_A_SHORT_MU002
 FIELD=01,AJ,020,A AJ AJ
 FIELD=02,AK,010,A AK AK
 FIELD=02,AL,003,A AL AL
 FIELD=02,AN,006,A AN AN
 FIELD=02,AM,015,A AM AM
 FIELD=01,AO,006,A AO AO
 FIELD=01,AP,025,A AP AP
 FIELD=02,AR01,004,D HERE_IS_1_PE_FIELD01 HERE_IS_1_PE_FIELD01
 FIELD=02,AR02,004,D HERE_IS_1_PE_FIELD02 HERE_IS_1_PE_FIELD02
 FIELD=02,AR03,004,D HERE_IS_1_PE_FIELD03 HERE_IS_1_PE_FIELD03
 FIELD=02,AR04,004,D HERE_IS_1_PE_FIELD04 HERE_IS_1_PE_FIELD04
 FIELD=02,AR05,004,D HERE_IS_1_PE_FIELD05 HERE_IS_1_PE_FIELD05
 FIELD=02,AR06,004,D HERE_IS_1_PE_FIELD06 HERE_IS_1_PE_FIELD06
 FIELD=02,AR07,004,D HERE_IS_1_PE_FIELD07 HERE_IS_1_PE_FIELD07
 FIELD=02,AR08,004,D HERE_IS_1_PE_FIELD08 HERE_IS_1_PE_FIELD08
 FIELD=02,AR09,004,D HERE_IS_1_PE_FIELD09 HERE_IS_1_PE_FIELD09
 FIELD=02,AR10,004,D HERE_IS_1_PE_FIELD10 HERE_IS_1_PE_FIELD10
 FIELD=02,AR11,004,D HERE_IS_1_PE_FIELD11 HERE_IS_1_PE_FIELD11
 FIELD=02,AR12,004,D HERE_IS_1_PE_FIELD12 HERE_IS_1_PE_FIELD12
 FIELD=02,AR13,004,D HERE_IS_1_PE_FIELD13 HERE_IS_1_PE_FIELD13
 FIELD=02,AR14,004,D HERE_IS_1_PE_FIELD14 HERE_IS_1_PE_FIELD14
 FIELD=02,AR15,004,D HERE_IS_1_PE_FIELD15 HERE_IS_1_PE_FIELD15
 FIELD=02,AR16,004,D HERE_IS_1_PE_FIELD16 HERE_IS_1_PE_FIELD16
 FIELD=02,AR17,004,D HERE_IS_1_PE_FIELD17 HERE_IS_1_PE_FIELD17
 FIELD=02,AR18,004,D HERE_IS_1_PE_FIELD18 HERE_IS_1_PE_FIELD18
 FIELD=02,AR19,004,D HERE_IS_1_PE_FIELD19 HERE_IS_1_PE_FIELD19
 FIELD=02,AR20,004,D HERE_IS_1_PE_FIELD20 HERE_IS_1_PE_FIELD20
 FIELD=02,AS01,005,P HERE_IS_2_PE_FIELD01 HERE_IS_2_PE_FIELD01
 FIELD=02,AS02,005,P HERE_IS_2_PE_FIELD02 HERE_IS_2_PE_FIELD02
 FIELD=02,AS03,005,P HERE_IS_2_PE_FIELD03 HERE_IS_2_PE_FIELD03
 FIELD=02,AS04,005,P HERE_IS_2_PE_FIELD04 HERE_IS_2_PE_FIELD04
 FIELD=02,AS05,005,P HERE_IS_2_PE_FIELD05 HERE_IS_2_PE_FIELD05
 FIELD=02,AS06,005,P HERE_IS_2_PE_FIELD06 HERE_IS_2_PE_FIELD06
 FIELD=02,AS07,005,P HERE_IS_2_PE_FIELD07 HERE_IS_2_PE_FIELD07
 FIELD=02,AS08,005,P HERE_IS_2_PE_FIELD08 HERE_IS_2_PE_FIELD08
 FIELD=02,AS09,005,P HERE_IS_2_PE_FIELD09 HERE_IS_2_PE_FIELD09
 FIELD=02,AS10,005,P HERE_IS_2_PE_FIELD10 HERE_IS_2_PE_FIELD10
 FIELD=02,AS11,005,P HERE_IS_2_PE_FIELD11 HERE_IS_2_PE_FIELD11
 FIELD=02,AS12,005,P HERE_IS_2_PE_FIELD12 HERE_IS_2_PE_FIELD12
 FIELD=02,AS13,005,P HERE_IS_2_PE_FIELD13 HERE_IS_2_PE_FIELD13
 FIELD=02,AS14,005,P HERE_IS_2_PE_FIELD14 HERE_IS_2_PE_FIELD14
 FIELD=02,AS15,005,P HERE_IS_2_PE_FIELD15 HERE_IS_2_PE_FIELD15
 FIELD=02,AS16,005,P HERE_IS_2_PE_FIELD16 HERE_IS_2_PE_FIELD16
 FIELD=02,AS17,005,P HERE_IS_2_PE_FIELD17 HERE_IS_2_PE_FIELD17
 FIELD=02,AS18,005,P HERE_IS_2_PE_FIELD18 HERE_IS_2_PE_FIELD18
 FIELD=02,AS19,005,P HERE_IS_2_PE_FIELD19 HERE_IS_2_PE_FIELD19
 FIELD=02,AS20,005,P HERE_IS_2_PE_FIELD20 HERE_IS_2_PE_FIELD20
 FIELD=02,AT01(001),005,P HERE_IS_AN_MU01001 HERE_IS_AN_MU01001
December 1999 Shadow OS/390 Web Server User’s Guide 14-9

Shadow ADABAS Server
 FIELD=02,AT01(002),005,P HERE_IS_AN_MU01002 HERE_IS_AN_MU01002
 FIELD=02,AT01(003),005,P HERE_IS_AN_MU01003 HERE_IS_AN_MU01003
 FIELD=02,AT01(004),005,P HERE_IS_AN_MU01004 HERE_IS_AN_MU01004
 FIELD=02,AT01(005),005,P HERE_IS_AN_MU01005 HERE_IS_AN_MU01005
 FIELD=02,AT01(006),005,P HERE_IS_AN_MU01006 HERE_IS_AN_MU01006
 FIELD=02,AT01(007),005,P HERE_IS_AN_MU01007 HERE_IS_AN_MU01007
 FIELD=02,AT01(008),005,P HERE_IS_AN_MU01008 HERE_IS_AN_MU01008
 FIELD=02,AT01(009),005,P HERE_IS_AN_MU01009 HERE_IS_AN_MU01009
 FIELD=02,AT01(010),005,P HERE_IS_AN_MU01010 HERE_IS_AN_MU01010
 FIELD=02,AT02(001),005,P HERE_IS_AN_MU02001 HERE_IS_AN_MU02001
 FIELD=02,AT02(002),005,P HERE_IS_AN_MU02002 HERE_IS_AN_MU02002
 FIELD=02,AT02(003),005,P HERE_IS_AN_MU02003 HERE_IS_AN_MU02003
 FIELD=02,AT02(004),005,P HERE_IS_AN_MU02004 HERE_IS_AN_MU02004
 FIELD=02,AT02(005),005,P HERE_IS_AN_MU02005 HERE_IS_AN_MU02005
 FIELD=02,AT02(006),005,P HERE_IS_AN_MU02006 HERE_IS_AN_MU02006
 FIELD=02,AT02(007),005,P HERE_IS_AN_MU02007 HERE_IS_AN_MU02007
 FIELD=02,AT02(008),005,P HERE_IS_AN_MU02008 HERE_IS_AN_MU02008
 FIELD=02,AT02(009),005,P HERE_IS_AN_MU02009 HERE_IS_AN_MU02009
 FIELD=02,AT02(010),005,P HERE_IS_AN_MU02010 HERE_IS_AN_MU02010
 FIELD=02,AU,002,U AU AU
 FIELD=02,AV,002,U AV AV
 FIELD=02,AX01,006,U AX01 AX01
 FIELD=02,AX02,006,U AX02 AX02
 FIELD=02,AY01,006,U AY01 AY01
 FIELD=02,AY02,006,U AY02 AY02
 FIELD=01,AZ001,003,A JUST_ANOTHER_FIELD001 JUST_ANOTHER_FIELD001
 FIELD=01,AZ002,003,A JUST_ANOTHER_FIELD002 JUST_ANOTHER_FIELD002
 FIELD=01,AZ003,003,A JUST_ANOTHER_FIELD003 JUST_ANOTHER_FIELD003
 FIELD=01,AZ004,003,A JUST_ANOTHER_FIELD004 JUST_ANOTHER_FIELD004
 FIELD=01,AZ005,003,A JUST_ANOTHER_FIELD005 JUST_ANOTHER_FIELD005
 FIELD=01,AZ006,003,A JUST_ANOTHER_FIELD006 JUST_ANOTHER_FIELD006
 FIELD=01,AZ007,003,A JUST_ANOTHER_FIELD007 JUST_ANOTHER_FIELD007
 FIELD=01,AZ008,003,A JUST_ANOTHER_FIELD008 JUST_ANOTHER_FIELD008
 FIELD=01,AZ009,003,A JUST_ANOTHER_FIELD009 JUST_ANOTHER_FIELD009
 FIELD=01,AZ010,003,A JUST_ANOTHER_FIELD010 JUST_ANOTHER_FIELD010
 FIELD=04,H1,004,B H1 H1
 FIELD=06,AU,001,002
 FIELD=06,AV,001,002
 FIELD=04,S1,004,A S1 S1
 FIELD=06,AO,001,004
 FIELD=04,S2,026,A S2 S2
 FIELD=06,AO,001,006
 FIELD=06,AE,001,020
 FIELD=04,S3,012,A S3 S3
 FIELD=06,AR,001,003
 FIELD=06,AS,001,009
END
14-10 Shadow OS/390 Web Server User’s Guide December 1999

Shadow Mapping Facility
Table Definition Syntax

DATABASE_NAME=XXXXXX
Name of the database as derived from ADAREP report.

ADABAS_DBID=nnnnn
ID number of database as derived from ADAREP report.

ADABAS_FILE_NUMBER=nnnnn
File number associated with file

file_name=xxxxxxxxxx
Externalized map name used in the SQL syntax to define requested
table.

MAP_NAME=XXXXXXXX
A one to eight character internal name describing the map name and
member name in the data mapping dataset. This name is generated
using the three character map prefix and the five character file
number. See MAP_PREFIX=xxx for more information.

subsystem_name=xxxx
The name of the ADABAS subsystem on the host MVS system. The
ADABAS subsystem name is assigned to the ADABAS router (SVC)
during ADABAS installation time.

Hyperde can be added into the resultant extract dataset manually by replicating
entries similar to the type 4 entries. Hyperdes must be defined manually because
the fields that comprise the hyperde are known only to the hyperexit and are not
reflected in the ADAREP at the time of extract.

EXAMPLE:

For fields where nn=01 through 04, the definition syntax is:

FIELD=nn,xx,lll,f,s column_name field_name

For fields where nn = 06, the definition syntax is:

FIELD=06,xx,bbb,eee

where:

nn=01 Display or selection criteria

nn=02 Display only

nn=03 Selection only

nn=04 Super/Sub/Phonetic descriptor

nn=06 Super field element description
December 1999 Shadow OS/390 Web Server User’s Guide 14-11

Shadow ADABAS Server
xx ADABAS field name. If the field is an MU, a field, or a field within a
PE group, the appropriate indexes must be specified. The generation
utility will create the first occurrence of any field of and MU, PE or
MU within a PE.

For field=06, this is the ADABAS “parent” field name.

lll The length of the data item as viewed by the client application. The
length must be consistent with ADABAS allowances for any given
data type.

f Format of the data as expected by the client. The format must be
consistent with the formats allowed by ADABAS for conversion.

In addition to the formats allowed by ADABAS, Shadow also allows
the following:

� D format indicating that this is a NATURAL date to be returned
to the client in ODBC format. The field must be the length of 4
(representing the number of bytes to contain a P4 field in
ADABAS).

� T format indicating that this is a NATURAL time to be returned
to the client in DBC format. The field must be the length of 7
(representing the number of bytes (representing the number of
bytes to contain a P7 field in ADABAS).

� I format to allow a field defined as B4 in ADABAS to be returned
to the client as SQL_INTEGER. Note that if you try to use the I
format for a field that is not a B4 format, the SDADDM utility
will issue an error and stop

� J format to allow a field defined as B2 in ADABAS to be
returned to the client as SQL_SMALLINT. Note that if you try to
use the J format for a field that is not a B2 format, the SDADDM
utility will issue an error and stop

s Status of the field definition. This parameter is optional. The valid
value is “D” for disabled. This allows the definition to be loaded, but
remain non accessible to the client.

column_name
The name used in the column headers when information is returned to
the client.

eee Ending byte position within parent field.

bbb Beginning byte position within parent field.

field_name
The long field name as known to the client. It is recommended that
the field_name and column_name remain the same unless the
14-12 Shadow OS/390 Web Server User’s Guide December 1999

Shadow Mapping Facility
product is being used in conjunction with ADABAS Native SQL
batch applications. These names are used for referencing fields in the
SQL statements.

These table and field definitions can be customized for the specific client by
changing items such as field and column names, adding or deleting field
definitions, etc. This should be done before the next step of the extraction process
is performed.

SDADDM
The second utility program is SDADDM. It takes the resulting data mapping
statements created by the SDADEX utility and populates the Shadow Server Data
Mapping Facility with the ADABAS meta data. After the utility SDADM is
executed, one or more maps are created. These maps must be placed in the map
dataset allocated by the server. For Shadow Direct, the map dataset is pointed to
by ddname ‘SDBMAPP’. For Shadow Web Server, the map dataset is pointed to by
ddname ‘SWSMAPP’. Please refer to the appropriate chapter in the User’s Guide
for more information on Shadow Data Mapping Facility.

Figure 14–5. Extract Utility 2: SDADDM

JCL can be found in distributed CNTL library as members ‘ADABAS1’ and
‘ADABAS2’. ‘ADABAS1’ is a JCL example on how use the SDADEX utility, and
‘ADABAS2’ is a JCL example on how to use the SDADDM utility.
December 1999 Shadow OS/390 Web Server User’s Guide 14-13

Shadow ADABAS Server
Dynamic ADABAS Data Mapping
If a data map does not exist in the system, the Shadow ADABAS Server will
dynamically build one. The following table name syntax must be included in the
client SQL request:

ADAx_nnnnn_mmmmm

where:

ADAx The ADABAS subsystem name assigned to the ADABAS Router
(SVC).

Nnnnn The numeric representation of the ADABAS database target (DBID)

Mmmmm
The numeric representation of the ADABAS table (file) number
(FNR).

The following example shows how the dynamic ADABAS data mapping concept
can be used. It is based on queries executed against the EMPLOYEES file,
residing on ADABAS DBID 100 file number 1, on SVC 249 (installed as
subsystem ADAB):

Example:

‘select * from ADAB_100_1’
Returns all columns from the table. Since there is no OPTIONS
INDEX indicated, only the first occurrence of any PE or MU fields
are returned.

‘select * from ADAB_100_1 where AE = “jones” options index = 5’
Returns all columns from the table where the ADABAS field name
AE contains the value “JONES”. The OPTIONS INDEX = 5 results
in the return of the first through the fifth occurrence of any PE or MU
fields.

‘select AE AS1 AS2 from ADAB_100_1 where AE = “jones”’
Returns columns AE, AS1, and AS2 for rows containing “JONES” in
the AE column.

Cursor Processing
Like Software AG’s Native SQL support, Shadow ADABAS Server supports
cursor processing. If the keywords DECLARE <cursor-name> and CURSOR
FOR are included in the SQL statement, the client application will be able to
control the positioning of the cursor by using OPEN <cursor-name>, FETCH
<cursor-name> and CLOSE <cursor-name> processing.

Shadow ADABAS Server maintains the required context between client requests
to allow single row return on each FETCH request.
14-14 Shadow OS/390 Web Server User’s Guide December 1999

Obtaining Data From Multiple ADABAS files
Example:

Call Shadow_ADABAS(‘declare C001 cursor for select * from employees’)
...
Call Shadow_ADABAS(‘open C001’)
...
fetch_loop:
Call Shadow_ADABAS(‘fetch C001’)
check return > 0 exit loop
end_loop;
...
Call Shadow_ADABAS(‘close C001’)

The client application can open as many cursors as required at any given time.

Cursors names must be four characters in length, and it is recommended that
alphanumeric characters be used and special character usage be avoided. The
cursor name “NEON” is used internally by Shadow products and should not be
used in client applications.

Obtaining Data From Multiple ADABAS files
Shadow_ADABAS supports the selection of data from one to five ADABAS
tables by allowing a logical joining of the tables through use of common data
elements. Access only is permitted when multiple ADABAS tables are specified
in the Select statement. No updating of tables is allowed.

The Select statement requires that each column used in the select be qualified by
the ADABAS table nameas shown in the following example:

SELECT *

 table_1.column1 table_2.column1...

 WHERE condition

 AND condition...

FROM table_l table_2...table_5
December 1999 Shadow OS/390 Web Server User’s Guide 14-15

Shadow ADABAS Server
Shadow_ADABAS transforms the query into multiple nested selects. The order
for processing the individual selects is based on table interdependencies within
the original query. Conditions that specify values always take precedence.

For example:

SELECT * FROM EMPLOYEES, VEHICLES WHERE VEHICLE.PERSONNEL_ID =
EMPLOYEE.PERSONEL_ID AND EMPLOYEE.LAST_NAME = “JONES”

will result in the following statement execution:

For each fetched row from cursor C001, the data returned for the column
EMPLOYEE.PERSONNEL_ID is substituted in the C002 select statement. The
fetch for C002 is done until all records are exhausted (ADARSP 3) and the outer
fetch C001 is then executed to retrieve the next row pointed to by the C001
cursor. The process continues until cursor C001 is exhausted (ADABAS RSP 3).

This logic is similar to the manner in which Natural would handle nested FIND
statements.

Each row returned to the client would contain all columns from the EMPLOYEES
table as well as all columns from the VEHICLES file.

condition

table_1.column2 operator value
table_l.column2 operator table_2.column2

DECLARE C001 CURSOR FOR
 SELECT * FROM EMPLOYEES WHERE LAST_NAME = “JONES”
OPEN C001
FETCH C001
 READ ISN SELECT PERSONELL_ID FROM EMPLOYEES WHERE CURRENT
 OF C001
 DECLARE C002 CURSOR FOR
 SELECT * FROM VEHICLES WHERE VEHICLE_ID = “???????????”
 OPEN C002
 FETCH C002
 LOOP
LOOP
14-16 Shadow OS/390 Web Server User’s Guide December 1999

SQL Syntax Supported
SQL Syntax Supported
The following list shows all ANSI Standard SQL and Software AG’s Native SQL
syntax supported by the Shadow ADABAS SQL Server.

Table 14–1. SQL Syntax Supported

The next section include the syntax diagram for each statement supported by
Shadow ADABAS SQL Server.

Statements ADABAS Native SQL ANSI SQL

CLOSE cursor Y Y

COMMIT [WORK] Y Y

CONNECT Y N

DBCLOSE Y N

DELETE Y Y

FETCH cursor Y Y

[FIND] SELECT Y Y

HISTOGRAM N N

HOLD Y N

INSERT Y Y

OPEN cursor Y Y

READ ISN/LOGICAL/PHYSICAL Y N

RELEASE Y N

ROLLBACK [WORK] Y Y

SET N N

SHOW N N

TRACE Y N

UPDATE Y Y
December 1999 Shadow OS/390 Web Server User’s Guide 14-17

Shadow ADABAS Server
Selection Criterion

SELECT options are:

SELECT * from xyz
Obtains all enabled columns from table xyz.

SELECT column1 column2 from xyz
Obtains only columns named column1 and column2 from table xyz.

SELECT count(*) from xyz where ...
Returns the number of rows that meet the where criteria. This
statement is similar to the NATURAL statement FIND NUMBER. If
column names are also specified, only columns from the first row that
meet the criteria are returned.

SELECT isn from xyz where ...
Returns the ADABAS ISN number assigned to the row that meets the
criteria.

SELECT(20) * from xyz where ...
Limits the number of returned rows of data to 20. The number must
be in parenthesis immediately following the select keyword. Limits
are ignored on statements using cursor processing.

DATE and TIME

The following explains how to obtain the current mainframe date and time and
how to set the NATURAL date fields.

Obtaining Mainframe Current Date and/or Time

The current mainframe date and time can be obtained by using the *DATE and/or
*TIME keywords in a SELECT statement. Because the current date and time is
returned for each and every row returned from the query, you may want to limit
the query as shown in this example:

Note:
The keywords count(*) and isn must be coded in the select statement
following any column names that are to be returned.
14-18 Shadow OS/390 Web Server User’s Guide December 1999

SQL Syntax Supported
EXAMPLE:

SELECT (1) *DATE *TIME FROM table_name

Setting NATURAL Date Fields

A NATURAL date field may be indicated to Shadow_ADABAS by using the "D"
date_ format in the Data Mapping Facility input definitions for the SDADDM
utility. If this format is used, the client can view or update the specified date
column using the ODBC date format. Conversion from ODBC date to a natural
date format is done automatically. The length of a "D" format type defined in the
Data Mapping Facility must be 4.

EXAMPLE:

UPDATE table_name SET column_name = "1999/01/01"

would result in the given date being converted to a NATURAL date format and
stored in the requested ADABAS file.

The following sets the specified column_name to the current date:

UPDATE table_name SET column_name = *DATE

Search Criterion
December 1999 Shadow OS/390 Web Server User’s Guide 14-19

Shadow ADABAS Server
Search Expression

If you want WHERE criteria to allow only ADABAS descriptor searches, use
DE_SEARCH_ONLY during data map creation.

Concatenation of Fields that Comprise a Superde in
Search Criteria

When using a superdescriptor that is comprised of multiple parent fields with
dissimilar formats, use concatenation notation to create the superdescriptor value.

EXAMPLE:

Superdes S1 is composed of the parent fields AA, AB and AC, where:

� AA is defined as A3.
� AB is defined as P5.
� AC is defined as A2.

Note:
There must be the same number of defined type 6 format definitions
in the mapping facility as there are field elements that comprise the
superdescriptor.
14-20 Shadow OS/390 Web Server User’s Guide December 1999

SQL Syntax Supported
To create the superdescriptor in the proper format to send to ADABAS, enter your
SQL search criteria as follows:

WHERE S1 = "ABC|12345|DE"

HEX Notation

Anywhere there is a value required and the value is a non-displaying item, use:

X'xx'

Where xx is a hexidecimal. xx must be given in pairs representing the high and
low order nibbles of the byte(s).

EXAMPLE:

X'C1' is the character A.

X'C1F0' are the characters "A0"

ASSIGNMENTS

CLOSE

The CLOSE statement allows the termination of a previously opened cursor.
Upon termination of the cursor, an ADABAS RC command is issued that uses the
four character cursor name as the ADABAS command ID.

Note:
In most cases, column-names in search criterion need to be
ADABAS descriptor fields. The same column name must be
specified in all locations designated by column-name A.
December 1999 Shadow OS/390 Web Server User’s Guide 14-21

Shadow ADABAS Server
COMMIT

The COMMIT statement, which indicates that the application unit or work is to be
harded on ADABAS, issues an ADABAS ET command. The COMMIT must be
issued by the application program after any UPDATE, DELETE, or INSERT
requests. The opposite of the COMMIT statement is the ROLLBACK statement
(see ROLLBACK)

CONNECT

The CONNECT statement allows the application to explicitly establish a
connection to ADABAS by issuing an OP command, thereby establishing the
ADABAS UQE. If the connect statement is not issued, the ADABAS connection
is implicitly established on the first access or update statement issued from
Shadow ADABAS Server.

If the ADABAS startup parameter is OPENRQ=YES, then the connect statement
should be the first Call Shadow_ADABAS statement issued from the client
application.

DBCLOSE

The DBCLOSE statement allows the application to explicitly disconnect an
ADABAS session without effecting the Shadow connection. The DBCLOSE
14-22 Shadow OS/390 Web Server User’s Guide December 1999

SQL Syntax Supported
statement causes an ADABAS CL command to be issued, which also implies an
ADABAS COMMIT (ET).

DELETE

The DELETE statement allows for the deleting of one or more rows of ADABAS
data. Search criteria may be specified as a given ISN value, or the current record
pointed to by an open and active cursor. This statement causes an ADABAS E1
command to be issued. It should subsequently be followed by a COMMIT or
ROLLBACK command to have the delete committed or rolled back in ADABAS.

FETCH

The FETCH statement allows the retrieval of one or more rows of data from an
ADABAS table by issuing the command necessary to continue retrieving rows
based on the original statement. If the limiter specification (nnnnnn) is not
specified the number of rows returned is 1.

Warning!
Without the WHERE clause, every row in the requested table is
deleted.

Note:
This command can only be executed after a statement containing a
DECLARE CURSOR FOR clause has been executed followed by
an OPEN cursor statement. The FETCH command must be followed
by a CLOSE cursor statement.

DELETE FROM

CURRENT OF cursor-name

table-name

WHERE

search criterion

ISN=value OPTIONS
PASSWORD=password

CIPHER=cipher
December 1999 Shadow OS/390 Web Server User’s Guide 14-23

Shadow ADABAS Server
The following pseudo logic describes the use of the fetch statement:

DECLARE C001 CURSOR FOR SELECT * FROM EMPLOYEES
OPEN C001
dowhile (SQL_RC = 0)
 FETCH C001
loop
CLOSE C001

{FIND} SELECT

The SELECT statement allows the collection of data from ADABAS tables
(files). The selection criteria determines which ADABAS columns (fields) are
returned, while the where criteria determines the set of rows that are returned to
the application. In ADABAS direct call terminology, the selection criteria
determines what is generated in the ADABAS Format Buffer and the where
criteria determines what is created in the ADABAS Search and Value Buffers. The
order by clause executes the appropriate commands for an ADABAS sort.

Options Index is only valid for SELECT statements using dynamic mapping.

Example:

'select * from employees'
Results in an L2/RC command sequence to ADABAS.

'select * from employees where last_name >= "jones"'
Results in an L3/RC command sequence.

'select * from employees where last_name = jones and sex = "f"'
Results in an S1/L1/RC command sequence.

Note:
If the FIND keyword is omitted in the statement, Shadow ADABAS
Server will determine the best command type for the request based
on the contents of the request.
14-24 Shadow OS/390 Web Server User’s Guide December 1999

SQL Syntax Supported
'select count(*) from employees where last_name = "Jones"'
Results in a single S1/RC command sequence. The ISN quantity field
of the ADABAS Control block is returned to the client.

HISTOGRAM

The histogram statement allows the display of key (like descriptor,
superdescriptor, or hyperdescriptor) values contained in an ADABAS table. If the
COUNT(*) keyword is present, a count of each value present in the ADABAS
table is returned. The statement generates an ADABAS L9 command sequence.

HOLD

The HOLD statement allows for the locking of a single row during cursor
processing. This eliminates the need to lock an entire set of records because only
the row that the cursor presently represents is locked. An ADABAS HI command
is issued for the current ISN in the previous fetch statement.

DECLARE C001 CURSOR FOR SELECT * FROM EMPLOYEES
OPEN C001
dowhile (SQL_RC = 0)
 FETCH C001
 if (row meets condition) then
 HOLD C001
 UPDATE Ö
 COMMIT
 ifend
doend

Note:
All column-names must be the same in this statement and the
column name must be an ADABAS descriptor. The same column
name must be specified in all locations designated by column-
name A.
December 1999 Shadow OS/390 Web Server User’s Guide 14-25

Shadow ADABAS Server
INSERT

The INSERT statement allows rows of data to be added to an ADABAS table. The
ADABAS command issued is N1, unless the where criteria is coded with the
ISN= value. In which case, an ADABAS N2 command is issued using the ISN
number provided. The set criteria describes the columns and data values that will
be placed into the inserted row. The insert statement is generally followed by a
COMMIT or ROLLBACK statement.

EXAMPLE:

To add a row to the EMPLOYEES table with a last_name of “Jones” and
first_name of SARAH:

INSERT INTO EMPLOYEES SET LAST_NAME = "JONES" FIRST_NAME = "SARAH"

OPEN

The OPEN statement is used to indicate the start of cursor processing for a prior
given statement. No ADABAS command is issued for this statement. The
ADABAS Server creates the internal control structures to maintain the state of the
cursor. See the FETCH and CLOSE statements.

EXAMPLE:

The following pseudo logic describes the use of the open statement:

DECLARE C001 CURSOR FOR SELECT * FROM EMPLOYEES
OPEN C001
dowhile (SQL_RC = 0)
 FETCH C001
loop
CLOSE C001
14-26 Shadow OS/390 Web Server User’s Guide December 1999

SQL Syntax Supported
READ

READ ISN

The READ ISN statement allows the application to target a specific row within an
ADABAS table using the ADABAS ISN as the search criteria. An ADABAS L1
command is issued for this statement. Because the result set is always returns one
row, the READ ISN statement does not allow cursor processing. If the "BETWEEN"
clause is used, each and every ISN in the range is requested. The ADABAS
response 113 (missing ISN) response code is suppressed in this case.

EXAMPLE:

To obtain all columns from ISN 100 in ADABAS table EMPLOYEES:

READ ISN SELECT * FROM EMPLOYEES WHERE ISN = 100

READ LOGICAL

Note:
The same column name must be specified in all locations designated
by column-name A.
December 1999 Shadow OS/390 Web Server User’s Guide 14-27

Shadow ADABAS Server
The READ LOGICAL statement allows the application to read ADABAS data
logically in the order of a given key (like descriptor or superdescriptor) value. We
recommend that cursor processing be used, especially if the result set to be
returned is large. This allows you to control the number of rows returned in a
single request and the application to control when to terminate the read logical
sequence. The read logical generates ADABAS L3 command sequences.

EXAMPLE:

To read all columns from the EMPLOYEES table starting from the LAST_NAME of
"J":

READ LOGICAL SELECT * FROM EMPLOYEES WHERE LAST_NAME >= "J"
ORDER BY LAST_NAME

If the above query resulted in a large result set, then the application must wait until
all the rows of the selection are returned. A more efficient way of coding this
selection is:

READ LOGICAL DECLARE C001 CURSOR FOR SELECT * FROM EMPLOYEES
WHERE LAST_NAME >= "J" ORDER BY LAST_NAME
OPEN C001
dowhile (SQL_RC = 0)
FETCH (20) C001
if LAST_NAME > "J" then
 leave dowhile

doend
CLOSE C001

READ PHYSICAL

The READ PHYSICAL statement allows the reading of ADABAS tables as they
are physically stored in the ADABAS table. No key values are used and all data is
read. An ADABAS L2 command sequence is generated.

Care must be taken for large ADABAS tables. If the table is large, the response
time to the application will be long. We recommend that cursor processing be used
whenever wait times need to be minimized.
14-28 Shadow OS/390 Web Server User’s Guide December 1999

SQL Syntax Supported
EXAMPLE:

To read all rows, all columns in the EMPLOYEES table:

SELECT * FROM EMPLOYEES

To minimize the application wait time, use cursor processing:

READ PHYSICAL DECLARE C001 CURSOR FOR SELECT * FROM EMPLOYEES
OPEN C001
dowhile (SQL_rc = 0)
FETCH (50) C001
doend
CLOSE C001

RELEASE

The RELEASE cursor allows for the release of an ADABAS resource. This
generates an ADABAS RI command.

EXAMPLE:

RELEASE C001

ROLLBACK

The ROLLBACK statement causes ADABAS to back out UPDATEs, INSERTs
and/or DELETEs executed after the previous COMMIT or ROLLBACK
statement. An ADABAS BT command is issued.
December 1999 Shadow OS/390 Web Server User’s Guide 14-29

Shadow ADABAS Server
SET

SUBSYS value
If the SUBSYS keyword is used, xxxx will be an ADABAS
Subsystem name that corresponds to an ADABAS Router (SVC)
number that was assigned during ADABAS installation. This allows
the Shadow Data Mapping definition subsystem name to be
overridden during execution time.

UPPERCASE and LOWERCASE
These parameters allow the client to tell Shadow ADABAS Server
how to translate the data portion of the statements sent to be
processed. Lowercase indicates that the data should be left in the
mode in which the client has keyed it. If uppercase is used, Shadow
ADABAS Server accepts input in either upper or lower case, and then
changes all characters to uppercase values. The default is uppercase.

SET ACBUSER = 'XXXX'
Here, xxxx is the user supplied 4 character data that will be placed
into the ADABAS Control Block User field (ACBUSER).

SET USERINFO = "xxxxxx...100"
Here, xxxxxx can be from 1 to 100 bytes of user supplied character
data. This also checks to see if the ADABAS ADALNK routine has
been assembled with at least 100 bytes of userinfo area set. The
LNUINFO equate within ADALNK must be set to at least 100 bytes
and ADALNK reassembled. This data is passed to the ADABAS user
exits as descibed in the ADABAS DBA Reference Manual.

SHOW

SET SUBSYS value

UPPERCASE

LOWERCASE

SET ACBUSER= ‘XXXX’

SET USERINFO= ‘xxxxxx...100’
14-30 Shadow OS/390 Web Server User’s Guide December 1999

SQL Syntax Supported
If the keywords FILE and DBID are used, this statement returns the ADABAS
FDT for the given ADABAS file and dbid number using an ADABAS LF
command.

If cursors is requested, the cursor control blocks are dumped to the client. This
information is useful for debugging only in conjunction with NEON’s Software
Support Group.

TRACE

The TRACE statement allows the display of the ADABAS control blocks
generated and executed for a given statement. A before and after image of the
ADABAS ACB FB RB SB VB are displayed to the application via a column
named TRACE. All information is accumulated for all executed statements after
the TRACE ON is executed. The trace result set is returned for the TRACE OFF
statement.

EXAMPLE:

To trace the ADABAS buffers created for a READ ISN statement:

TRACE ON
READ ISN SELECT * FROM EMPLOYEES WHERE ISN = 100
TRACE OFF

UPDATE

Warning!
Without the WHERE clause, every row in the requested table is
updated.

UPDATE

cursor-name

table-name

WHERE

selection-criterion

ISN=value

OPTIONS
PASSWORD=password

CIPHER=cipher

SET

column-name=value

(column-name,...) VALUES(values,...)
December 1999 Shadow OS/390 Web Server User’s Guide 14-31

Shadow ADABAS Server
If the record currently being updated is being used by another user, you will get an
ADABAS response code of -143. If a record was partially updated, we
recommend that you issue a ROLLBACK.

ADABAS User Identification
The Shadow ADABAS interface uses the sign on user id passed either by the
ODBC driver or by the Web browser’s security interface during logon for client
authentication. The ODBC client driver and the Shadow Server generate a unique
identifier for each application instance. The ADABAS server uses this identifier
to establish a connection with ADABAS that allows each application to be viewed
as a distinct ADABAS user. This virtual connection identifier allows for the same
client to have distinct UQE’s for each application running on the client platform.
Commands from one client application do not effect commands issued from
another instance of the same application running on the client. The virtual
connection ID is a 4 byte binary number.

Loss of Client Connectivity
If client connectivity is lost, the Shadow ADABAS component will issue a
ROLLBACK and DBCLOSE on behalf of the client. The ADABAS UQE is
eliminated for this connection once the DBCLOSE is issued. Dangling UQEs for
application failures are not permitted.

Tracing
Shadow ADABAS provides two types of tracing.

� Centralized tracing is performed on the mainframe using Shadow’s Trace
Browse facility. This trace is very useful in determining problems with client
requests in a production environment. All SQL statements and resulting
ADABAS requests from all clients are written to the Shadow’s Trace Browse
for viewing by the Systems Administrator.

� Decentralized or client tracing can be performed during application
development using the SQL TRACE ON and TRACE OFF statements. The
TRACE ON statement causes the Shadow ADABAS Server to log all
ADABAS buffer images, until the application issues a TRACE OFF request.
When the TRACE OFF request is processed, the buffered ADABAS buffer
images are returned to the client in ODBC format.

The ODBC Administrator and ADABAS Usage
(For Shadow Direct Only) The Shadow ADABAS feature can be used with all
supported levels of the Shadow Direct ODBC Driver. For ODBC drivers that do
not have the DBMS indicator, the DB2 SUBSYSTEM name is used to indicate an
ADABAS connection type. In this case, the DB2 SUBSYSTEM name must be
"NONE".
14-32 Shadow OS/390 Web Server User’s Guide December 1999

Compatibility with Other Software AG Products
Compatibility with Other Software AG Products
At this time, there are no known incompatibilities with any Software AG
products.

Installation Requirements

ADABAS Link Routine
The ADABAS ADALNK routine must be available to Shadow ADABAS Server
during execution. You can either copy the routine from the standard ADABAS
product load library to the Shadow Server load library, or provide the ADABAS
load library in a Shadow STEPLIB concatenation. If Shadow is running as a
started task, care must be taken not to lose authorization.

Messages and Codes

Note:
The ADALNK routine will execute re-entrant. Shadow loads and
modifies the ADABAS link routine to run re-enterent. If any user
exit is used in your ADALNK routine, it needs to be re-entrant also.

Message/Code Explanation Action/Cause

-2 thru -255 Specific ADABAS error codes, for example,
-9 SQLCODE is an ADABAS response 9.
(See Software AG ADABAS Messages and
Codes Manual for more information about
response codes).

Determine cause of ADABAS response code
and resubmit request.

-2001 thru -2999 SQL syntax errors. Last three digits of error
number represent keyword or keywords
within syntax in error. If digits indicate a
number greater than number of words in
SQL string, probable cause for syntax error is
missing required keyword(s).

Correct syntax error and resubmit request.

-3998 ADABAS link routine not found in
appropriate control structures.

Report this internal error to NEON Systems
Support group.

-3999 ADABAS Control Block not passed to
internal function that calls ADABAS link
routine.

Report this internal error to NEON Systems
Support group.

-4001 No internal ADABAS user control block
found for this request.

Report this internal error to NEON Systems
Support group.

-4003 Unknown cursor name used in SQL
statement.

Insure cursor name used was used in
DECLARE clause of a successfully completed
request. Resubmit request after determining
proper cursor name.
December 1999 Shadow OS/390 Web Server User’s Guide 14-33

Shadow ADABAS Server
-4004 Cursor name used in SQL statement already
open.

Client attempted to OPEN a cursor that had
already been OPENed.

-4005 Cursor name used in SQL statement not
open.

Client attempted to FETCH a cursor that had
not previously been OPENed.

-4006 ADABAS control block not passed to
internal ADABAS interface.

Report this internal error to NEON Systems
Support group.

-4007 Client requested an INSERT but no data
values were given to be inserted.

Include values to be inserted in INSERT
statement.

-4008 Client requested selection criteria that
included a COUNT(*) request. No WHERE
criteria was given.

Add WHERE criteria to SQL statement and
resubmit request.

-4012 No Data Map found for requested file. Specified map name is either misspelled or not
defined in the Data Mapping Facility. If not
defined, use Data Mapping Facility extract
utilities to define ADABAS file to Data
Mapping facility.

-4013 No Data Map column definition found for
requested column name.

Specified column is either misspelled or not
defined in Data Mapping Facility. If not
defined, use Data Mapping Facility extract
utilities to define ADABAS file to Data
Mapping facility.

-4014 Data Map definition not enabled. Requested Data Map column is not enabled
and cannot be requested in selection criteria
and/or where criteria.

-4025 UPDATE, INSERT, DELETE, COMMIT,
ROLLBACK or HOLD commands not
allowed

Database server for ADABAS was started on
READ-ONLY, i.e., READONLY parameter
was set to YES.

-4095 License code for Shadow products not
allowing ADABAS component to execute.

Contact NEON Systems product distribution
for license code that permits use of ADABAS
component.

-9000 Subsystem name not defined on operating
system.

Insure that four character subsystem name is
spelled correctly and defined to the system.
Resubmit the request.

Message/Code Explanation Action/Cause
14-34 Shadow OS/390 Web Server User’s Guide December 1999

CHAPTER 15:

Shadow_VSAM and
Shadow_VSAM for CICS

This chapter describes the Shadow_VSAM server, which provides a method of accessing existing
VSAM data from the desktop. It also covers the Shadow_VSAM component for CICS, which provides
a method of accessing and updating CICS assigned KSDS VSAM files from the desktop.

What are they?
The Shadow_VSAM server and Shadow_VSAM for CICS server are new add-on
components to NEON’s line of Shadow Server products, providing reliable, high-
performance access to VSAM data.

Figure 15–1 and Figure 15–2 demonstrate the architectural flexibility of both
servers as they provide desktop client and Web Browser access, while extending
the life span and improving the investment return of existing VSAM data.

Figure 15–1. Shadow_VSAM Server Environment

ODBC
 Application

Web
Browser

ODBC Driver Manger

Shadow Direct ODBC
Driver

TCP/IP or
LU 6.2

VSAM

Shadow Server or
Shadow Web Server

Shadow
VSAM

Mapping
Facility

TCP/IP or
VTAM

Client
MVS
December 1999 Shadow OS/390 Web Server User’s Guide 15-1

Shadow_VSAM and Shadow_VSAM for CICS
Figure 15–2. Shadow_VSAM for CICS Server Environment

How do they work?
Both Shadow_VSAM and Shadow_VSAM for CICS servers transform a client
SQL request into single or multiple VSAM calls. The client requests arrive via the
CALL SHADOW_VSAM client interface.

The following example shows a SQL statement requesting the personnel ID
number, last name, first name, middle initial, birthdate and sex of all employees
whose last name is Jones:

CALL SHADOW_VSAM(‘select personnel_id last_name first_name
middle_i birth sex from employees where last_name = “jones”)

ODBC
 Application

W eb
Browser

ODBC Driver Manger

Shadow Direct ODBC
Driver

TCP/IP or
LU 6.2

VSAM

SHADOW

TCP/IP or
VTAM

Client
M VS

CICS

SDCIVSAM

Shadow_CICS

Shadow_VSAM

Mapping Facility
15-2 Shadow OS/390 Web Server User’s Guide December 1999

How do they work?
Figure 15–3. SQL Statement Example

Shadow_VSAM uses the Data Mapping Facility to maintain information that
describes the VSAM record layout. Access to the Data Mapping Facility is
provided through the Shadow OS/390 Web Server Primary Options Menu.

A VSAM record map definition is created based on the SQL statement processing
requirements as shown in the following diagram:

Note:
You must include “CALL SHADOW _VSAM” wrapper as part of your
SQL statement as shown in the example above.
December 1999 Shadow OS/390 Web Server User’s Guide 15-3

Shadow_VSAM and Shadow_VSAM for CICS
Figure 15–4. Shadow_VSAM using Data Mapping Facility

Shadow Data Mapping Facility
Before you can use the VSAM server, you must first define the VSAM data file to
the Data Mapping Facility.

Defining the VSAM Data Set Files
To define the VSAM data set files to the Data Mapping Facility:

1. Select the Data Mapping Facility from the Shadow Web Server Primary
Options Menu.

The Mapping Facility panel appears.

Note:
The VSAM file must be available to Shadow Server at initialization
time with the proper VSAM defined share options to allow access to
the file.

Shadow_VSAM

 Select Personnel_ID
 Last_Name First_Name
 Middle_I Birth Sex from
 employees whose last_
 name = “jones”

VSAM Record Layout

Personnel ID Last_Name First_Name Middle_I Birth Sex

20007500 Jones Virginia J 411217 F

8 bytes 25 bytes 25 bytes 1 byte 8 bytes 1 byte

Data Mapping Facility
Table Name: Employee
DSN: Employee.VSAM.File

Column Name Length Format

Personnel_ ID 8 C

Last_Name 25 C

First_Name 25 C

Middle_I 1 C

Birth 8 C

Sex 1 C

.........
15-4 Shadow OS/390 Web Server User’s Guide December 1999

Shadow Data Mapping Facility
Figure 15–5. Data Mapping Facility Options Menu

2. Select the Map Extract option.

The map Extract Options Menu appears.

Figure 15–6. Map Extract Options Menu

3. Select Extract VSAM.

The Shadow Server Map Extract Facility panel appears.
December 1999 Shadow OS/390 Web Server User’s Guide 15-5

Shadow_VSAM and Shadow_VSAM for CICS

Figure 15–7. Shadow Server Map Extract Facility

4. Either:

a. Enter the information for the Listing and Map libraries.
b. Specify another partitioned dataset for the Listing or Map libraries.

The Map Library Member name is the name Shadow Server associates with
this map.

5. Enter information in the Listing Search Criteria fields.

This field is used to search the listing dataset for the starting point of the
language dependent data declaration. It is recommended that the full qualified
name of the declaration be used as it appears in the listing.

6. Press <ENTER>.

The Shadow Server VSAM Extract panel appears.
15-6 Shadow OS/390 Web Server User’s Guide December 1999

Shadow Data Mapping Facility
Figure 15–8. Shadow OS/390 Web Server VSAM Extract

7. Enter the following information:

a. For Shadow_VSAM, either:

� Enter the VSAM DDName.
� Enter the VSAM Data set name.

The DDName can be any name you choose as long as it does not conflict
with any other DDName in use by Shadow Web Server.

b. For Shadow_VSAM for CICS, enter:

� Connection name. The CICS connection name defined in the SWS
EXEC.

� Mirror transaction name. The transaction id defined in CICS.
� Base cluster name as assigned to CICS. The filename for the

dataset name assigned to CICS.
� Alternate path name as assigned to CICS. The alternate path for

the dataset file name assigned to CICS.

8. Press <ENTER>.

Note:
If you enter a VSAM DDName, the data set has to be assigned
to DDNAME in the Shadow startup JCL statement. If you enter
a VSAM DSN, it will be dynamically allocated during
execution of the query.
December 1999 Shadow OS/390 Web Server User’s Guide 15-7

Shadow_VSAM and Shadow_VSAM for CICS
If the extract completes with no errors, the message “Extract Successful” will
appear in the upper right hand corner of the Extract panel.

For more information about the Shadow Data Mapping Facility, please refer to
Chapter 13, “Data Mapping Facility,” in this manual.

Defining Multiple VSAM Logical Records Within the
Same Physical File

SHADOW_VSAM and SHADOW_VSAM for CICS support multiple logical
records within the same physical file by defining different views into the VSAM
physical file. This is done by creating different maps containing the different
views.

For example, Figure 15–9 shows two logical records within the same VSAM
physical file. One view contains an individual’s demographic information, while
the second contains account information. The column (field) R ECORD_TYPE
depicts which view is present for each row (record) in the VSAM table (file).

Figure 15–9. Two Logical Records within the Same VSAM Physical File

Normally a COBOL application that reads this data distinguishes the records’
content by using a record type (or view) indicator and then the redefinition of the
record layout, respectively.

If the COBOL program uses a redefine of the data area, then the extracted data
map will also contain the redefined columns (fields). The client application can
check the content of RECORD_TYPE and use the appropriate columns for viewing
the data.

An Alternate Approach
Place the record views into two separate data mapping definitions. Both data maps
can refer to the same physical file, but each map will have different table names to
distinguish their view in the VSAM dataset.

Record 1

ACCOUNT_NUMBER RECORD_TYPE NAME ADDRESS
123456789 1 DOE,JOHN SOMEWHERE USA

Record 2

ACCOUNT_NUMBER RECORD_TYPE ACCOUNT_BALANCE
123456789 2 254.67
15-8 Shadow OS/390 Web Server User’s Guide December 1999

Using Alternate Indexes for a VSAM Cluster
For example, create the data map, DEMOGRAF, which contains definitions for
ACCOUNT_NUMBER, RECORD_TYPE, NAME, and ADDRESS. Create a second
data map, ACCOUNT, which contains ACCOUNT_NUMBER, RECORD_TYPE and
ACCOUNT_BALANCE. The client application can then issue the following types of
queries to obtain all of the rows (records) in each view:

SELECT * FROM DEMOGRAF WHERE RECORD_TYPE = 1
SELECT * FROM ACCOUNT WHERE RECORD_TYPE = 2

To Alternate Views

To alternate views, the application can do the following, in which the &VALUE
information is substituted from the prior query ACCOUNT_NUMBER column:

SELECT * FROM DEMOGRAPH WHERE RECORD_TYPE = 1
SELECT * FROM ACCOUNT WHERE ACCOUNT_NUMBER = “&VALUE” AND
RECORD_TYPE = “2”

Using Alternate Indexes for a VSAM Cluster
SHADOW_VSAM and SHADOW_VSAM for CICS support use of VSAM
alternate indexes. This is accomplished by defining a data map that contains the
following:

� For SHADOW_VSAM: This is the path name into the base VSAM cluster.

� For SHADOW_VSAM for CICS: This is the base cluster id and an alternate
index path id as it is known to CICS.

Shadow VSAM
The Data Mapping Facility allows for the same or different views into a VSAM
file by changing the map name.

Example:

The VSAM file EXAMPLE.VSAM.FILE’s definition can be extracted from a
COBOL program using the 01 RECORD-DEFINITION data definition layout
imbedded in the application. This is shown in Figure 15–10.
December 1999 Shadow OS/390 Web Server User’s Guide 15-9

Shadow_VSAM and Shadow_VSAM for CICS
Figure 15–10. Shadow_VSAM: Record-Definition

The map name assigned to this extract is EXAMVSAM. When prompted, enter the
dataset name EXAMPLE.VSAM.FILE. (Figure 15–11).

Figure 15–11. Shadow_VSAM: Example.VSAM.File

To allow access using the alternate index, a second extract is performed using the
same data definition layout with the map name of EXAMPATH. When prompted for
the dataset name, give the alternate index path (for example,
EXAMPLE.VSAM.PTH1). See Figure 15–12.
15-10 Shadow OS/390 Web Server User’s Guide December 1999

Using Alternate Indexes for a VSAM Cluster
Figure 15–12. Shadow_VSAM: Example.VSAM.PTH1

Use the following SELECT statement to read all records and all fields on the file
using the normal key:

SELECT * FROM EXAMVSAM

Use the following SELECT statement to read all records and all fields on the file
using the alternate index:

SELECT * FROM EXAMPATH

Shadow_VSAM for CICS
SHADOW_VSAM for CICS supports use of VSAM alternate indexes. This is
accomplished by defining a data map that contains the base cluster id and an
alternate index path id as known to CICS (see Figure 15–13 for the base cluster id,
and Figure 15–14 for the alternate index path id).
December 1999 Shadow OS/390 Web Server User’s Guide 15-11

Shadow_VSAM and Shadow_VSAM for CICS
Figure 15–13. Shadow_VSAM for CICS: Base Cluster ID

Figure 15–14. Shadow_VSAM for CICS: Alternate Index Path ID

SQL Supported Syntax

Shadow_VSAM
The following syntax diagram is supported by Shadow_VSAM:

Where:

xxxxx
Is a numeric value that allows a specific number of rows to be
returned.

SELECT
(xxxxx

(,yyyyy)
)

*
column_name1 ...

FROM file_name

WHERE column_name2 operator value
AND column_name2 operator value ...

ALL

OPTIONS TRACE__RECORD

SELECTION
15-12 Shadow OS/390 Web Server User’s Guide December 1999

SQL Supported Syntax
yyyyy
Is a numeric value that allows positioning within the VSAM file
starting with a specific record number in the file relative to the
beginning of the file.

*
Implies that all columns “enabled” in the Data Map will be returned.

column_name1
Can be specified if specific column(s) are to be returned.

file_name
Is the logical name associated with the VSAM file as defined in the
Data Mapping Facility.

WHERE
Limits the result set to the specific records that meet the specified
selection criteria.

column_name2
Is the name of the column that will be interrogated by the selection
process.

(*)operator
Can have the following values:

� EQ = equal to
� NE ^= not equal
� GE >= greater than or equal
� LE<= less than or equal
� LT < less than
� GT > greater than

OPTIONS TRACE
The OPTIONS TRACE allows client tracing of the records being
processed (RECORD) or selection process (SELECTION). If ALL is
specified, both traces are produced. The query result set is not
returned, however, a column named TRACE is returned with the
resulting trace information.

Presently only the AND connector is allowed in the syntax, and there is no limit to
the number of WHERE selection criteria.

Note:
When using these options, the resulting trace can become quite
large.
December 1999 Shadow OS/390 Web Server User’s Guide 15-13

Shadow_VSAM and Shadow_VSAM for CICS
Shadow_VSAM for CICS
The SQL syntax supported by Shadow_VSAM for CICS must be strictly coded as
described in this section. The following syntax diagrams are supported by
Shadow_VSAM for CICS:

Syntax
CALL SHADOW_CICS(‘EXVS’,‘sql statement’,‘optional connection name
override’,‘optional transaction id override’)

where sql_statement may be one of the following:

SELECT

The SELECT statement provides reading access of VSAM data. The syntax is:

Where:

map_name
Must be a VSAM defined datamap that contains the associated CICS
FILEID assignment as well as the CICS transaction and connection
names.

xxxxx
Is an optional numeric value that limits the number of selected rows
returned to the indicated value.

The following examples show how to use the SELECT syntax:

Note:
The parameters ‘optional connection name override’ and
‘optional transaction id override’ allow for the
information contained in the map_name to be overridden for the
default connection name and transaction ID. See the Shadow
Programming Guide for more information about the ‘CCCC’ (CICS
connection name) and ‘TTTT’ (CICS transaction ID) parameters.

If you use one optional parameter in the Call statement, then
you must use all other optional parameters in the Call statement
as well.

SELECT
(xxxxx) *

column_name1....

FROM map_name
WHERE selection_criteria
15-14 Shadow OS/390 Web Server User’s Guide December 1999

SQL Supported Syntax
� SELECT * FROM EMPLOYEES
This reads all columns in all rows (records) in the VSAM table(file)
associated with the EMPLOYEES data map.

� SELECT LAST_NAME FIRST_NAME FROM EMPLOYEES WHERE
LAST_NAME = “SMITH”

This reads rows from the VSAM file described by the EMPLOYEES data map
and returns columns LAST_NAME and FIRST_NAME for the rows whose
LAST_NAME column contain the value “SMITH”.

DELETE

The DELETE statement allows for removal of rows from the VSAM file
described by the map_name. The syntax is:

The following examples show how to use the DELETE syntax:

� DELETE FROM EMPLOYEES
This deletes all rows from the VSAM file described by the data map
EMPLOYEES

� DELETE FROM EMPLOYEES WHERE LAST_NAME = “SMITH”
This deletes rows from the VSAM file described by data map EMPLOYEES
that contain the value SMITH in the LAST_NAME column.

INSERT

The INSERT statement allows for the insertion or addition of a row into a VSAM
file described by map_name. The syntax is:

The SET clause describes columns and their corresponding data values to be
placed into the inserted row. This statement requires that one of the columns to be
inserted describes the full VSAM primary key. When using an alternate index data
map, the full primary key must still be contained in the statement as one of the
columns to be inserted.

The following example shows how to use the INSERT syntax:

DELETE_FROM_map_name
WHERE selection_criteria

INSERT INTO map_name SET column_name1=value1

column_name2=value2
December 1999 Shadow OS/390 Web Server User’s Guide 15-15

Shadow_VSAM and Shadow_VSAM for CICS
INSERT INTO EMPLOYEES SET LAST_NAME = “SMITH” FIRST_NAME = “JOHN”

adds a new row to the VSAM file described by the data map EMPLOYEES and set
the LAST_NAME to the value “SMITH” and FIRST_NAME to the value “JOHN”. The
column LAST_NAME is the primary key to the VSAM cluster.

UPDATE

The UPDATE statement allows for the alteration, or update, of an existing row
contained in the VSAM file described by map_name. The syntax is:

Selection Criteria

operator

Operators can have the following values:

� EQ = equal to

Note:
ANDs are evaluated before ORs. For example, the statement

column1=value1 and column2=value2 or
column3=value3 and column4=value4

is evaluated as:

(column1=value1 and column2=value2) or
(column3=value3 and column4=value4)

The syntax does not support parenthetical grouping of selection
criteria, and is evaluated in the order that it is written.

WHERE selection_criteria
map_nameUPDATE

SET column1=value1
column_name2=value2...

WHERE column_name1 operator value

Selection_criteria

column_name2 operator value2AND
OR
15-16 Shadow OS/390 Web Server User’s Guide December 1999

Codes
� NE ^= not equal
� GE >= greater than or equal
� LE<= less than or equal
� LT < less than
� GT > greater than

Codes
The following return codes apply to Shadow_VSAM:

The following abend codes apply to Shadow_VSAM for CICS:

Return Code Explanation

0001 Error occurred during Shadow interface. Review trace
browse for determination of problem.

0003 WHERE column name is not found in data map.

1005-1006 WHERE operator is invalid.

1007 WHERE criteria is incomplete.

1008 WHERE connector value is invalid.

2000-2999 Statement syntax error. The last three digits indicate the
statement keyword in question.

4001 FROM clause is not found. Check FROM criteria
specification.

4002 SELECTion criterion is missing.

4003 No data maps area present in system.

4004 No enabled data map is present for file requested.

4005 A SELECT field specification has been disabled in the
data map.

4020 Invalid SELECT (nnn) criteria.

5000 ACB generation error. The last three bytes of the error
number is the actual system response code for the request.

6000 RPL generation error. The last three bytes of the error
number is the actual system response code for the request.

7000 VSAM open error. The last three bytes of the error number
is the actual system response code for the request.

8000 VSAM read error. The last three bytes of the error number
is the actual system response code for the request.
December 1999 Shadow OS/390 Web Server User’s Guide 15-17

Shadow_VSAM and Shadow_VSAM for CICS
Abend Code Explanation

SD01 The Shadow VSAM access program was invoked by some
means other than a Distributed Program Link (DPL)
request. This could be a user error if another transaction is
trying to link to the program, or a transid is defined with
SDCIVSAM as its initial program.

SDO2|SD03|SD04|SDO5 The commarea passed to SDCIVSAM is in some way
invalid. This can be caused by using different releases of
load modules in the Shadow Server, or by a program
erroneously linking to SDCIVSAM.
15-18 Shadow OS/390 Web Server User’s Guide December 1999

CHAPTER 16:

Shadow Web Interface

This chapter covers the Shadow Web Interface component for Shadow OS/390 Web Server. The
following Web browsers are supported:

� Netscape Navigator™ v 4.0 or higher
� Internet Explorer™ v 4.0 or higher

The Shadow Web Interface
The Shadow Web Interface is a GUI (Graphical User Interface) that allows you to
perform many of the same functions available on the ISPF panels. The Shadow
Web Interface:

� Enables administrative functions over the Web, which include controlling and
monitoring for:

− Product
− Storage
− Databases
− CICS
− IMS
− RRS
− TSO

� Is controlled using a product parameter.
� Has trace browse support.
� Integrates security features.

Before you Begin
Before you begin, you will need to:

1. Install Shadow OS/390 Web Server and the various components for your site.
(See the Shadow Installation Guide for more information.)

2. Set the HOSTDOMAIN product parameter to allow cookies to be recognized.
There must be a minimum three node name separated by periods. For
example: ‘P390.NEONSYS.COM’.

3. Modify the SWIURLNAME parameter in your SWSxIN00 initialization
EXEC to enable it. The default parameter value is SWICNTL. For example:

MODIFY PARM NAME (SWIURLNAME) VALUE (SWICNTL)
December 1999 Shadow OS/390 Web Server 16-1

Shadow Web Interface
4. Verify that your browser accepts cookies. If it does not, turn on that feature.

5. Specify the URL (and port number) in your browser. For example:

http://domain_name:portnumber/swicntl

where swicntl is the SWIURLNAME parameter.

6. Press <ENTER>.

The login panel appears.

Figure 16–1. Shadow Web Logon Screen

Logging On
Before you can use the interface, you must first logon.

1. Enter your MVS Userid and Password.

Note:
The SWIURLNAME (Shadow Web Interface URL Name)
activates the Web interface. The default value, SWICNTL, is
loaded during installation.

Note:
You must wait for the entire page to display before entering any
information. If you do not, security will not be properly
implemented and your Userid and Password will not be sent.
16-2 Shadow OS/390 Web Server December 1999

The Home Page
2. Select <Submit Logon Request> or press <ENTER>.

The Shadow Web Interface home page displays.

Figure 16–2. Shadow Web Interface Home Page

The Home Page
Information is presented in three frames on your screen.

� The TITLE frame
� The DATA frame
� The MENU frame

The TITLE Frame
The TITLE frame is at the top of your screen. It displays:

� The product title.
� A link back to the Shadow Web Interface home page (home).
� A link to NEON Systems, Inc. home page (neon home).
� A link to NEON Systems, Inc. Support Dept. (support).

The DATA Frame
The DATA frame appears in the lower right and displays the application
information.
December 1999 Shadow OS/390 Web Server 16-3

Shadow Web Interface
The MENU Frame
The MENU frame, which is on the left of your screen, displays a list of available
actions. The MENU is organized into groups with submenus. Most of the panels
have an Action column with links. These links can be used to gain further
information about the row or selected item.

Product

The following submenu items are available:

Storage

The storage option is a virtual storage information application that allows you to
see the allocation of private virtual storage in Shadow OS/390 Web Server’s
address space. This includes:

� Who is using the Private and Extended areas
� Which programs are being run in it.

The storage option is designed to help you locate potential problems areas. The
following submenu items are available:

Submenu Description

Product Control Displays a composite of statistical and general information about the product,
such as subsystem names, status and addresses.

Module Table Provides status information about each of the modules used in the Shadow OS/
390 Web Server address space. This information can be used to determine the
location of any module and other status information.

Parameter Groups Allows you to control the started task parameters created using the SWSxIN00
initialization EXEC. Some of these parameters can be modified after setup. For
information on viewing and changing parameters, see “Examples” on page 16-9.

Tasks Displays current and cumulative information for monitoring and controlling
specific Shadow OS/390 Web Server Tasks. With it, you can kill a selected task,
display the task trace control block or user detail for the selected row.

Process Block Displays information on process blocks, such as name, origin, usage and
addresses.

Token Control Allows you to display and control Shadow OS/390 Web Server execution tokens.
Using this application you can determine the status of a token, look at token data,
and kill tokens, as needed.

MIME/Filetype Table Provides status information about each of the entries in the configurable Shadow
OS/390 Web Server MIME table. You can use this information to determine if a
filetype entry has been defined, obtain status information, and update entries.

Data Mapping Block Allows you to view the Mapping Data Structures.

Dbcs Translate Table Displays the DBCS Translation tables in either an ASCII-to-EBCDIC DBCS
translation table or EBCDIC-to-ASCII DBCS translation table.
16-4 Shadow OS/390 Web Server December 1999

The Home Page
Trace Browse

The trace list, which is maintained by the SWS started task, is a record of all
communication, WWW, and internal events in message format. The most recent
messages are at the bottom of the list and the oldest messages are at the top. The
list is implemented as a FIFO buffer, the size of which is an SWS parm. When the
list is full, messages are removed from the top of the buffer to make room for the
newer messages at the bottom.

Submenu Description

Internal Control Blocks Displays internal product control blocks and storage areas as formatted lists with
descriptions and as a hexadecimal dump. You must have MVS Security
Subsystem read authorization to the Servers’s ‘CONTROLBLOCKS’ generalized
resource rule in order to use this diagnostic function.

Pvt Area Stg Display Displays the allocation of virtual storage information in the server’s address space
by subpool. This includes the amount of storage:

• Allocated to a subpool.
• Used (Allocated - Free).
• Not used (Free).

Common Area Stg Display Displays summary information of the allocation of virtual storage for each
subpool in the server’s address space. This includes the amount of storage:

• Allocated to a subpool.
• Used (Allocated - Free).
• Not used (Free).

TCB Storage Summary Displays summary information pertaining to the allocation of virtual storage for
each TCB in the server’s address space. This includes the TCB address and the
amount of owned storage:

• Allocated.
• Used (Allocated - Free).
• Not used (Free).

Allocated Storage Displays an overview of the allocation of virtual storage in the server’s address
space. The information is displayed by regions in which the address and size of
the region is reported. Within each region, the address and size of each block of
allocated virtual storage is displayed.

Virtual Storage Displays an overview of both allocated and unallocated virtual storage in the
server’s address space. This information is displayed by regions in which the
address and size of the region is reported. Within each region, the address and
size of each block of allocated and unallocated virtual storage is displayed.

Unallocated Storage Displays an overview of unallocated virtual storage in the server’s address space.
This information is displayed by regions in which the address and size of the
region is reported. Within each region, the address and size of each block of
unallocated virtual storage is displayed.
December 1999 Shadow OS/390 Web Server 16-5

Shadow Web Interface
The following submenu items are available:

Communications

The Communications menu allows you to:

� Display and control the link table.
� Display and modify in-flight transactions (remote users).

The following submenu items are available:

Database

The database submenu is used to view and modify the Web Server’s database
table. The following submenu item is available:

Submenu Description

Trace Browse Records Displays trace browse records. When you select the Trace Browse Records menu
option, the panel displays the bottom of the trace list. This contains the most
recent additions. See Figure 16–11 and Figure 16–12.

Trace Browse Control Allows you to control what trace browse records. With it you can limit the display
of record types as well as set the number of records to be retrieved during each
interaction. See Figure 16–13 through Figure 16–16 for examples of the Trace
Browse Control screens.

Submenu Description

Link Control Allows you to displays and control teleprocessing links. Use this application to
determine and change the status of the links.

IP Address Tree Displays the Internet Protocol network address of a node.

Remote Users Displays current and cumulative transactions regarding users on remote nodes.
Remote users connect with the local Shadow OS/390 Web Server to access
databases on the local node.

Submenu Description

Database Control Allows you to view and modify the Shadow OS/390 Web Server database table.
With it, you can view database statistics, such as version number, if the database
is up or down, and address. Plus, you can clear pending requests.
16-6 Shadow OS/390 Web Server December 1999

The Home Page
CICS

This is the CICS Control Facility. The following submenu items are available:

IMS

The IMS Control Facility allows you to monitor and control your access to IMS/
TM and IMS/DB. An APPC/MVS provides the ability to monitor APPC/MVS
conversations to IMS, in real-time and historical mode. APPC/MVS
conversations can be terminated automatically (inactivity timeout setting), or by
manual intervention (line command).

The following submenu items are available:

TSO

The following submenu item is available:

Submenu Description

CICS Connections Allows you to monitor and control CICS connections. The main CICS
Connections panel is summarized by connection name. It contains information
such as access method, total sessions, and protocol used. You can use the
<Sessions> link to drill down to view individual sessions or to change the status
(ANY, UP, or DOWN) or you can change the status on the main CICS
Connections panel and apply it to all the sessions for the connection name.

CICS Session Allows you to monitor and control each CICS sessions.

Submenu Description

IMS LTERM Table Allows you to display and control LTERM mapping. With it, you can exploit
existing IMS LTERM security by assigning known LTERM names to inbound
IMS transactions based upon either the userid or the IP address of the originating
requestor.

APPC/MVS Detail Allows you to monitor APPC/MVS conversations to IMS in historical mode,
such as userid, conversation start time, total sends, and total data received.

APPC/MVS Realtime Allows you to monitor APPC/MVS conversations to IMS in real-time mode.

APPC/MVS Interval Displays a summary of APPC/MVS Conversation Statistics.

Submenu Description

TSO Servers Displays TSO server status, such as server status, job names, and address space.
December 1999 Shadow OS/390 Web Server 16-7

Shadow Web Interface
Using the MENUs

To use the menu:

1. Move your mouse over a menu group to display all the available option in that
submenu. For example, the following shows the submenu for storage:

Figure 16–3. An Example where Submenus are Displayed

2. Click to select the highlighted value displayed in the submenu.

3. Edit/view the information in the DATA frame.

Note:
When the mouse is over a menu item (or a link), a brief
description appears on the lower left corner of the status bar. In
Figure 16–3 a definition is displayed for Internal Control Block.
16-8 Shadow OS/390 Web Server December 1999

Examples
Figure 16–4. A Submenu Item on the Storage Menu

4. Use the links in the Actions column to obtain more information on the internal
control blocks.

− Display - Displays the selected product control block or storage area.
− Format - Formats the selection list entry vertically.
− CBSB - Displays the CBSB control block for the selected row.

Examples
The following examples show you how to:

� Drill down through the panels.
� Update (change) a panel.

Drilling Down through the Panels
This example starts with the main panel, Product, then drills down through the
data to obtain an explanation of the parameter.

Product > Parameter Groups > Display > MSG.

Note:
When the mouse is over a link (or menu item), a brief
description appears on the lower left corner of the status bar. In
Figure 16–4 the mouse is over the link CBSB.
December 1999 Shadow OS/390 Web Server 16-9

Shadow Web Interface
1. Select the menu item <Product>.

2. Select <Parameter Groups>.

The Parameter Groups panel is displayed.

Figure 16–5. Parameter Groups Panel

3. Click the <Display> link in the Actions column to see individual members in
the group.

Figure 16–6. Trace Browse Parameter List

4. Select <MSG> from the Actions column. In this example,
BROWSEARCHIVE, an updatable parameter was selected.

Figure 16–7. A Sample MSG Screen
16-10 Shadow OS/390 Web Server December 1999

Examples
This panel, and any other panel that is totally gray, cannot be updated. They are
for information purposes only. For example, Format displays the information for
the selected row.

Figure 16–8. A Sample Format Screen

Updating a Parameter
To determine if a parameter can be updated, either look for an Update link in the
Actions column or check the “Updatable” column. (See Figure 16–6.) If the
parameter is not updatable (N), then an Update link will not appear in the Actions
column.

1. Select <Update> link from the Actions column. (See Figure 16–6.)

The following screen appears:

Figure 16–9. Update Parameter Panel

2. Enter the value.

3. Select <Update Parameter Value> or <Cancel>.
December 1999 Shadow OS/390 Web Server 16-11

Shadow Web Interface
Figure 16–10. Updated Parameter Screen

Additional Screens
There are a few additional screens that do not match the above types.

Trace Browse Records
The submenu, Trace Browse Records, allows you to view the Trace Browse
records beginning at the bottom of the panel. The scroll bar on the far right will be
positioned at the bottom. This is the default position when you access this panel.

This panel also contains additional scroll and command features.

� Command. Use this to enter your Trace Browse command, then select
<Submit the Command> or press <ENTER>. The valid Trace Browse
commands are DISPLAY, LOCATE, FIND and RFIND. They are discussed in
the next section.

� Scroll Up. Scrolls the Trace Browse display up.

� Scroll Down. Scrolls the Trace Browse display down.

� Repeat Find. Repeats the most recent FIND command.

When you use these commands, the display will be placed at the top
of the browser frame and not at the bottom as it does initially.
16-12 Shadow OS/390 Web Server December 1999

Additional Screens
Figure 16–11. An Example of the Submenu Trace Browse Records

The Trace Browse Commands

The following are valid Trace Browse commands:

Command Abbreviation Function

DISPLAY D Used to control the formatted columns of the display. Up to 5 columns can be
displayed at one time.

Syntax example:

D column-name column-name ...

Example:

DISPLAY DATE TIME USERID ASID SECONDS
December 1999 Shadow OS/390 Web Server 16-13

Shadow Web Interface
LOCATE L Scrolls the display a specific message. The LOCATE command has the following
operands:

• date - a date
• time - a time in hh:mm:ss format
• date time - a date time combination
• time date - a time date combination
• msgno - a specific message number. Messages are numbered beginning with 1

when SWS is started.

Note: L 0 or L 1 will cause the trace browse display to begin the display with the top
trace browse message that is available.

Syntax examples:

L date
L time
L date time
L time date
L msgno

Examples:

Date: “L 3JUN99”, or “L 3JUN”, or “L 03JUN1999”

Time: “L 11:”, or “L 11:00”, or “L 11:00:00”

Date Time: “L 3JUN99 11:00:00”

Time Date: “L 11:00:00 3JUN99”

General: “L 1620”

FIND F Searches for strings of characters within the trace list. Once found, the cursor is placed
on the string. To find the string again, use the RFIND command.

Syntax example:

FIND string column-name FIRST start-col end-col count

 F * LAST
 PREV
 NEXT

Where:

string is any character string. You must use quotes if there are imbedded blanks.
You must use two quotes to imbed a quote mark in the search string. For example: f
'''abc''' will find the string: 'abc'

RFIND RFIND Repeat the FIND command (like RFIND in the ISPF editor). An RFIND following a
FIRST find command will search forward (toward the latest messages), and an RFIND
following a LAST command will search backwards (toward the oldest messages).

Syntax example:

RFIND

Command Abbreviation Function
16-14 Shadow OS/390 Web Server December 1999

Additional Screens
Zoom

The zoom features allows you to see the details on an individual record. For
example:

Figure 16–12. Example of Using Zoom

This is an information only screen. You can search for information, scroll up or
down, but you cannot edit the screen.

Trace Browse Control
When selected, each of the buttons across the top of the screen invoke a different
panel.

Note
Each host has its own profile associated with it.

For example, if you have a copy of the Web Server with the hostid of
P390.NEONSYS.HOST1 and another with the hostid of
P390.NEONSYS.HOST2, each hostid would have its own Shadow
Web Interface trace browse profile specific to that host. Each profile
could be configured individually.

This means, you could have a profile for HOST1 that shows the
DATE and TIME columns, while the profile for HOST2 shows
EVENT and TIME.
December 1999 Shadow OS/390 Web Server 16-15

Shadow Web Interface
Filters Button

This panel will display your current settings and can be modified.

Figure 16–13. Example of the Filters Panel

Events Button

This panel displays the current events to monitor and can be modified.

Figure 16–14. Example of the Trace Browse Events Panel
16-16 Shadow OS/390 Web Server December 1999

Additional Screens
Columns Button

This panel displays the columns to monitor and can be modified.

Figure 16–15. Trace Browse Columns

Records Button

This indicates the number of records to retrieve. The default is 50.

Figure 16–16. Trace Browse Records
December 1999 Shadow OS/390 Web Server 16-17

Shadow Web Interface
Security Features
The following security features are in Shadow Web Interface:

� Encrypted userids and passwords. Both are transmitted and stored in an
encrypted format.

� 10 minute timeout. There is an automatic 10 minute timeout that is invoked
if you do not transmit a command via a mouse click. This security measure is
active throughout the entire session. The timeout minutes cannot be reset.

� Shadow OS/390 Web Server Security. When you install the Shadow Web
Server, additional security is invoked. Refer to the Shadow Server Installation
Guide for more information on different security options.
16-18 Shadow OS/390 Web Server December 1999

CHAPTER 17:

Using the OS/390 UNIX OpenEdition
Hierarchical File System (HFS)

Shadow Web Server, Version 4.5.1 introduces support for the OS/390 Unix System Services
Hierarchical File System (HFS). This new support:

� Allows you to use various off-the-shelf web-authoring tools to create and
serve HTML and other application files using Shadow Web Server.

� Requires only minimal security subsystem configuration of OS/390 Unix
System Services.

Steps to Setting up HFS
The following needs to be done before you can use HFS on your system:

1. Review OpenEdition security and implement any additional RACF, ACF/2, or
TopSecret control parameters as needed.

2. Make sure the userid assigned to the Web Server started-task and the
WWWDEFAULTRUNAUTH start-up parameter have an OMVS segment
defined with a UID and GID value assigned.

3. Add the server start-up parameters to SWSxIN00.

4. Define the start-up ruleset definitions to SWSxIN00.

5. Create the rule(s).

6. Restart the system.

7. Use your Web browser and enter the URL.

OpenEdition and HFS Security
The OpenEdition Hierarchical File System handles security authorizations in a
manner that is compatible with other UNIX operating systems, which is different
than native MVS QSAM, VSAM, or PDS(E) datasets. If you are unfamiliar with
the UNIX operating system, particularly file system security, we strongly suggest
that you review the IBM OpenEdition User’s Guide (SC28-1891) before
proceeding. In particular, familiarize yourself with the concepts described in the
“Handling Security for Your Files” section of this manual.

In order to secure your HFS-resident files properly, you may need to implement
additional RACF, ACF/2, or TopSecret control parameters. We strongly
December 1999 Shadow OS/390 Web Server User’s Guide 17-1

Using the OS/390 UNIX OpenEdition Hierarchical File System (HFS)
recommend that you familiarize yourself with the OS/390 Unix System Services,
and implement any new security administration policies and procedures, as
appropriate.

OpenEdition Security Subsystem (RACF)
Configuration

Before you can access HFS files using the Web Server, you must ensure that the
MVS userid (UID) and group ID (GID) are defined with OMVS segments to
RACF. Both IDs should have a value defined for OpenEdition.

Started-task Userid

The userid assigned to the Shadow Web Server started task must have an OMVS
segment defined with a UID and GID value assigned. We recommend the UID
value be unique.

This version of the Web Server retains it original native MVS organization and
does not require that other special authorizations to any of the BPX.* resources
be defined in the RACF FACILITY class. (Refer to the RACF documentation for
more information.) Future versions of Shadow Web Server may require that the
userid be granted authorization to various BPX.* resources.

Be sure that a real userid (not a default userid equal to asterisk (*)) is assigned to
the Server’s started-task address space. If the SWSx started task userid is allowed
to default, a userid might not be set up for the address space; this means, no UID
or GID value will be assigned. You may need to implement support for the RACF
STARTED class, or define the Server’s started-task name to RACF.

A UID/GID assignment is required when using OE Sockets with TCP/IP. Refer to
the Shadow Installation Guide for more information.

Default Runtime Userid

The default userid, which is set by the WWWDEFAULTRUNAUTH start-up
parameter and under which web transactions operate, must have an OMVS
segment defined with a UID and GID value assigned. We strongly recommend
that:

� Both the UID and GID values assigned to this userid be unique.
� Overall, they represent a relatively low level of authorization on the system.

Note:
A UID of zero (root) is not required by version 4.5.1 of the Web
Server, nor is it recommended. The GID (group ID) should be
different from the GID assigned to the default runtime userid.
17-2 Shadow OS/390 Web Server User’s Guide December 1999

Server Start-up Parameters
The UID/GID assignment made for this userid must be authorized to perform OE
Sockets TCP/IP operations. Refer to the Shadow Installation Guide for more
information.

Server Start-up Parameters
In order to run HFS, you must enter the MODIFY PARM information into the
SWSxIN00. By default, HFS support is not enabled. The following example
shows one way to setup HFS:

IF 1 = 1 THEN DO /* ENABLE HFS? */
 "MODIFY PARM NAME(OEHFS) VALUE(ENABLE)"
 "MODIFY PARM NAME(HFSAUTHMODE) VALUE(GLOBAL)"
 "MODIFY PARM NAME(DOCUMENTROOT) VALUE(/u/)"
END /* END HFS ACTIVATION */

The parameters are explained in the following sections.

OEHFS Parameter (Required)
To globally enable support for the Hierarchical File System within the Server, you
must specify the OEHFS start-up parameter value. Rules, which attempt access to
an HFS file or path, cannot be enabled unless this parameter value is set during
start-up.

Important:
For this version of Shadow Web Server, all accesses to an HFS-
resident file or directory path are performed under control of the
authorizations granted to this userid and no other. The Server
automatically switches the security environment to this userid
before every access to an HFS-resident file, and then restores the
pre-existing security environment afterwards.

The UID and/or GID associated with this userid must possess
READ access to any files, and all traversed directory paths, that are
to be served.

Parameter Value Usage

ENABLE Specifies that HFS support is enabled. WWW rules that
provide access to an HFS file or path are supported and can be
enabled providing other operational controls are set.

DISABLE Specifies the HFS support is disabled. WWW rules that
attempt to provide access to an HFS file or path are not
supported and cannot be enabled.
December 1999 Shadow OS/390 Web Server User’s Guide 17-3

Using the OS/390 UNIX OpenEdition Hierarchical File System (HFS)
HFSAUTHMODE Parameter (Required)
The HFSAUTHMODE parameter determines how the Web Server handles HFS file
security authorization processing when accessing and serving HFS-resident files.
Currently, only one authorization operational mode (GLOBAL) is supported.
Future versions may make other authorization processing options available.

DOCUMENTROOT Parameter (Optional)
This parameter can be used to specify an HFS directory root path. Whenever a
value is specified, it is used as a prefix for all relative pathnames in order to
formulate the absolute pathname. It is NOT prepended to absolute pathnames.

To make ruleset-level and application-level promotions easier to manage, use the
HFS directory prefix to differentiate between production and test copies of the
Server. The value for this parameter:

� Is case sensitive.
� Must begin and end with a "/".
� Can be a NULL string.
� Is limited to 64 bytes in length.

Parameter Value Usage

GLOBAL Specifies that ALL accesses to the HFS be performed under the
authorizations granted to the WWWDEFAULTRUNAUTH userid.

Just before accessing any HFS file or path, the server switches the
environment so that this userid’s authorizations are used. After retrieving
the HFS file, the Server restores the existing security environment.

This operational mode requires that the WWWDEFAULTRUNAUTH
userid have read access to all HFS files and traversed directory paths that
are to be made accessible via Shadow Web Server.

Note:
An absolute path name begins with a leading slash (/), but a relative
path name does not. The directory path for a relative reference must
end with a slash (/). When DOCUMENTROOT is set to a NULL string,
the value “/” is implied.

For example, a relative path would be, ‘uxy/’, while an absolute path
would be, ‘/uxy/’.
17-4 Shadow OS/390 Web Server User’s Guide December 1999

Ruleset Definitions
SEFV31COMPATIBLE Parameter
Existing customers that are using Version 3.1 compatible configuration to define
SEF rulesets must first upgrade to use Version 4+ “DEFINE RULESET”
configuration statements.

HFS access is not provided when the Server’s SEFV31COMPATIBLE start-up
option is set to YES.

Ruleset Definitions
Before you can define/enable an individual /*WWW rule definition that provides
access to HFS-resident files, you must first authorize the rules to appear within the
encompassing SEF ruleset. To do this, code the HFSROOT() keyword in each
designated ruleset to allow HFS-related /*WWW rule definitions. For example:

DEFINE RULESET NAME(WWW)
 RULETYPE(WWW)
 WWWCLASS(MASTER)
 HFSROOT(‘’)
 DSNAME(‘SHADOW.V451.WWW.MASTER.RULESET’)

The Web Server will not enable any HFS-related /*WWW rules that are defined
within an SEF ruleset unless the HFSROOT keyword was coded for the ruleset’s
definition at start-up.

HFSROOT()
The HFSROOT() operand of DEFINE RULESET specifies a relative or absolute
pathname prefix string. This string is placed in front of the PATH() value for any
/*WWW rule defined within the ruleset.

� HFSROOT(NONE) This explicitly disables HFS-related support within the
corresponding ruleset. It is the only allowable value for all ruleset definitions
except for WWW rulesets, which is assumed if not explicitly coded.

� HFSROOT('') The NULL string indicates no values are prefixed at the
ruleset-level; yet, it allows HFS-related rule definitions within the ruleset.
(A NULL string is processed as a relative pathname reference.)

Note:
ALL HFS pathname constructs are limited internally to a total of
256 bytes in length, which includes the length of this prefix, plus the
ruleset-level HFSROOT() prefix (if non-NULL), plus the rule
definition PATH() length, plus additional URL request bytes
substituted for wildcards into the PATH() operand at execution
time.
December 1999 Shadow OS/390 Web Server User’s Guide 17-5

Using the OS/390 UNIX OpenEdition Hierarchical File System (HFS)
For example:

 "DEFINE RULESET NAME(NEON)" ,

 "RULETYPE(WWW) WWWCLASS(SUBORD)" ,

 "HFSROOT('')" ,
 "DSNAME('AMX232.SWSP.RULE.NEON.EXEC')"

� HFSROOT(path) The HFSROOT operand is intended to segregate HFS
directory paths into the same departmental groups that can be managed using
Shadow Web Server’s ruleset-based architecture.

Relative path example:

 "DEFINE RULESET NAME(HFS)" ,
 "RULETYPE(WWW) WWWCLASS(SUBORD)" ,
 "HFSROOT('abc123/')" /* relative path */,
 "DSNAME('AMX232.SWSP.RULE.HFS.EXEC')"

Absolute path example:

 "DEFINE RULESET NAME(HFS)" ,
 "RULETYPE(WWW) WWWCLASS(SUBORD)" ,
 "HFSROOT('/u/abc123/')" /* absolute path */,
 "DSNAME('AMX232.SWSP.RULE.HFS.EXEC')"

HFSROOT vs. DOCUMENTROOT
Based on the values of HFSROOT and DOCUMENTROOT, one of the following will
happen:

� When a relative pathname value is specified for HFSROOT, the Server’s
DOCUMENTROOT parameter is used as a prefix.

� When an absolute pathname value is used for HFSROOT, the
DOCUMENTROOT parameter has no effect.

The HFSROOT pathname operand is case sensitive and may be from zero to 128
bytes in length.

/*WWW Rules
You provide mapping of in-bound request URLs to an HFS-resident file or path by
coding a /*WWW rule definition using the PATH() keyword. Only the rule’s
header statement is coded; no process section (/*FILE) is permitted within such
a rule definition.

For example:

/*www /testrule/* PATH('web/*') WELCOMEPAGE('index.htm')

Where
17-6 Shadow OS/390 Web Server User’s Guide December 1999

/*WWW Rules
� /*www is the rule’s header statement.
� /testrule/* is the rule.
� PATH('web/*') displays the subdirectory name, web.
� WELCOMEPAGE('index.htm') is the keyword and file name. (See

“WELCOMEPAGE Keyword Operand” on page 17-7.)

The rule’s definition can include other keywords allowed for /*WWW statements,
such as AUTHREQ, RUNAUTH, or SENDTRACE or WELCOMEPAGE().

URL Criterion
The /*WWW rule’s URL matching criterion is specified the same as it is for all
other WWW rule definitions. The criterion value may contain zero or one
wildcard (*) character.

For example:

http://documentroot_value/subordinate_value/ruleset/index.htm

PATH Keyword Operand
The PATH operand:

� Consists of a string of 1-to-128 bytes in length and is case sensitive.
� Can contain zero or one wildcard character.
� Is not required to contain a wildcard, even if the URL matching criterion

string contains one.

WELCOMEPAGE Keyword Operand
The WELCOMEPAGE operand is only valid when the PATH operand ends with a
wildcard. This operand returns a specific file whenever an inbound request does
not specify a file within a directory and the PATH operand specifies an HFS
directory name.

Note:
If the PATH operand (preceding the wildcard character) does not
designate a directory, the WELCOMEPAGE operand is merely
appended to the value, and may generate an invalid (not found)
reference.
December 1999 Shadow OS/390 Web Server User’s Guide 17-7

Using the OS/390 UNIX OpenEdition Hierarchical File System (HFS)
Displaying the Web Page
Shadow Web Server uses the following to determine what is displayed in the Web
browser:

DOCUMENTROOT + HFSROOT + PATH + WELCOMEPAGE

Note:
DOCUMENTROOT and HFSROOT are in the startup file.

PATH and WELCOMEPAGE are controlled by the rule.
17-8 Shadow OS/390 Web Server User’s Guide December 1999

APPENDIX A:

Trace Browse

The trace browse application is used to view Shadow OS/390 Web Server’s trace records. The trace
records contain information about communication and SQL processing events for all users (both
attached and remote) of the system.

Starting Trace Browse
To start the trace browse application, select the trace browse option from the ISPF/
SDF Primary Options Menu. The trace browse screen appears. It will look
something like this:

Figure A–1. Trace Browse Display

The trace browse application looks and functions very much like ISPF/PDF
Browse. However, there are some important differences:

� On entry to trace browse, a message is displayed when a non-blank profile is
being used.

� There is no dataset specification screen.

-------------------- SHADOW SERVER BROWSE - 08:27:53 31 MAR 92 COLS 001 064
COMMAND ===> SCROLL ===> PAGE
DDMMM HH:MM:SS ----+----1----+----2----+----3----+----4----+----5----+----6----
31MAR 08:27:53 CNOS FAILED - LU SDBIP00 - CNOS ALLOCATION FAILURE, RETRY
31MAR 08:27:53 DISPLAY FAILED - LU SDBIP00 - PARAMETER ERROR, NO CORRESPONDING
31MAR 08:27:53 CNOS FAILED - LU SDBTD01 - CNOS ALLOCATION FAILURE, RETRY
31MAR 08:27:53 DISPLAY FAILED - LU SDBTD01 - PARAMETER ERROR, NO CORRESPONDING
31MAR 08:28:42 CNOS FAILED - LU SDBIP00 - CNOS ALLOCATION FAILURE, RETRY
31MAR 08:28:42 DISPLAY FAILED - LU SDBIP00 - PARAMETER ERROR, NO CORRESPONDING
31MAR 08:28:42 CNOS FAILED - LU SDBTD01 - CNOS ALLOCATION FAILURE, RETRY
31MAR 08:28:42 DISPLAY FAILED - LU SDBTD01 - PARAMETER ERROR, NO CORRESPONDING
31MAR 08:30:06 CNOS FAILED - LU SDBIP00 - CNOS ALLOCATION FAILURE, RETRY
31MAR 08:30:06 DISPLAY FAILED - LU SDBIP00 - PARAMETER ERROR, NO CORRESPONDING
31MAR 08:30:06 CNOS FAILED - LU SDBTD01 - CNOS ALLOCATION FAILURE, RETRY
31MAR 08:30:06 DISPLAY FAILED - LU SDBTD01 - PARAMETER ERROR, NO CORRESPONDING
31MAR 08:43:47 EXTERNAL INTERRUPT - PATH 0001 - NONPRIORITY MESSAGECOMPL
31MAR 08:43:47 SELECT EXECUTED - PATH 0001 - SELECT COMPLETED
31MAR 08:43:57 SELECT STARTED - PATH 0001 - SELECT INITIATED
31MAR 08:45:21 CNOS FAILED - LU SDBIP00 - CNOS ALLOCATION FAILURE, RETRY
31MAR 08:45:21 DISPLAY FAILED - LU SDBIP00 - PARAMETER ERROR, NO CORRESPONDING
31MAR 08:45:21 CNOS FAILED - LU SDBTD01 - CNOS ALLOCATION FAILURE, RETRY
31MAR 08:45:21 DISPLAY FAILED - LU SDBTD01 - PARAMETER ERROR, NO CORRESPONDING
***** ******** ************** BOTTOM OF MESSAGES ******************************
December 1999 Shadow OS/390 Web Server User’s Guide A-1

Trace Browse
� The “dataset” displayed is the stream of trace messages that is constantly
being extended at the bottom. When the maximum number of trace messages
held is exceeded, messages at the top of the trace stream are removed. (The
maximum number is set by the BROWSEMAX parameter.) The trace browse
display will optionally reposition to the current bottom of the message stream
each time you press <ENTER>.

� Supplemental information about the messages is available in columns that are
displayed optionally (using the DISPLAY primary command).

Four-way scrolling is supported using the scroll commands (UP, DOWN, LEFT,
RIGHT) or their associated PF keys.

Order of Trace Browse Events
As the server executes a particular SQL statement, several events are entered into
the trace log on both the server and client sides. Both logs perceive the series of
events from different perspectives, and each can have a different account of a
singular event.

For instance, a client can execute a SQL statement and simultaneously enter the
following events in its trace log.

SEND event
RECEIVE event
SQL event (the results are returned)

The same three events will be logged on the server side as follows:

RECEIVE event (matches the client SEND event)
SQL event (the SQL statement is actually sent to DB2)
SEND event (matches the client RECEIVE event)

The client side appears to be out of order until you consider that the sequences
above are actually synchronized operations. If you could view a combined trace
log, the SQL statement execution would appear as follows:

SEND event (client side)
RECEIVE event (server side)
SQL event (server side)
SEND event (server side)
RECEIVE event (client side)
SQL event (client side)
A-2 Shadow OS/390 Web Server User’s Guide December 1999

The Trace Browse Profile
The Trace Browse Profile
You can view the server’s events using the trace browse application. However,
you may want to browse only a subset of these events. The trace browse profile
can help you to do this by filtering the entire set of trace messages and only
displaying those you want.The filtering profile is for an individual ISPF/PDF user.
One user's profile has no affect on another user's.

When you first enter trace browse, you will have no profile and all messages will
be displayed. To set a profile, you can use either the profile specification display
or the trace browse profile command. The following sections discuss each
method.

Using the Specification Display
To access the trace browse profile specification display, enter the PROFILE
command, without any operands, on the command line of the main trace browse
display. The profile specification display appears.

Figure A–2. Trace Browse Profile

The profile criteria that you specify in this panel determine which records are
subsequently presented. For example, if you enter a jobname, only records having
that jobname are displayed.

You can specify more than one profile criterion without conflict. Multiple entries
are considered to be joined using the logical AND operator. Thus, if you enter two
profile criteria, trace browse filters the records available so that only those that fit
both criteria are displayed.
December 1999 Shadow OS/390 Web Server User’s Guide A-3

Trace Browse
In the same way, you can specify more than one value for several profile criteria.
When you specify more than one value for a profile field, the values are logically
OR’d. For example, with two JOBNAMEs specified, a record will be selected if it
contains one or the other of the values.

The following table describes the profile criteria (also called options) and the
values that they may take.

Option Limits Messages to Those That... Value Description

JOBNAME Are produced by this job. Enter up to 4 values.

USERID Have this userid. Enter up to 4 values.

COLOR (This option not supported.) This option is not supported at this time

CONNECT Have this connection ID. Enter up to 4 values.

ATHevent Are related to security authorization events. Enter ‘Y’ for yes (default) or ‘N’ for no.

ATTevent Are related to internal ATTACH events. Enter ‘Y’ for yes (default) or ‘N’ for no.

ABNevent Are related to internal ABEND events. Enter ‘Y’ for yes (default) or ‘N’ for no.

IMSevent (This option not supported.) This option is not supported at this time

MSGevent Are related to product initialization and
termination messages.

Enter ‘Y’ for yes (default) or ‘N’ for no.

SQLevent Are related to SQL statement execution. Enter ‘Y’ for yes (default) or ‘N’ for no.

STGevent Occur when a key change is required to update
storage. These events occur when keys 0
through 7 are used or the key of storage.

Enter ‘Y’ for yes or ‘N’ for no (default).

TCPevent Are related to TCP/IP communications. Enter ‘Y’ for yes (default) or ‘N’ for no.

6.2event Are related to LU 6.2 communications. Enter ‘Y’ for yes (default) or ‘N’ for no.

Table A–1. Profile Criteria and Valid Values
A-4 Shadow OS/390 Web Server User’s Guide December 1999

The Trace Browse Profile
Using the PROFILE Command
The PROFILE command can be used to either clear profile criteria or to establish
new values. The syntax is:

option The name of the option you want to set.

Value1...value4
The values to use in selecting records by the option. Only
JOBNAME, USERID, COLOR, and CONNECT can have multiple
values. The “event” type options can only have one value (“Y” or
“N”).

If you enter the PROFILE command without any operands, you will be presented
with the profile specification display. Entering PROFILE option with the value
omitted will clear the profile setting for that option and the option will not be
considered for filtering.

The PROFILE option value format is for specifying profile criteria without using
the profile specification display.

Examples

1. To enter a specification for JOBNAME, use:

PROFILE JOBNAME AI38EDH

2. To select two jobs for trace browse, specify both with the same profile
command:

PROFILE JOBNAME AI38SCW AI38EDH

Wildcards for Trace Browse Profile
The JOBNAME and USERID criteria can contain wildcard specifications. A
wildcard is an entry that ends with an asterisk (*). For example, if the entry in
JOBNAME is ‘AI38*’, then all trace records jobnames which start with ‘AI38’
are selected.
December 1999 Shadow OS/390 Web Server User’s Guide A-5

Trace Browse
Examples:

1. To filter out all Trace Browse messages except for those related to a particular
connection, given that the connection ID is unique for each connection
established with the product, use:

PROFILE CONNECT connection-id

The USERID and JOBNAME are unnecessary since a connection-id is
more “granular” than either of these criteria. Use this type of profile whenever
you want to study just one connection for a user. If you use the connection-
id profile, you get all of the records for one session, including all
communications, I/O, and SQL events.

2. To exclude all records except those produced by a single user, do the
following:

PROFILE JOBNAME jobname

This shows you all the connections a user has made to SWS. You can use this
type of profile whenever you are looking for patterns and need to study
several sessions for a user.

Positioning Trace Browse
When first invoking trace browse, the display is positioned at the bottom of the
list of trace records (you will see the “Bottom of Messages” marker at the
bottom of the screen). Press <ENTER> to refresh the display with the latest
messages. You can also refresh the display if the top of the trace browse list is
displayed. (You will see the “Top of Messages” marker at the top of the
screen). If the list is full, press the <ENTER> key to scroll the display downward.
The older messages disappear to accommodate the newest messages being added
to the end of the list.

If you reposition the trace browse display from its initial position at the bottom of
the message stream it will no longer shift when you press the <ENTER> key. If
you use the DOWN MAX command, the refresh mode will be reinstated (you
will still need to press <ENTER> to see the latest messages).

Note:
Merely scrolling to the bottom without using the DOWN MAX
command will not reinstate the refresh mode.
A-6 Shadow OS/390 Web Server User’s Guide December 1999

Changing Trace Browse Columns
Changing Trace Browse Columns
By default, trace browse displays three columns of information for each traced
event:

� The time of the event
� The host name associated with the event
� A short description of the event

You can display many other columns as well with the DISPLAY command.

Displaying Extra Columns of Information
The format of the trace browse display can be changed using the DISPLAY
command. The syntax is:

column1...column5
You can specify one to five display columns separated by blanks. The
columns will appear to the left of the message text, and in the order
that in which they are specified.

In order to clear the screen of the displayed columns, enter the DISPLAY
command with no operands. The trace browse screen will display just the trace
message text. (The trace message text is always included as a part of the trace
browse no matter what other columns you specify).

Trace Browse Columns
The possible columns are:

Column Description

ADDRESS The message address. This is the location in memory of the actual message data. This column is
used for product support and debugging.

ADDRJOB The job address. This is the location in memory of the current entry in the jobname vector. This
column is used for product support and debugging.

Table A–2. Trace Browse Columns
December 1999 Shadow OS/390 Web Server User’s Guide A-7

Trace Browse
ADDRUSR The userid address. The location in memory of the current entry in the userid vector. This column
is used for product support and debugging.

ASID The address space ID. The ASID of the address space that creates the current trace browse entry.
This column is for general use and for product support.

CLOCK The 8 byte binary clock value time stamp of when the trace browse message was created. This
column is for general use and for product support.

CNID The connection ID. The unique identifier assigned to each thread created by the product. This
column is for general use and for product support.

COLOR The color column. The color assigned to each trace browse message (very handy when using a
monochrome monitor). This column is for general use and for product support.

Note: The COLOR column is not completely implemented. At this time only the value NONE
will be displayed.

CPUTIME The CPU time used by a particular thread. The format depends on how much CPU time has used
so far. If less than 1000 seconds has been used, the format is nnn.nnns. If more than 1000 seconds
and less than 100 hours has been used, then the format is hh:mm:ss. If 100 hours or more has been
used, the format is hhhhh:mm.

CVID The conversation ID. LU 6.2 assigns this identifier when a conversation is started. This column is
for general use and for product support.

CODE The lowest level return code for each event in trace browse. This column is for general use and
for product support.

DATE The date in dd:mm:yy format when the message was created. This column is for general use and
for product support.

ELAPSED How long the current event took in decimal microseconds (millionths of a second). It is
calculated by subtracting the STCK (store clock) value taken at the beginning of processing from
the STCK value taken at the end of processing. This column is for general use and for product
support.

EVENT The type of event that created the message. The event types are as follows:

• 6.2: LU 6.2 event
• ABN: ABEND event
• ATH: Security authorization event
• ATT: Internal attach event
• DET: Internal detach event
• IMS: IMS event
• MSG: Trace message event
• NON: No processing description
• SQL: SQL event
• STG: Storage event
• TCP: TCP/IP event

This column is for general use and for product support.

JOBID The job ID of the job or address space that created the trace browse entry. This column is for
general use and product support.

IPADDR The Internet Protocol address. The TCP/IP source or target associated with the message. This
column is for general use and product support.

Column Description

Table A–2. Trace Browse Columns
A-8 Shadow OS/390 Web Server User’s Guide December 1999

Changing Trace Browse Columns
JOBNAME The jobname of the job or address space that created the trace browse entry. This column is for
general use and product support.

LENGTH The length of the text section of the message. This column is for general use and product support.

LUNAME The LU 6.2 source or target associated with the message. This column is for general use and
product support.

MSGNO The message number. This is the sequential message number of the message. The first message
collected by trace browse when data collection begins is message one. The second is message
two, and so forth. When the capacity of the trace browse message area is exhausted, the oldest
message is discarded as each new message is added. Because of this, the top message in trace
browse is not necessarily message number one. This column is for general use and product
support.

NODENAME The node name. This is the communications node associated with the message. The format of
each entry depends on the communication link type. This column is for general use and product
support.

PATHID The IUCV path ID. This is the path associated with the message. This column only has meaning
for TCP/IP-related events. This column is for general use and product support.

RC The highest level return code for the message. This column is for general use and for product
support.

REASON The reason code is the second level return code for the message. This column is for general use
and product support.

SDBFLAGS The product flags contain bits set by the various routines the create trace browse routines. This
column is for product support and debugging.

SECONDS The first 4 bytes of the binary time stamp of when the trace browse message was created. This
column is for general use and product support.

SESSION The session column shows the communications session associated with the message. The format
of each entry depends on the communication link type. This column is for general use and
product support.

SOCKET The socket column shows the socket number associated with the message. This column only
applies to TCP/IP-related events. This column is for general use and product support.

SQLRC The SQL return code column contains the SQL return code associated with the message. This
column applies to SQL-related events only. This column is for general use and for product
support.

SUBSYSTEM The subsystem column contains the DB2, IMS, or CICS subsystem name. This column is for
general use and product support.

TCBADDR The TCB address field contains the address of the TCB that created the message. This column is
for general use and product support.

TCPRCEX This column contains TCP/IP extended return codes. This column is only for TCP/IP related
events. This column is for general use and product support.

TCPRC This column contains TCP/IP return codes. This column is only for TCP/IP related events. This
column is for general use and product support.

TERMNAME The name of the terminal with which the event is associated.

Column Description

Table A–2. Trace Browse Columns
December 1999 Shadow OS/390 Web Server User’s Guide A-9

Trace Browse
Using Labels in the MSGNO Column
The MSGNO column is unique because it is the only modifiable column (you can
type over the values in the column). In the MSGNO column, you can place “labels”
which you can refer to using the LOCATE command. The format of trace browse
labels is identical to the format of ISPF/PDF Edit labels:

.aaaaaaa

A label consists of a period (.) followed by 1 to 7 alphabetic characters (a to z,
upper or lowercase). Internally all label names are changed to uppercase for the
purpose of comparison. Like ISPF/PDF Edit, you cannot use numbers in a label.

Locating Messages
Use the LOCATE command to position the display at a specific line. The line can
be specified by date, time, date/time combination, or by message number.

The syntax is:

TIME The time, in hh:mm:ss format, when the message was created. This column is for general use and
product support.

TIMEX The extended time field. This is the time when the message was created calculated to the
microsecond -- hh:mm:ss.uuuuuu

TRACE1 The trace data specific to the message. This field is for product support and debugging.

USERID The security product userid that best identifies the message. This column is for general use and
product support.

VERSION The product version that created the message. This column is for general use and product support.

VTAMRC This is the VTAM return code. This column is used mostly for product support.

Column Description

Table A–2. Trace Browse Columns
A-10 Shadow OS/390 Web Server User’s Guide December 1999

Using the FIND Command
time The time of day, in a 24-hour format, that you want the trace browse
display scrolled. For example, 13:05:00 is 5 minutes past one in the
afternoon. Use one of the following formats to specify the time:
hh: hour only
hh:mm hour and minute
hh:mm:ss hour, minute, and second

date The date that you want the trace browse display scrolled. Use one of
the following formats to specify the date:
5APR April 5, current year
05APR April 5, current year
29FEB92 February 29, 1992
29FEB1992 February 29, 1992

msgno The message number to which you want the trace browse display
scrolled. Message number is a 1 to 10 digit integer.

label The name of a label which was previously set on a row in the MSGNO
column. If the label name is not defined, an error message is
displayed. The label name in the LOCATE command must begin
with a period (.).

Using the FIND Command
Basically, the FIND command works like the ISPF/SDF FIND command; it is
used to find character strings within the texts of messages. Trace Browse permits
high speed finds against the columns of the DISPLAY command.

Finding Character Strings
The syntax of the FIND command is:
December 1999 Shadow OS/390 Web Server User’s Guide A-11

Trace Browse
TEXT An optional keyword indicating that the search is to take place against
the text of the message and not against any other search columns.

string The string to search for in the message text. If there are embedded
blanks, or if the string is identical to a FIND keyword, it must be
enclosed in quotes. Both single quotes and double quotes are
accepted, with the restriction that a string must both begin and end
with the same type of quote mark. If you want to include a quote mark
within a string, you must “double-up” the quote marks. For example:

FIND 'this ain''t good english'

Alternatively, you can use one type of quote mark to delimit the
string, and the other type as data within the string:

FIND "this ain't good english"

* An asterisk indicates that the search string from the previous FIND
command is to be used.

FIRST Find the first occurrence of the string.

LAST Find the last occurrence of the string.

PREV Search upward.

NEXT Search downward.

Start-col Specifies the beginning text column for the search. Columns before
start-col are not searched.

end-col Specifies the ending text column for the search. Columns after end-
col are not searched. If start-col is specified but end-col is not,
end-col is assumed to be start-col + length(string) - 1.

Msgno Specifies the number of messages to scan before abandoning the
search. By default, 5000 messages are searched.

Repeating a FIND Command
To repeat a search, use the RFIND command. RFIND has no operands. It repeats
the previous find command using the same search string, search direction, column
limits, and message number limits. Normally, the RFIND command is assigned to
<PF5>.

Note:
Trace browse is able to distinguish between msgno and start-col
and end-col by examining the magnitude of the numbers. A
number larger than 768 is assumed to be a msgno number and not a
column number.
A-12 Shadow OS/390 Web Server User’s Guide December 1999

Using the FIND Command
Finding With DISPLAY Columns
The FIND command can also be used to find information within some of the
columns of the DISPLAY command. This search method is usually much faster
than a text search.

When using the FIND command, be aware of the following:

1. There is no upper limit for searching columns. An unsuccessful search goes
from the starting point to the end of the messages (for both upward and
downward searches).

2. The DISPLAY column does not need to be visible for the column FIND to
work. If the column is not visible, a successful search results in the cursor
being placed in column 1 of the text field.

The syntax is:

JOBNAME
Specifies that the JOBNAME DISPLAY column is to be searched.

USERID Specifies that the USERID DISPLAY column is to be searched.

EVENT Specifies that the EVENT DISPLAY column is to be searched. The
types of EVENTs that can be searched for are listed under
“Displaying Extra Columns of Information” above.

COLOR Specifies that the COLOR DISPLAY column is to be searched.

string Search for this string in the message text. If there are embedded
blanks, or if the string is identical to a FIND keyword, it must be
enclosed in quotes. Both single quotes and double quotes are
accepted, with the restriction that a string must both begin and end
with the same type of quote mark. If you want to include a quote mark
within a string, you must “double-up” the quote marks. For example:

FIND 'this ain''t good english'
December 1999 Shadow OS/390 Web Server User’s Guide A-13

Trace Browse
Alternatively, you can use one type of quote mark to delimit the
string, and the other type as data within the string:

FIND "this ain't good english"

* An asterisk indicates that the search string from the previous FIND
command is to be used.

PREFIX Specifies that the search string is a generic search string and gives
only the prefix characters to be searched for. If you do not specify the
PREFIX, keyword matching is byte-for-byte.

PREFIX is currently not supported for the TEXT, COLOR, and EVENT
search columns.

FIRST Find the first occurrence of the string.

LAST Find the last occurrence of the string.

NEXT Search downward.

PREV Search upward.

Row Information Commands
There are four primary commands that can be used to invoke the special
information displays for a particular trace browse row:

SWSZOOM
This is used to invoke the control block browse application, which
presents formatted control block information for the selected row.
This information is only used for product support. By default, <PF4>
is set to execute the SWSZOOM command.

SWSINFO
This is used to invoke the SQL explanation application, which
presents explanatory text regarding the SQLCODE associated with
the selected row. By default, <PF6> is set to execute the SWSINFO
command.

SWSTRAC
This is used to invoke the SQL trace application, which presents a
trace of all SQL events for the connection ID associated with the
selected row. By default, <PF16> is set to contain the SWSTRAC
command.

SWSDATA
This is used to invoke the SQL data application, which presents a
formatted SQL Communications Area (SQLCA) control block for the
selected row. By default, <PF18> is set to contain the SWSDATA
command.
A-14 Shadow OS/390 Web Server User’s Guide December 1999

Printing Trace Browse Information
These commands are used in conjunction with location of the cursor to determine
which row to provide information for.

To invoke one of the special information displays, type the appropriate command
in the command field, then position the cursor under the line in the display and
press <ENTER>. Or place the cursor on the appropriate line and press the PF key
associated with the command.

Printing Trace Browse Information
You can print any information from the trace browse application using the P and
PP line commands.

� By entering the P line command into the MSGNO column, you will cause just
the selected line to be printed.

� To print out a block of information, use the PP line command. Enter the
command on both the first and last line of the block you want to print out. The
PP command should be entered in the MSGNO column on your screen.

Figure A–3. The PP Line Command

 -------------------- SHADOW SERVER TRACE --- 14:11:59 08 AUG 93 COLS 001 066
COMMAND ===> SCROLL ===> PAGE
MESG NUM EVN ----+----1----+----2----+----3----+----4----+----5----+----6----+-
00003629 TCP EXTERNAL INTERRUPT - PATH 0001 - NONPRIORITY MESSAGE COMPLET
00003630 TCP GETHOSTNAME EXECUTED - PATH 0001 - GETHOSTNAME COMPLETED
00003631 TCP EXTERNAL INTERRUPT - PATH 0001 - NONPRIORITY MESSAGE COMPLET

PP TCP SOCKET EXECUTED - PATH 0001 SOCK 0003 - SOCKET COMPLETED
00003633 TCP EXTERNAL INTERRUPT - PATH 0001 - NONPRIORITY MESSAGE COMPLET
00003634 TCP SETSOCKOPT EXECUTED - PATH 0001 SOCK 0003 - SETSOCKOPT COMPLE
00003635 TCP EXTERNAL INTERRUPT - PATH 0001 - NONPRIORITY MESSAGE COMPLET
00003636 TCP BIND EXECUTED - PATH 0001 SOCK 0003 - BIND COMPLETED
00003637 TCP GETSOCKNAME STARTED - PATH 0001 SOCK 0003 - GETSOCKNAME INITI
00003638 TCP EXTERNAL INTERRUPT - PATH 0001 - NONPRIORITY MESSAGE COMPLET
PP TCP GETSOCKNAME EXECUTED - PATH 0001 SOCK 0003 - GETSOCKNAME COMPL

00003640 TCP EXTERNAL INTERRUPT - PATH 0001 - NONPRIORITY MESSAGE COMPLET
00003641 TCP LISTEN EXECUTED - PATH 0001 SOCK 0003 - LISTEN COMPLETED
00003642 TCP SELECT STARTED - PATH 0001 - SELECT INITIATED
00003643 IMS CONTROL EXIT RESYNC COMMIT - REQUEST COMPLETED SUCCESSFULLY
00003669 ATH READ ACCESS TO NON.TRACEBROWSE ACCEPTED - RESOURCE SECURITY BYPASS
00003670 ATH READ ACCESS TO NON.TRACEBROWSE ACCEPTED - RESOURCE SECURITY BYPASS
******** *** **************** BOTTOM OF MESSAGES ******************************
December 1999 Shadow OS/390 Web Server User’s Guide A-15

Trace Browse
A-16 Shadow OS/390 Web Server User’s Guide December 1999

APPENDIX B:

Trace Browse Archival Facility

The server’s wrap-around trace facility is a powerful diagnostic tool designed to record critical events
in the life of each individual transaction process. It is designed to record critical internal information
which can be used to debug and correct problems within the server itself.

What is it
The wrap-around trace consists of a large block of virtual storage, which can
optionally be backed by a data-in-virtual linear dataset. This block of virtual
storage is sub-divided into a status area, a configurable number of event blocks,
and a series of vector tables.

Status Area
The status area occupies the first 4k page of the trace virtual storage,
and contains checkpoint information about the trace area, as well as
information about the most recent trace archive.

Event Blocks
The event blocks begin within the second 4k page of the trace virtual
storage area. The BROWSEMAX start-up parameter controls the
number of event blocks allocated within this area. Each event block
occupies 896 bytes of storage. Each server event is recorded into the
next available slot, beginning with the first slot, continuing through
the end of the event blocks, and then wrapping around to the
beginning.

Vector Tables
Each vector table begins on a 4k page boundary which follows the
event blocks in storage. The vector tables contain indexing
information that allows views of the trace to be filtered without
searching through the entire virtual storage area occupied by each
individual event block.

How it works
When the trace is backed with a data-in-virtual dataset, it is checkpointed
periodically to the dataset during server operations. The BROWSEINTERVAL
start-up parameter sets the number of seconds between checkpointing operations.

When backed by a DIV dataset, the trace becomes persistent. This means that at
each server restart, the wrap-around trace is continued from the point at which the
last event was recorded before the previous product shutdown. Use of a DIV
dataset also cuts down on the amount of virtual storage MVS must back within
system page datasets, since checkpointed pages are paged out of virtual storage.
December 1999 Shadow OS/390 Web Server User’s Guide B-1

Trace Browse Archival Facility
Each server event is recorded into the next event block within the wrap-around
trace. The event records consist of a fixed length header and an event-specific
recording area. For some event types, the recording area contains the actual text
which you see when you view the trace. For other event types, binary information
or internal control block images are placed into the recording area, but formatted
as text when you view the records.

This configuration for the trace yields an extremely useful and powerful
diagnostic tool while keeping the run-time overhead of supporting the facility at
an absolute minimum. However, there are design tradeoffs inherent to this
approach:

� The trace data-in-virtual dataset cannot be shared between two or more active
servers.

� The event block slot locations, and size of the vector tables is fixed in relation
to the total number of event block slots allocated. If you change the number
of event slots later (that is, change the BROWSEMAX start-up parameter),
the trace area must be reformatted. All pre-existing data will be lost.

Backups and Extracts
The server provides two facilities for creating copies of the active wrap-around
trace. For archival purposes, the server can be configured to periodically make
automatic backups of the trace. For diagnostic and reference purposes, the server
allows user requested extracts to be made of the trace. These backups and extracts
are recorded in exactly the same format as the active trace (each is a self-
contained mini-trace).

This approach has several important benefits, plus a few drawbacks.

Benefits

� No detail is lost during backup processing that would otherwise occur if the
records were extracted in text-only format.

� Extracted data remains in a very compact form and occupies no more DASD
space than the original data.

� Extracted data can be reviewed almost instantly, because no heavy-weight
pre-processing of the off-line logs into virtual storage is required.

� Data-in-virtual pages can be mapped instantly for review without scanning
the data to re-create index information.

Drawbacks

� Each extract file is self-contained. This means individual backups cannot be
merged together, since the sequencing of each event record and the indices
which point to it are dependent on each event’s relative position within the
DIV pages.
B-2 Shadow OS/390 Web Server User’s Guide December 1999

Configuring Automatic Backups
� The data remains in a proprietary format and cannot easily be processed by
other utilities. However, because the data remains in a proprietary format, the
server’s configured security authorization controls cannot easily be circumvented.

Message Numbering

When each event is originally recorded within the wrap-around trace, it is
assigned a sequential message number. Message numbering within a newly
formatted trace begins at one, thereafter increments sequentially, and is continued
during product restarts.

All backup and extract operations are performed using these message sequence
numbers as a basis. For instance, server initiated automatic backup operations are
scheduled based upon the number of new messages collected since the previous
backup. User requested extracts are requested by specifying the beginning and
ending message numbers to extract.

Configuring Automatic Backups
There are a number of server start-up parameters which you must set in order to
configure automatic trace backup support.

1. Gain some experience with the active trace before attempting to configure
automatic backup support. Specifically,

a. Check to see how many trace events are being logged within a given time
period and how frequently the trace wraps around.

b. Adjust the BROWSEMAX parameter so that the active trace is sized
appropriately.

2. Set the BROWSEARCHIVECOUNT startup parameter for the number of
messages to be copied each time an automatic backup operation is scheduled.
This count should normally be 20% to 80% of the BROWSEMAX value. Set
the count value high enough so backup operations are not constantly
underway, but low enough that even under heavy load, the active trace will
not wrap around before activity can be backed up.

During this time, the Server does not suspend operation, nor does it stop
recording new events, even if the new activity begins to overlay messages that
have not been backed up.

Note:
You want to avoid a thrashing condition, where the server is
constantly building backups in order to record activity before
the active trace wraps-around. Your active trace should be large
enough to record at least a few hours activity before wrap-
around occurs.
December 1999 Shadow OS/390 Web Server User’s Guide B-3

Trace Browse Archival Facility
3. Set the BROWSEARCHIVECUSHION start-up parameter for the number of
messages to be used as a scheduling threshold or cushion for backup
operations. This cushion value is used by the server to avoid creating archives
in which some messages have been overlaid due to trace wrap-around.

4. Set data-in-virtual dataset allocation parameters. These parameters include:

� ARCHIVEDSNPREFIX
� ARCHIVEDATACLASS
� ARCHIVEMGMTCLASS
� ARCHIVESTORCLASS
� ARCHIVEDEFCLPARMS

5. Set the BROWSEARCHIVE parameter to “AUTO” to activate automatic
backup processing.

To Begin Testing
Normally, we suggest that you begin testing the automatic backup facility by
setting the BROWSEARCHIVECOUNT parameter to 30% of your
BROWSEMAX count, and the BROWSEARCHIVECUSHION to 50% of the
BROWSEARCHIVECOUNT value.

The server schedules automatic backup operations using these configured values.
However, if it detects that the values are inappropriate, it will override these
values during start-up.

Data Set Allocation Parameters
The following table contains the data set allocation parameters:

Parameter Description

ARCHIVEDSNPREFIX Defines the high-level qualifier used by the sub-system to construct datasets name for
trace browse archive files. The value “.Dyyyyddd.Thhmmss” is appended to the
qualifier, where “yyyyddd” is the Julian date, and “hhmmss” is the time of day. Trace
browse archival processing cannot be performed if this prefix is not set, because there is
no default value.

ARCHIVEDATACLASS Defines the DATACLASS operand value used to define linear clusters for archive
datasets. If it is not set, DATACLASS is not specified when the linear datasets are
allocated.

ARCHIVEMGMTCLASS Defines the MGMTCLASS operand value used to define linear clusters for archive
datasets. If it is not set, MGMTCLASS is not specified when the linear datasets are
allocated.

ARCHIVESTORCLASS Defines the STORCLASS operand value used to define linear clusters for archive
datasets. If is not set, STORCLASS is not specified when the linear datasets are
allocated.

Table B–1. Data Set Allocation Parameters for Trace Browse Archive
B-4 Shadow OS/390 Web Server User’s Guide December 1999

Using the Trace Browse Archival Facility
Using the Trace Browse Archival Facility
To access the Trace Browse Archival Facility:

1. Select SWS Control from the Primary Options Menu.
2. Select Trace Archive.

The following panel appears:

Figure B–1. Trace Archive Facility

From this panel you can select the following options:

Status Use this to view the trace browse archive status information shown in
Figure B–2, Figure B–3, Figure B–4, and Figure B–5. These panels
give you complete backup/archive status information including
control values, automatic backup control parameters, backup dataset
allocation parameters, and a sample of an IDCAMS statement
generated by the server for archive backup dataset allocations.

View Backups
Use this to view trace archive backups. After selecting the dataset
name to view, you can view all the backup trace archives for that
dataset. See Figure B–6 and Figure B–7.

ARCHIVEDEFCLPARMS Contains additional parameter values which are passed on DEFINE CLUSTER
statements generated to define archive backup datasets.

Parameter Description

Table B–1. Data Set Allocation Parameters for Trace Browse Archive
December 1999 Shadow OS/390 Web Server User’s Guide B-5

Trace Browse Archival Facility
The following sections take you through these panels step-by-step.

To view active trace backup/archive status:

1. Select Status from the Trace Archive Facility panel (shown in Figure B–1).
The following panel appears:

Figure B–2. Backup/Archive Status, Panel 1

This panel display the name of the active trace dataset, and the latest message
information. The second half of the panel gives you status information for the
most recent backup. The subsystem name is located on the upper right hand
corner of the panel.

2. Press <Enter> to go to the second status panel. (See Figure B–3.)

Note:
These panels are view-only.
B-6 Shadow OS/390 Web Server User’s Guide December 1999

Using the Trace Browse Archival Facility
Figure B–3. Backup/Archive Status, Panel 2

This panel shows the parameter settings for automatic backup control and for
backup dataset allocation.

3. Press <Enter> to go to the next status panel. (See Figure B–4.)

Figure B–4. Backup/Archive Status, Panel 3
December 1999 Shadow OS/390 Web Server User’s Guide B-7

Trace Browse Archival Facility
This panel gives a sample of the IDCAMS statement that will be generated by
the server for the backup dataset allocation. It is based on the parameter
values shown in Panel 2.

4. Press <Enter> to go to the final panel for the Status option. (See Figure B–5.)

Figure B–5. Backup/Archive Status, Panel 4

This panel displays the subtask information for archive backup/cleanup/
extract processing.

To view trace backup archives:
1. Select View Backups from the Trace Archive Facility panel (shown in Figure

B–1) to access the Archive Dataset List panel:

Figure B–6. Archive Dataset List Panel

This panel displays the active dataset name for which backup will be
displayed.
B-8 Shadow OS/390 Web Server User’s Guide December 1999

Using the Trace Browse Archival Facility
2. Type S next to the archive dataset name and press <Enter>. This takes you to
the next panel which displays the ttrace archive backup for that dataset (see
Figure B–7):

Figure B–7. Archive Review
December 1999 Shadow OS/390 Web Server User’s Guide B-9

Trace Browse Archival Facility
B-10 Shadow OS/390 Web Server User’s Guide December 1999

APPENDIX C:

Starting a Test Version

Shadow OS/390 Web Server’s debugging control allows you start and stop test copies of Shadow OS/
390 Web Server under your TSO session. Running a test copy allows you to use all of the standard
debugging tools to help you solve problems that can arise. After you finish writing the application,
transfer them to the library of the real Shadow OS/390 Web Server. They should operate perfectly.

Setting Up Shadow Server to Run under TSO
Before you can run Shadow OS/390 Web Server under a TSO user’s address
space, the TSO user must be set up to run exactly as the Server. For setup
information, refer to the appendix in the Installation Guide.

Test Copies
Test copies of Shadow OS/390 Web Server supports multiple users and operates
similarly to the real server. The only differences are:

� You have access to all applications and sub-applications available with
Shadow OS/390 Web Server. There is be no security checking.

� Performance is not as high. The product does not operate as quickly in a TSO
session.

In order to run Shadow OS/390 Web Server under a TSO user's address space, the
TSO user needs to be set up to run exactly as the server. For details on any of the
following steps, please refer to the Installation Guide.

Using the Debugging Control Screen
The debugging screen specify option S to start a test copy, and option P to stop a
test copy. You can specify the following parameters:

Note:
Running Shadow OS/390 Web Server under TSO is not
supported with the TSOPLUS product. If you have TSOPLUS
installed, you must setup another TSO logon proc that uses the
standard IKJEFT01 program.
December 1999 Shadow OS/390 Web Server User’s Guide C-1

Starting a Test Version
Figure C–1. The Server Debugging Control Panel

Using the Code/370 Debug Tool
1. Compile the program using LE370 with the TEST option in both the compile

and link steps.

2. Use the Shadow OS/390 Web Server’s ISPF panels, go to the debug panel to
start the debug subsystem (you must run a debug copy of Shadow OS/390
Web Server in your TSO address space to use this option).

3. Press <ENTER> until a message is received that your subsystem has started.

4. Go to option 5.

5. Enter the Language (such as, COBOL), enter TEST for the run-time option,
and enter any required parameters.

6. The terminal locks once the RPC is running.

Parameter Description

OPTION Specify INIT. This is the processing option for OPDBIN. It causes an SDB main
address space to be initialized.

SUBSYSTEM NAME Specify the MVS 4-character subsystem name in the same way that you would
with a real copy of Shadow OS/390 Web Server.

TRACE OPTION • Specify A if you want all communication events to be traced with full control
block dumps.

• Specify T if you want all communication events to be traced with one line
messages.

Table C–1. Debugging Parameters
C-2 Shadow OS/390 Web Server User’s Guide December 1999

Using the Code/370 Debug Tool
7. Connect to the Shadow OS/390 Web Server subsystem using any tool that can
invoke the RPC and the debug screen will be displayed

The use of the debugger is documented in the IBM manual IBM Debug Tool -
User's Guide and Reference.
December 1999 Shadow OS/390 Web Server User’s Guide C-3

Starting a Test Version
C-4 Shadow OS/390 Web Server User’s Guide December 1999

APPENDIX D:

Sever Error Codes

The following list of Server Error Codes describes various error conditions encountered during the
processing of a URL. When combined with the Server Error HTML page and viewed in the context of
the task being performed, they provide a better understanding of the error incurred.

Code Description

1 Method parse failed

2 URL string parse failed

3 Variable initialization error

4 HTTP header line invalid

5 Authorization scheme invalid

6 Authorization routine failed

7 URL unmatched and Rescan is disabled

8 Shadow Event Facility (SEF) failed

9 Variable defaults routine failed

10 Receive timed out or failed

11 Zero bytes received

12 Header not terminated with blank line

13 Method unsupported

14 Method undefined

15 URL size greater than max criterion

16 Too many or too few separators

17 Parse of query data failed

18 Storage getmain failed

19 WWEV not present for SMF

20 SEF Rule processing abended

21 All transactions must be authorized

22 Compiler or Interpretor Failed

23 System Error procedure failed

24 Infinite pattern match loop

Table D–1. Server Error Codes
December 1999 Shadow OS/390 Web Server User’s Guide D-1

Sever Error Codes
25 AUTHREQ or RUNAUTH check failed

26 URL resource refused

27 Invalid userid in RUNAUTH

28 Logoff routine failed

29 Auxillary component failed

30 PDS(E) member not found

31 DDName or dataset name not found

32 content_type: not set

33 Rule does not contain inline data

34 Session failure during transmit

35 Rescan URL not found

36 Not authorized for dataset

37 WORKSPACE parameter override failed

38 QUEUESPACE parameter override failed

39 Failure sending INPUTFORM

40 Secured Sockets Layer (SSL) processing failed

41 SSL connection required

42 No carriage return/line feed (CRLF) pair for HTTP header

43 Boundary marker parse errors

44 Multi-part or Form-data errors

45 File too large

46 User program not found in RPCLIB

47 Datamap not found

48 No data fields in input datamap

49 Input buffer too large (greater than 32704)

50 Transaction code nor Command in input message

51 APPC/MVS connection failed

52 /FOR IMS Command requires output map (MOD) name

53 Missing HTML variable (SWSINMAP, SWSNXTRN, PFKIN and/or SWSCNVID)

54 IMS command not supported

55 ABENDED detected while processing a dynamic (embedded) rule

Code Description

Table D–1. Server Error Codes
D-2 Shadow OS/390 Web Server User’s Guide December 1999

56 HFS file is not found

57 HFS path is invalid

58 HFS path is too large

59 Dataset was migrated/offline

60 Exit-Abort was coded in the HTX file

61 HTX rescan URL is invalid

62 HTX embedded rules are disabled

63 HFS pathname cannot be correctly resolved because it contains an invalid or
unauthorized combination of ./ or ../ characters.

101
through

199

These represent REXX evaluation errors. The value 100, is added to the standard
REXX-language return code
value. (For example: 148 = REXX-Language error 48 = "FAILURE IN SYSTEM
SERVICE").

Code Description

Table D–1. Server Error Codes
December 1999 Shadow OS/390 Web Server User’s Guide D-3

Sever Error Codes
D-4 Shadow OS/390 Web Server User’s Guide December 1999

APPENDIX E:

Supported SMF Fields

To enable Shadow OS/390 Web Server’s SMF recording, set the SMFNUMBER parameter to the
number you want. If the parameter is set to zero (0), no logging takes place. See the "Customize
Initialization EXEC" section in the Installation Guide for more information.

SMF Type 05 Records
These records are written out by Shadow OS/390 Web Server each time a URL is
executed. The layout for the 05 records can be found in member OPSMRC of the

‘NEON.xxxxxx.ASM’* dataset.

A sample SAS program has been provided which can be used to print out these
SMF fields. The program is located in the ‘NEON.SVxxxxxx.CNTL’ dataset,
member SMFSWS05.

*Where xxxxxx represents the version number. For example, ‘NEON.SV040100.CNTL’ is release
4.1 and ‘NEON.SV040500.CNTL’ would be release 4.5.

Offset Field Name
Field Type
or Value

Description

0 SMFHLN BL2 RECORD LENGTH

2 SMFHSG BL2 SEGMENT DESCRIPTOR

4 SMFHFG BL1 HEADER FLAG BYTE

• x’10’ = MVS/ESA 4
• x’08’ = MVS/XA
• x’04’ = MVS/ESA
• x’02’ = VS2

5 SMFHRCTY BL1 RECORD TYPE

6 SMFHTIME BL4 RECORD WRITTEN TIME (TIME BIN)

10 SMFHDATE PL4 RECORD WRITTEN DATE (0CYYDDDF)

14 SMFHSYID CL4 SYSTEM IDENTIFICATION (SMF ID)

18 SMFHSSID CL4 SUBSYSTEM ID (SDB_ OR SWS_)

22 SMFHSUTY BL2 RECORD SUBTYPE (05)

24 SMFHVRCD CL8 SDB/SWS VERSION CODE

32 SMFHRS00 CL8 RESERVED FOR FUTURE USE

Table E–1. SMF Type 05 Fields and Descriptions
December 1999 Shadow OS/390 Web Server User’s Guide E-1

Supported SMF Fields
40 SMO5CLIP CL16 CLIENT IP ADDRESS

56 SMO5SMID CL4 HOST SYSTEM SMFID

60 SMO5PDSS CL4 PRODUCT SUBSYSTEM NAME

64 SMO5CLUS CL8 CLIENT USERID OR BLANKS

72 SMO5AUTH CL4 CLIENT AUTHORIZATION STATUS

• NONE. Authorization not sent

• SENT. Authorization information sent but was not used by
the server

• YES. Client userid/assword were valid

• NO. Client userid/password were invalid

76 SMO5RS00 CL4 RESERVED FOR FUTURE USE

80 SMO5SRCP D CPU TIME USED (TIMEUSED MACRO)

88 SMO5CNID XL4 CONNECTION ID

92 SMO5LGTM XL8 TRANSACTION CONNECT TIME (GMT TOD)

100 SMO5ELTM XL8 TRANSACTION ELAPSED TIME

108 SMO5WRTO XL8 TOTAL BYTES WRITTEN (RAW)

116 SMO5RS01 XL4 RESERVED FOR FUTURE USE

120 SMO5ADLT XL8 TRANSACTION CONNECT TIME (LOCAL TOD)

128 SMO5MTCT F COUNT OF URL MATCHES PROCESSED

132 SMO5ABCD XL4 TRANSACTION ABEND CODE (IF ANY)

136 SMO5ABRS XL4 TRANSACTION ABEND REASON (IF ANY)

140 SMO5TRRC F OVERALL RETURN CODE

144 SMO5TRST F HTML STATUS CODE

148 SMO5TRRS F REASON CODE

152 SMO5IPAD F IP ADDRESS OF CLIENT

156 SMO5DBCP CL8 DB2 CPU TIME

164 SMO5NTCP CL8 NETWORK CPU TIME

172 SMO5RXCP CL8 SHADOW/REXX CPU TIME

180 SMO5RPCP CL8 USER PROGRAM CPU TIME

188 SMO5OHCP CL8 OTHER CPU TIME

196 SMO5SLCP CL8 SSL PROCESSING CPU TIME

204 SMO5RS02 CL24 RESERVED FOR FUTURE USE

Offset Field Name
Field Type
or Value

Description

Table E–1. SMF Type 05 Fields and Descriptions
E-2 Shadow OS/390 Web Server User’s Guide December 1999

SMF Type 06 Records
SMF Type 06 Records
If you have the SMFTRANSACT parameter set to YES in the SWSxIN00
initialization exec, these records are written for each inbound client request. Each
SMF transaction record contains information about all the work done on behalf of
the client. The inbound client request may cause zero, one, or more SQL
operations to be executed.

A sample SAS program has been provided that can be used to print out these SMF

fields. The program is located in the ‘NEON.SVxxxxxx.CNTL’* dataset,
member SMFSWS06.

228 SMO5RDTO XL8 TOTAL BYTES SENT INBOUND

236 SMO5INUR CL128 ORIGINAL IN-BOUND URL VALUE

364 SMO5RESC F COUNT OF URL RESCANS

368 SMO501CR CL128 WWW RULE CRITERION (URL MATCH STRING)

496 SMO501RS CL8 WWW RULE EVENT PROCEDURE SET NAME

504 SMO501RL CL8 WWW RULE EVENT PROCEDURE MEMBER NAME

512 SMO501EU CL8 RUN-TIME MVS USERID IN EFFECT

520 SMO5LSCR CL128 WWW RULE CRITERION (URL MATCH STRING)

648 SMO5LSRS CL8 WWW RULE EVENT PROCEDURE SET NAME

656 SMO5LSRL CL8 WWW RULE EVENT PROCEDURE MEMBER NAME

664 SMO5LSEU CL8 RUN-TIME MVS USERID IN EFFECT

672 SMO5USR1 CL256 USER DATA AREA 1

928 SMO5USR2 CL256 USER DATA AREA 2

*Where xxxxxx represents the version number. For example, ‘NEON.SV040100.CNTL’ is release
4.1 and ‘NEON.SV040500.CNTL’ would be release 4.5.

Offset Field Name Field Type or Value Description

SMFHF BL1 HEADER FLAG BYTE

SMFHESA4 B'00010000' MVS/ESA 4

SMFHXA B'00001000' MVS/XA

SMFHESA B'00000100' MVS/ESA

Table E–2. SMF Type 06 Fields and Descriptions

Offset Field Name
Field Type
or Value

Description

Table E–1. SMF Type 05 Fields and Descriptions
December 1999 Shadow OS/390 Web Server User’s Guide E-3

Supported SMF Fields
SMFHVS2 B'00000010' VS2

2 SMFHRCTY BL1 RECORD TYPE

3 SMFHTIME BL4 RECORD WRITTEN TIME (TIME BIN)

7 SMFHDATE PL4 RECORD WRITTEN DATE (0CYYDDDF)

11 SMFHSYID CL4 SYSTEM IDENTIFICATION (SMF ID)

21 SMFHVRCD CL8 SDB/SWS VERSION CODE

37 SMO6LNA CL16 CLIENT SYSTEM NAME

53 SMO6CTY CL8 CLIENT TYPE (COMMUNICATION TYPE)

61 SMO6IPAD XL4 CLIENT IP ADDRESS

65 SMO6CLUS CL8 CLIENT USERID

73 SMO6CNID XL4 CONNECTION ID

77 SMO6SQOP XL2 SQL OPERATION CODE

141 SMO6PDSS CL4 PRODUCT SUBSYSTEM NAME

145 SMO6PLAN CL8 DB2 PLAN NAME

153 SMO6SSNA CL4 DB2 SUBSYSTEM NAME

157 SMO6ADLT XL8 CLIENT LOGON TIME (ADJUSTED FOR GMT)

165 SMO6ADCU XL8 CURRENT TIME (ADJUSTED FOR GMT)

173 SMO6ELTM XL8 CLIENT ELAPSED TIME SO FAR (TOD)

181 SMO6SQEL XL8 CURRENT SQL STATEMENT ELAPSED TIME

189 SMO6SQCP XL8 CURRENT SQL STATEMENT CPU TIME

197 SMO6SQRC F CURRENT SQL STATEMENT RETURN CODE

201 SMO6SQRE F CURRENT SQL STATEMENT REASON CODE

205 SMO6SQSQ F CURRENT SQL STATEMENT SQL CODE

209 SMO6SQAB F CURRENT SQL STATEMENT ABEND CODE

293 SMO6SQLN F SQL SOURCE LENGTH

297 SMO6SQSR F SQL SOURCE STRING

Offset Field Name Field Type or Value Description

Table E–2. SMF Type 06 Fields and Descriptions
E-4 Shadow OS/390 Web Server User’s Guide December 1999

APPENDIX F:

Language Codes

The following list of language codes are used to translate text:

Code Language

BEL BELGIAN

CBL CANADIAN BILINGUAL

DAN DANISH (MS)

DAN2 DANISH/NORWEGIAN

DEU GERMAN (MS)

DEU2 AUSTRIAN/GERMAN

ENG U.K. ENGLISH (MS)

ENG2 U.K. ENGLISH

ENU U.S. ENGLISH

ENU2 U.S. ENGLISH (ORIG. SWS VERSION)

ESN MODERN SPANISH (MS)

ESP CASTILIAN SPANISH (MS)

ESP2 SPANISH

FIN FINISH (MS)

FIN2 FINISH/SWEDISH

FRA FRENCH (MS)

FRA2 FRENCH

FRC CANADIAN FRENCH

ISL ICELANDIC (MS)

ITA ITALIAN (MS)

ITA2 ITALIAN

JPE JAPANESE/ENGLISH

NLD DUTCH (MS)

NLD2 DUTCH

NOR NORWEGIAN (MS)

Table F–1. Language Codes and Descriptions
December 1999 Shadow OS/390 Web Server User’s Guide F-1

Language Codes
PTG PORTUGUESE (MS)

PTG2 PORTUGUESE

SVE SWEDISH (MS)

SWF SWISS/FRENCH

SWG SWISS/GERMAN

Code Language

Table F–1. Language Codes and Descriptions
F-2 Shadow OS/390 Web Server User’s Guide December 1999

Glossary

The following list is compilation of some of the terms you will find used in NEON’s documentation. If
you do not find the term you are looking for, the best reference to turn to is the IBM publication:
Dictionary of Computing (SC20-1699). You may also want to check the glossaries of the manuals
listed in “Related Publications.”

ACB Access Control Block. A control block that links an application
program (for example, a CICS system) to an access method (for
example, VSAM or VTAM). In communication with DL/I, an
ACB is used only when the underlying access method is VSAM.

ACEE Access Control Environment Element. (CICS for MVS only.)
In RACF, a control block containing details of the current user,
including user ID, current connect group, user attributes, and
group authorities. An ACEE is constructed during user
identification and verification.

ACF Advanced Communication Function. A group of IBM licensed
programs that uses the concepts of Systems Network Architecture
(SNA) including distribution of function and resource sharing.

ADABAS Adaptable Database System. A type of database provided by
Software AG.

address space The range of addresses available to a computer program; the area
of virtual storage available to a particular job or started task.

AMODE Addressing Mode. An attribute in MVS and MVS/XA program
that refers to the address length that a program is prepared to
handle upon entry. In MVS/370, an addresses can be 24 bits in
length. In the MVS/XA program, addresses can be 24 bits or 31
bits in length.

APF Authorized Program Facility. A security feature of the MVS
operating system that restricts the running of programs that make
use of privileged machine instructions.

API Application Program Interface. A set of routines provided in
libraries that extends a language’s functionality

APPC Advanced Program-to-Program Communication. The general
facility characterizing the LU 6.2 architecture and its various
implementations in products.

application group name In IMS/VS, a name that represents a defined group of resources
(program specification blocks, transaction names, and logical
terminal names).
December 1999 Shadow OS/390 Web Server User’s Guide Glossary-1

Glossary
APPN Advanced Peer-to-Peer Networking. An extension to Systems
Network Architecture (SNA). Extends the LU 6.2 peer orientation
for end-user services to network control and supports multiple LU
types, including LU 2, LU 3, and LU 6.2

ASCH Application Scheduler. MVS application scheduler.

Auto-HTML See Web Enabling.

Block Connection A logical connection in which the connection resources (i.e.,
network session, threads etc.) are held for the lifetime of the
connection and in which SQL operations may be grouped. Multiple
sends may be issued on a physical network session. Each send is
one or more SQL operations (a group). This type of connection is
very efficient in network usage (only one connection made and
network I/Os are reduced), efficient in CPU utilization (no
overhead for multiple connections) but holds mainframe resources
(TCBs, threads and TCP/IP sessions) over relatively long periods
of time. The number of connections is limited by the number
allowed for the scarcest resource.

BMP Batch Message Processing. In IMS/VS, a batch processing
program that has access to online databases and message queues.

BMS Basic Mapping Support. Provides most of the input and output
facilities required by application programs; allows you to separate
the tasks of display design and CICS application programming.
BMS interprets generalized application program output commands,
and generates data streams for specific output devices. (Such data
streams are said to be device dependent.) Conversely, it transforms
incoming data streams to a form acceptable to application
programs. It obtains information about the format of the data
stream for the terminal from the terminal control table terminal
entry (the TCTTE) for the task, not from the application program.
The same BMS input or output commands in an application
program can be used with different kinds of device.

CAF Call Attachment Facility. The component of DB2 used by
application programs in any address space to connect the
application to DB2.

CCTL Coordinator Control Subsystem. (CICS for MVS only.) In IMS/
ESA, the transaction management subsystem that communicates
with the DRA, which in turn communicates with DBCTL. In a
CICS-DBCTL environment, the CCTL is CICS. The term is used
in a number of IMS operator commands that apply to DBCTL, and
in the IMS manuals.

CDRM Cross Domain Resource Manager. The functions of the system
services control point (SSCP) that control initiation and
termination of cross-domain sessions.
Glossary-2 Shadow OS/390 Web Server User’s Guide December 1999

Glossary
CGI Common Gateway Interface. An interface between a client (web
browser) and internet connection server that receives input data
from standard input, parses the data and translates the escaped
characters back into real characters, performs any business process
required, and sends a response to the client.

CICS Customer Information Control System. A transaction processing
extension to the operating system of IBM mainframe computers
that makes it easier to write programs that enter, retrieve, and
update data interactively from remote terminal services.

client/server An application architecture where a remote system (the client)
accesses data on a local system (the server).

CMOS Complementary Metal-Oxide Semiconductor. A technology
that combines the electrical properties of n-type semiconductors
and p-type semiconductors.

COBOL Common Business-Oriented Language. High-level
programming language based on English, and used for business
applications.

COMMAREA Communication Area. A CICS area that is used to pass data
between tasks that communicate with a given terminal. The area
can also be used to pass data between programs within a task.

CORBA Common Object Request Broker Architecture. A standard for
distributed objects being developed by the Object Management
Group. Provides the mechanisms by which objects transparently
make requests and receive responses as defined by OMG’s ORB.
The CORBA ORB is an application framework that provides
interoperability between objects built in different languages,
running on different machines in heterogeneous distributed
environments.

CP Control Program. A computer program designed to schedule and
supervise the execution of programs of a computer system.

CPI-C Common Programming Interface for Communications. A type
of API interface for LU 6.2.

CPU Central Processing Unit. A processing unit. The part of a
computer that includes the circuits controlling the interpretation
and execution of instructions.

CS Cursor Stability. An option used with block fetch allowing data
changes to take place between the time the data is extracted and the
time that it is actually used by the application.

CTDLI A routine provided by IMS that processes DL/I calls from
programs written in the C language.
December 1999 Shadow OS/390 Web Server User’s Guide Glossary-3

Glossary
DASD Direct Access Storage Device. A device in which access time is
effectively independent of the location of the data.

DB Database. A collection of data with a given structure for
accepting, storing, and providing, on demand, data for multiple
users.

DB/DC DATABASE/Data Communication. Type of IMS system that
supports database as well as data communication access.

DB2 DATABASE 2. An IBM relational database management system.
See DBMS.

DBA Database Administrator. The person who maintains the database
management system. Database Administration. The act of
maintaining a database management system.

DBCTL Database Control. (CICS for MVS only.) An interface between
CICS for MVS and IMS/ESA that allows access to IMS DL/I full-
function databases and to data entry databases (DEDBs) from one
or more CICS systems without the need for data sharing. It also
provides release independence, virtual storage constraint relief,
operational flexibility, and failure isolation.

DBMS Database Management System. System software for storing,
accessing and removing information. A relational DBMS, such as
DB2, permits a wide variety of views of the stored information
without customer programming.

DBRM Database Resource Manager (for example, DB2, IMS, Oracle,
etc.)

DDF Distributed Data Facility. The component of DB2 used to access
databases and tables on remote nodes in the network.

ddname Data Definition Name. The name of a data definition statement
that corresponds to a data control block containing the same name.

DES Data Encryption Standard. The National Institute of Standards
and Technology Data Encryption Standard, adopted by the US
Government, allowing only hardware implementations of the data
encryption algorithm.

DFP Data Facility Products. A group of IBM supplied access methods
and utilities.

DL/I Data Language l. In IMS/VS, the data manipulation language that
provides a common high-level interface between a user application
and IMS/VS. In VSE and CICS/VS, a database access language.

DMF Data Mapping Facility. A feature of Shadow Direct that allows
mapping from various sources. Data maps are created via a series
Glossary-4 Shadow OS/390 Web Server User’s Guide December 1999

Glossary
of ISPF panels that allow the user to specify a dataset containing a
listing of a program that contains a data definition.

DNS Domain Name Server. In TCP/IP, a server program that supplies
name-to-address translation by mapping domain names to internet
addresses.

DRDS Dynamic Reconfiguration Data Set. In VTAM, a data set used
for storing definition data that can be applied to a generated
communication controller configuration at the operator’s request,
or can be used to accomplish dynamic reconfiguration of NCP,
local SNA, and packet major nodes.

DSNAME Dataset Name. The term or phrase used to identify the data set.

DSA Dynamic Storage Area. (CICS/VSE only.) System initialization
parameter that pre-allocates the CICS dynamic storage area at
system initialization.

DSN command Data source (definitions); a DB2-supplied TSO command used to
run DB2-based application programs and issue commands to DB2.

DTS Dynamic To Static Conversion Facility. Also known as the Plan-
Based Static SQL Conversion Facility. DTS converts dynamic
SQL to plan-based static SQL. DTS fully supports plan-based
security and is not subject to any restrictions with respect to
COMMIT and ROLLBACK (including holding locks across a
COMMIT or ROLLBACK).

DTSG A utility developed by NEON System’s UK office that provides an
easier to use, graphical front end to the Dynamic to Static Analyzer
(DSA) program. DTSG was developed using Visual Basic Version
4.0.

EBCDIC Extended Binary-Coded Decimal Interchange Code. A coded
character set of 256 8-bit characters.

ECF Enterprise Control Facility. A management tool that is installed
with the Enterprise Server and used to define monitoring and
control parameters for the local Enterprise Server or any other
Enterprise Server on the network.

EOV End Of Volume.

ESTAE Extended Specify Task Abnormal Exit. An MVS
macroinstruction that provides recovery capability and gives
control to the user-specified exit routine for processing, diagnosing
an abend, or specifying a retry address.

event A site-defined action, such as a SQL statement, or CICS, IMS or
OS/390-MVS application program.
December 1999 Shadow OS/390 Web Server User’s Guide Glossary-5

Glossary
EXCI External CICS Interface. Used by SHADOW_CICS to connect
to the specified CICS region and execute the specified program.

EXEC A TSO command for running REXX programs; a REXX program.

Fast Logon A connection startup process where handshaking is kept to a
minimum to reduce the number of network I/Os (from 2 to 1).
Since assumptions are made about the level of code at each end,
code level dependencies exist. If these assumptions are incorrect,
the connection will fail.

FTP File Transfer Protocol. A protocol used to request and receive
files and file system directory information from another computer.

Group A sequence of SQL operations that is collected and sent together as
one block. A group is terminated by a resultset returning SQL
operation (i.e., SELECT or CALL) or a logical unit of work
termination (i.e., COMMIT - note: a ROLLBACK will cause the
operations to be discarded). Only INSERTs, DELETEs and
UPDATEs may be grouped. The maximum grouping allowed is
determined at initialization time.

GUI Graphical User Interface. A type of computer interface
consisting of a visual metaphor of a real-world scene, often of a
desktop.

HFS Hierarchical File System. A disk-based filing system built on a
hierarchy of special files called directories or folders. Descends
from a main directory, called the root. Each lower level is a
subsidiary.

HTML Hypertext Markup Language. a simple markup language used to
create hypertext documents that are platform independent. HTML
documents are SGML (Standard Generalized Markup Language)
documents with generic semantics that are appropriate for
representing information from a wide range of domains. HTML
markup can represent hypertext news, mail, documentation, and
hypermedia; menus of options; database query results; simple
structured documents with in-lined graphics; and hypertext views
of existing bodies of information.

HTML Extension Facility A run-time tailoring facility supported by Shadow OS/390 Web
Server for text format data files. Provides extremely flexible and
easy-to-use support for the creation of customized HTML forms
and web pages. You make use of the HTML Extension Facility by
including HTML-like statements directly within your source file.
When the source file is to be transmitted out-bound, the Shadow
OS/390 Web Server evaluates the HTML Extension statements and
customizes the information that is actually sent.
Glossary-6 Shadow OS/390 Web Server User’s Guide December 1999

Glossary
HTTP Hypertext Transfer Protocol. Protocol used by the World Wide
Web. It allows the retrieval of virtually any digital file, in a format
suitable for later rendering the file in its original text, audio, or
visual media presentation form.

IDMS Type of database management system supplied by Computer
Associates.

IMS Information Management System. An IBM hierarchical database
management system.

Internet A wide area network connecting many networks to allow the free
flow of information between otherwise unconnected and often very
incompatible computer systems.

Intranet A closed subnetwork, based on Internet technology. It operates the
same way as the global Internet, but usually exists within the
confines of a single organization using private communication
pathways. An intranet is used to disseminate information to
"authorized" users, such as those within the organization, while
preventing some or all access from outside the organization.

IP Internet Protocol. A protocol used to route data from its source to
its destination in an Internet environment.

IP Address Internet Protocol Address. A two part address, used by TCP/IP to
route information packets from one node in the network to another.
Within a TCP/IP network IP addresses must be unique.

I/O Input/Output. Pertaining to input, output, or both; or pertaining to
a device, process, or channel involved in data input, data output, or
both.

IPCS Interactive Problem Control System. A component of VM
(virtual machine) that permits online problem management,
interactive problem diagnosis, online debugging for disk-resident
CP abend dumps, and problem tracking and reporting.

ISPF Interactive System Productivity Facility. An IBM-licensed
program that serves as a full-screen editor and dialogue manager;
used for writing application programs, it provides a means of
generating standard screen panels and interactive dialogues
between the application programmer and terminal user.

ISO International Standards Organization.

IUCV Inter-User Communications Vehicle. An API used by Shadow
Server to communicate with IBM TCP/IP.

JCL Job Control Language. A control language used to identify a job
to an operating system and to describe the job’s requirements.
December 1999 Shadow OS/390 Web Server User’s Guide Glossary-7

Glossary
LAN Local Area Network. A computer network located on a user’s
premises within a limited geographical area.

LPA Link Pack Area. An area of main storage containing re-enterable
routines from system libraries. In OS/VS2, an area of virtual
storage containing re-enterable routines that are loaded at IPL time
and can be used concurrently by all tasks in the system.

LRECL Logical Record Length. In CICS/VS, the length of a logical
record, which is a data record sent by one transaction program to
another. In VSAM, the length of a unit of information normally
pertaining to a single object.

LU Logical Unit. A type of network accessible unit that enables end
users to gain access to network resources and communicate with
each other.

LU 6.2 Logical Unit 6.2. An SNA defined protocol for communication
between two applications.

LUOW Logical Unit Of Work. In IMS/VS, the processing unit that a
program performs between synchronization points.

LZ Lempel Ziv. A type of compression based on repeated characters
in the data.

Message Connection A logical connection in which the connection resources (i.e.,
network session, threads etc.) are held for the duration of a LUOW
in which SQL operations may be grouped. Only one send may be
issued on a physical network session. Each send must be a LUOW.
INSERTs, DELETEs and UPDATEs cannot be mixed with
SELECTs or CALLs without intervening COMMITs or
ROLLBACKs.). This type of connection increases network usage
(multiple connections) and CPU utilization (multiple connections)
but releases mainframe resources (TCBs, threads and TCP/IP
sessions) after relatively short periods of time. This is the most
efficient mode as far as holding of mainframe resources is
concerned. The network usage is greater than or equal to that for
Transblock mode due to sessions being terminated after each send.
The number of connections may exceed the number of actual
resources.

MFS Message Format Services. In IMS/VS, an editing facility that
allows application programs to deal with simple logical messages
instead of device-dependent data, thus simplifying the application
development process.

MIB Management Information Block.

MIME Multimedia Internet Mail Extension. A type of Internet file
supported by Shadow OS/390 Web Server.
Glossary-8 Shadow OS/390 Web Server User’s Guide December 1999

Glossary
MQ Series Middleware which focuses on reliable and guaranteed delivery by
continually retrying to send the message even if there has been
gateway failure or a network outage. It even survives a restart of
the queue manager.

MRO Multiregion Operation. Communication between CICS systems
in the same processor without the use of SNA network facilities.

MTS Multithreaded Server. A type of transactional and object broker
server.

MUNIX Combination of UNIX and 0S/390-MVS knowledge.

MVS Multiple Virtual Storage. An operating system for IBM System
370 hardware. Each user of the system is provided a "virtual"
address space equal in size to the addressing limit of the machine.
Also shorthand notation for MVS/XA (MVS/Extended
Architecture) and MVS/ESA (MVS/Enterprise Systems
Architecture).

NDS NEON Data Stream. An ODBC-optimized protocol, implemented
between the driver and the server components. NDS interacts with
the network at the transport layer, thus avoiding the overhead
inherent in higher-level network APIs. It also enhances
performance in a variety of ways, including compressing the data,
minimizing the number of client-to-server round trips, and
increasing the network buffer size.

NLS National Language Support. The modification or conversion of a
US English product to conform to the requirements of another
language or country.

NT Network Terminal.

OC Open Client. Type of API. Not supported by Shadow Direct.

ODBC Open Database Connectivity. An API created by Microsoft that
allows applications to access data in database management systems
(DBMS) using SQL as a standard. This interface was designed to
allow a single application to access many different database
management systems.

OE Open Edition.

OLTP Online-Transaction-Processing.

OS/2 Operating System/2. An IBM supplied operating system for IBM
personal computers; has many features, such as multitasking,
similar to those of mainframe operating systems.

PCB Program Communication Block. An IMS control block that
describes an application program's interface to and view of an IMS
December 1999 Shadow OS/390 Web Server User’s Guide Glossary-9

Glossary
database or, additionally for message processing and batch
message processing programs, to the source and destinations of
messages. PCBs are defined by the user during PSB generation.

PDS Page Data Set. A method of storing several programs, such as
REXX programs, as members of a single data set. In System/370
virtual storage systems, a data set in external page storage in which
pages are stored.

Permanent Connection A logical connection in which the connection resources (i.e.,
network session, threads etc.) are held for the lifetime of the
connection and each SQL operation is transmitted and executed
separately (i.e., no grouping). Multiple sends may be issued on a
physical network session. Each send is an individual SQL
operation. This type of connection is efficient in network usage
(only one connection made) and CPU utilization (no overhead for
multiple connections) but holds mainframe resources (TCBs,
threads and TCP/IP sessions) over relatively long periods of time.
The number of connections is limited to the number allowed for the
scarcest resource.

PGP Pretty Good Privacy. Allows companies to perform Electronic
Data Interchange (EDI) over the Internet with privacy,
authentication, and convenience; combines the convenience of the
Rivest-Shamir-Adleman (RSA) public key cryptosystem with the
speed of conventional cryptography, message digests for digital
signatures, data compression before encryption, good ergonomic
design, and sophisticated key management.

PL/I Programming Language One. A programming language
designed for numeric scientific computations, business data
processing, systems programming and other applications.

PO Partitioned Organized. Type of dataset organization.

Port A 16-bit number used along with IP address to uniquely identify an
application on a node within a TCP/IP network.

PSB Program Specification Block. The control block that describes
databases and logical message destinations used by an application
program. A PSB consists of one or more PCBs.

PTF Program Temporary Fix. A temporary solution or by-pass of a
problem diagnosed by IBM as resulting from a defect in a current
unaltered release of the program.

PU Physical Unit. The component that manages and monitors the
resources associated with a node, as requested by an SSCP via an
SSCP-PU session. This term applies to type 2.0, type 4 and type 5
nodes only.
Glossary-10 Shadow OS/390 Web Server User’s Guide December 1999

Glossary
QMF Query Management Facility.

RACF Resource Access Control Facility. An IBM-licensed program
that provides for access control by identifying and verifying the
users to the system, authorizing access to protected resources,
logging the detected unauthorized attempts to enter the system, and
logging the detected accesses to protected resources.

RC Return Code. A code used to influence the execution of
succeeding instructions; a value returned to a program to indicate
the results of an operation requested by that program.

RDBMS Relational Database Management Systems. A type of database
management system that stores information in tables – rows and
columns – and conducts searches by using data in specified
columns of one table to find additional data in another table.

RDT Resource Definition Table. In VTAM, a table describing the
characteristics of each node available to VTAM, and associating
each node with a network address.

REXX Restructured Extended Executor. An interpretive language used
to write command lists.

RFC Request for Comments.

RPC Remote Procedure Calls. Allows a client to execute a program on
a server, with the program being remote to the client.

RR Repeatable Read. An option used with block fetch, allowing many
more pages to be locked for update, especially if the number of
rows normally extracted by the query is small.

RSA Rivest-Shamir-Adleman. A scheme for public key cryptography.

RSP Remote Stored Procedures.

SAA Systems Application Architecture. A set of guidelines promoted
by IBM for standardizing the design of large pieces of software. It
includes a set of user interface guidelines called Common User
Access (CUA), as well as guidelines for data communications,
programming languages, and procedure libraries.

SAF System Authorization Facility. An MVS facility for routing
authorization requests to RACF or equivalent system security
packages.

SAM Shadow Activity Monitor. Provides a workstation-based tool for
viewing and reporting the Shadow Server logs. SAM functions as a
standard Shadow Direct ODBC client.
December 1999 Shadow OS/390 Web Server User’s Guide Glossary-11

Glossary
SDF Shadow Diagnostic Facility. An ISPF-based application, allowing
the administrator to view summary and detail information related
to connectivity and to take actions to correct connectivity
problems. All of the diagnostic, monitoring, and control
information can be accessed and updated through the SDF.

SEF Shadow Event Facility. A comprehensive and flexible mechanism
for controlling the overall Shadow Direct client/server
environment; allows each installation to tailor the execution
characteristics of Shadow Direct to whatever level of detail (per-
user, per-group, by time-of-day, etc.) is required.

SID Site ID.

SMF System Management Facility. An optional control program
feature of OS/VS that provides the means for gathering and
recording information used to evaluate system usage.

SNA Systems Network Architecture. A layered scheme for
communication between devices and applications in a network.
Applies mainly to IBM networks.

SNMP Simple Network Management Protocol.

SPUFI SQL Processor Using File Input. An interactive component of
DB2, used to query and maintain DB2 databases.

SQL Structured Query Language. A non-procedural language for
creating, querying, and maintaining relational databases.

SRB Service Request Block. (CICS for MVS only.) An MVS
dispatchable unit.

SRM System Resources Manager. A group of programs that controls
the use of system resources in order to satisfy the performance
objectives of the installation.

SSL Security Socket Layers. Encryption for the highest client/server
security standard in practical use today.

Table A named DB2 object, consisting of a specific number of columns
and zero or more unordered rows of data.

TCB Task Control Block. In CICS for MVS, an MVS control block. A
TCB is created for each MVS task. Several TCBs are created for
CICS management programs. All CICS application programs and
all non-reentrant CICS code run under a single quasi-reentrant
TCB.

TCP/IP Transmission Control Protocol/Internet Protocol. A protocol
specifically designed to facilitate communications between
heterogeneous networks.
Glossary-12 Shadow OS/390 Web Server User’s Guide December 1999

Glossary
Thread An individual unit of work in OS/390-MVS used for authorization,
data access, transaction access, monitoring and control.

TIB Terminal Information Block.

TMP Terminal Monitor Program. In TSO, a program that accepts and
interprets commands from the terminal and causes the appropriate
command processors to be scheduled and executed.

TNUF Table Name Utilization Facility. A feature of Shadow Direct that
allows on-the-fly modification of table names on a user-by-user
basis.

TP Transaction Program. A program that processes transactions in
an SNA network.

TPL Transport Parameter List. An API used by Shadow Server to
communicate with Interlink TCP/IP.

Transaction Connection A logical connection in which the connection resources (i.e.,
network session, threads, etc.) are held for the duration of each
LUOW and each SQL operation is transmitted and executed
separately (i.e., no grouping). Multiple sends may be issued on a
physical network session. Each send is an individual SQL
operation. The physical network connect is terminated at the end of
a LUOW (i.e., COMMIT or ROLLBACK). This type of
connection increases network usage (multiple connections) and
CPU utilization (multiple connections) but releases mainframe
resources (TCBs, threads and TCP/IP sessions) after relatively
short periods of time. The number of connections may exceed the
number of actual resources.

TransBlock Connection A logical connection in which the connection resources (i.e.,
network session, threads etc.) are held for the duration of each
LUOW and in which SQL operations may be grouped. Multiple
sends may be issued on a physical network session. Each send is
one or more SQL operations (a group). This type of connection
increases network usage (multiple connections) and CPU
utilization (multiple connections) but releases mainframe resources
(TCBs, threads and TCP/IP sessions) after relatively short periods
of time. The network usage is less than or equal to that for
Transaction mode due to grouping of sent data. The number of
connections may exceed the number of actual resources.

TSO Timesharing Option. The interactive timesharing component of
the MVS operating system that supports timesharing terminals.

TSS Time Sharing System. A programming system that provides users
with conversational online access to a computing system with one
or more processing units and simultaneously processes batched
jobs.
December 1999 Shadow OS/390 Web Server User’s Guide Glossary-13

Glossary
UDP User Datagram Protocol. In TCP/IP, a packet-level protocol built
directly on the Internet protocol layer. Used for application-to-
application programs between TCP/IP host systems.

UNIX An operating system developed by Bell Laboratories that features
multiprogramming in a multi-user environment. The UNIX
operating system was originally developed for use on
minicomputers but has been adapted for mainframes and
microcomputers.

URL Uniform Request Locator.

VCF Virtual Connection Facility. Allows sharing of OS/390-MVS
connectivity resources across a larger user population by
transparently switching connections between “real” and “virtual”
as the application shifts from active to idle, and vice versa.

Virtual Storage An operating system technique for providing more addressable
storage to programs than is actually available on the hardware.

VM Virtual Machine. A virtual data processing system that appears to
be at the exclusive disposal of a particular user, but whose
functions are accomplished by sharing the resources of a real data
processing system.

VSAM Virtual Storage Access Method. A type of data set maintained by
TSO's Access Method Services program. VSAM datasets may be
accessed sequentially and randomly.

VTAM Virtual Telecommunications Access Method. IBM mainframe
software that implements portions of the Systems Network
Architecture (see SNA).

Web Enabling The execution of online IMS transactions and commands converted
by Shadow OS/390 Web Server into HTML format.

WLM Work Load Manager. A component of the OS/390 operating
system, first introduced in MVS/ESA 5.1. It is a policy driven
manager system of resources that is intended to allow a user to
define system performance goals in the same terms that would be
used in a service level agreement.

WWW World Wide Web.

Work Station A powerful microcomputer typically used for scientific and
engineering calculations. A workstation typically has more than
four megabytes of RAM, more than 100 megabytes of disk
capacity, and a screen with graphics resolution of at least 800 by
1000. Examples are the Sun Sparcstation and IBM RS/6000.
Glossary-14 Shadow OS/390 Web Server User’s Guide December 1999

Glossary
Wrap-Around Trace
Facility

A Shadow Server tool, designed to record critical events in the life
of each individual transaction process. In addition, the tool is
designed to record critical internal information which can be used
to debug and correct problems within the Server itself. The wrap-
around trace consists of a large block of virtual storage, which can
optionally be backed by a data-in-virtual linear dataset. This block
of virtual storage is sub-divided into a status area, a configurable
number of event blocks, and a series of vector tables.
December 1999 Shadow OS/390 Web Server User’s Guide Glossary-15

Glossary
Glossary-16 Shadow OS/390 Web Server User’s Guide December 1999

Index

 ASMF 8-1

Symbols
8-9

! 1-6
"-" 2-6
"+" 2-6
"Forbidden" error message 4-13
"SYSTEM/ERROR/401" 4-13
"SYSTEM/ERROR/403" 4-13
"SYSTEM/ERROR/404" 4-11, 4-13
"Unauthorized" 4-13
"Unknown URL" 4-13
"URL Not Found" 4-11
1-6
& 1-6
* A-5, A-12, A-14
*DATE 14-18
*TIME 14-18
. 1-6

embedded 6-10
../ 1-6
./ 1-6
.ai 6-12
.aif 6-13
.aiff 6-13
.au 6-13
.avi 6-13
.bin 6-12
.bmp 6-13
.cpio 6-12
.csh 6-12
.dvi 6-13
.eps 6-12
.exe 6-12
.fif 6-13
.gif 6-12
.gtar 6-12
.gz 6-12
.hqx 6-13
.htm 6-12
.html 6-12
.ief 6-13
.jf 6-12
.jpe 6-12
.jpeg 6-12
.jpg 6-12
.latex 6-13
.ls 6-12
.mocha 6-12
.mov 6-13
.mpe 6-13

.mpeg 6-13

.mpg 6-13

.pac 6-12

.pbm 6-13

.pgm 6-13

.pnm 6-13

.ppm 6-13

.PS 6-12

.qt 6-13

.ras 6-13

.rgb 6-13

.rtf 6-13

.shar 6-12

.sit 6-13

.snd 6-13

.tar 6-12

.tcl 6-12

.tex 6-13

.texi 6-13

.texinfo 6-13

.tif 6-13

.tiff 6-13

.txt 6-12

.wav 6-13

.xbm 6-13

.xpm 6-13

.xwd 6-13

.z 6-12

.zip 6-12
/ 6-8
/*ATH 3-2
/*CMD 3-10
/*EXECIMS

formatting 12-7
/*EXECIMS rule 12-6
/*EXECSQL 1-10, 7-1, 7-2, 7-8, 7-13

interface 7-19
process section 10-1

/*FILE 3-34, 6-2, 6-3, 6-4, 6-5, 6-6
/*GLV 3-15
/*PROGRAM 1-9, 9-1
/*REXX 2-6, 5-1
/*TOD 3-17
/*TSOSRV 1-10, 11-12
/*WWW 3-23
/*WWW Rules 17-6
/NEN/DEMO01 3-34
/RELOGON 1-9
/SWSCNTL

limit access 4-24
/SWSCNTL/MENU 3-26
/SWSCNTL/PARMS 6-2
= 1-6
December 1999 Shadow OS/390 Web Server User’s Guide Index-1

Index
? 1-6
{FIND} SELECT 14-24
~ 1-6

Numerics
05 records

SMF type E-1
3270

panel 13-15
3270 terminal 8-1
6.2event A-4

A
abend 1-9
ABNevent A-4
ABORT 7-6
ACCEPT 3-4, 3-11
ACF/2 2-2, 3-1, 3-4, 4-5, 4-12, 11-4, 11-7
ACTIVE status 8-11
ADAB 14-4, 14-14
ADABAS 3-22, 14-1

AG products compatibility 14-33
Control Block 14-2
database target 14-14
DBID 14-14
descriptors 14-5
Format Buffer 14-24
ISN 14-18
mapping facility 14-3
messages and codes 14-33
router 14-14
router name 14-4
table (file) number 14-14
UQE 14-22, 14-32
usage 14-32
user identification 14-32

ADABAS ADALNK 14-33
ADABAS BT command 14-29
ADABAS CL command 14-23
ADABAS COMMIT (ET) 14-23
ADABAS E1 command 14-23
ADABAS ET command 14-22
ADABAS FDT 14-31
ADABAS HI command 14-25
ADABAS ISN 14-27
ADABAS L1 command 14-27
ADABAS L2 command 14-28
ADABAS L3 command 14-28
ADABAS L9 command 14-25
ADABAS LF command 14-31
ADABAS Link Routine 14-33
ADABAS N1 command 14-26
ADABAS N2 command 14-26
ADABAS RC command 14-21
ADABAS RI command 14-29
ADABAS Router 14-30
ADABAS Server

installation

installation
ADABAS server 14-33

ADABAS_DBID 14-11
ADABAS_FILE_NUMBER 14-11
ADAREP

example 14-8
ADAREP report 14-3

example 14-6
ADAWAN 14-4

example 14-8
ADAx 14-14
ADD 3-8
ADDRESS 2-12, A-7
address

hardware 1-14
Address Resolution Protocol

See ARP
ADDRESS SQL 3-31
ADDRESS SWSSEND 3-29
ADDRESS TSO 9-5
ADDRESS TSOSRV 11-6

command types 11-6
example 11-9
return values 11-8

ADDRJOB A-7
ADDRUSR A-8
administration

security controls 3-26
administrator

ODBC 14-32
ADVANCE 7-6, 7-14, 7-18
AGGREGATE 13-5
AGN 12-8
aifc 6-13
allocated storage 16-5
ALTER 3-8
AnyNet Sockets over SNA 1-14
APF 4-23, 9-2
API 6-3, 9-1

See Shadow Programming Guide or online HTML
for a complete listing

ADDRESS SWSSEND 3-29
interface 3-35
SWSSET 1-8
SWSVALUE 2-7, 2-8, 3-35
TSO/E 11-3

APPC/MVS 16-7
APPC/MVS detail 16-7
APPC/MVS interval 16-7
APPC/MVS realtime 16-7
application

fractals 6-13
mac-binhex40 6-13
octet-stream 6-12
postscript 6-12
rtf 6-13
x-compress 6-12
x-cpio 6-12
x-csh 6-12
Index-2 Shadow OS/390 Web Server User’s Guide December 1999

Index
x-dvi 6-13
x-gtar 6-12
x-gzip 6-12
x-javascript 6-12
x-latex 6-13
x-ns-proxy-autoconfig 6-12
x-shar 6-12
x-stuffit 6-13
x-tar 6-12
x-tcl 6-12
x-tex 6-13
x-texinfo 6-13
x-zip-compressed 6-12

application layer
See TCP/IP

Application Program Interface
See API

architecture
TCP/IP 1-11

archive B-5
Archive Dataset List B-8
ARCHIVECOUNT B-3
ARCHIVECUSHION B-4
ARCHIVEDATACLASS B-4
ARCHIVEDEFCLPARMS B-4, B-5
ARCHIVEDSNPREFIX B-4
ARCHIVEMGMTCLASS B-4
ARCHIVESTORCLASS B-4
area

status B-1
ARP 1-13, 1-14

broadcast packet 1-14
cache 1-14

ASCII 6-5, 6-9, 11-14
ASID A-8
ASMF 8-5
ASO 3-8
ASSIGNMENTS 14-21
association 1-12
asynchronous

connections 1-14
transfer mode - See ATM 1-14

ATH 2-1, 2-2, 3-1
access type values 3-7
criterion 3-2
fixed control points 3-2
format 2-5
header keywords 3-4
how they work 3-2
process section 3-4
resource names 3-3
return values 3-4
REXX variables 3-4
stem variables 3-5
WWW. stem variables 3-4

ATH variables
all rules 3-5
CICSCONNECTIONS 3-5
CONTROLBLOCKS 3-6

DATABASE 3-6
GLOBALS 3-6

ATH.AUBKCBAD 3-6
ATH.AUBKCBAS 3-6
ATH.AUBKCBLN 3-6
ATH.AUBKCBNA 3-6
ATH.AUCCID 3-5
ATH.AUDBHOST 3-6
ATH.AUDBNAME 3-6
ATH.AUDBTYPE 3-6
ATH.AUGLDELN 3-7
ATH.AUGLDENA 3-7
ATH.AUGLOPCH 3-7
ATH.AUGLRQTY 3-6
ATH.OPAUACSR 3-5
ATH.OPAUERMG 3-4, 3-5
ATH.OPAURQRC 3-5
ATH.OPAURQSR 3-5
ATH.OPAUSRID 3-5
ATH.OPAUUSID 3-5
ATHevent A-4
ATM 1-14
ATTevent A-4
ATTRIBUTES(FULL) 13-5
audio

basic 6-13
x-aiff 6-13
x-wav 6-13

AUTHOFLUSH 3-27
authorization

failures 1-8
resource checks 4-19

authorization rules
See ATH

AUTHREQ 2-5, 3-26, 4-4, 4-8, 4-12, 4-16, 4-17
parameter value 4-17
See security keywords

AUTOFORMAT 10-3
AutoHTML 12-1
Automated State Management Facility

See ASMF
Automated System Operation

See ASO

B
Backups

View B-5
backups B-2

configuring automatic B-3
BASR 9-3
batch

controlling SEF 2-11
bbb

beginning byte position 14-12
BEGIN_OVERRIDES 14-5
BEL F-1
BETWEEN 14-27
BETWEEN clause 14-27
December 1999 Shadow OS/390 Web Server User’s Guide Index-3

Index
BINARY 6-9
blank

delimited words 6-10
embedded 1-5, 1-6, A-12

blocks
event B-1

BMS
extract 13-5

BODY 10-3
bookmark

HTML 1-6
BooP 1-13
Bottom of Messages A-6
BPAM 6-2, 6-3, 6-6
brace browse control 16-6
broadcast packet

ARP 1-14
BROWSEARCHIVE B-4
BROWSEINTERVAL B-1
BROWSEMAX A-2, B-1
buffers

output 1-7
Building a /*EXECIMS rule 12-6

C
C 9-1
C/370 programs

writing 9-6
CA-ACF2 12-8
cache 7-3
caching 6-2
CALL 9-3
call

pseudo-function 7-8
CALL SHADOW_ADABAS 14-1, 15-2
CA-OPS/MVS 3-9
CBL F-1
CBSB 16-9
CENSORAPIDATAVALUES 4-26
CENSORHTTPRESP 4-26
censorship 4-26
CENSORURLAUTHDATA 4-26
CENSORURLQUERYDATA 4-26
CGI 6-1, 9-1
character strings

finding A-11
checklist

data mapping 13-2
checkpoint dataset 2-7
CICS 3-22, 4-21, 16-7

alternate path 15-7
base cluster 15-7
connection name 15-7
mirror transaction 15-7

CICS connections 16-7
CICS session 16-7
CICSCONNECTIONS 3-3, 3-7
class table 3-3

client 1-3, 1-7
programs using data maps 13-16

client authorization 4-4
client/server 2-2
CLIST 11-8
CLOCK A-8
CLOSE 14-14, 14-21, 14-23
CLOSE cursor 14-17
closing delimiter 2-6
cluster id 15-9
CMD 2-2, 3-8

criterion 3-10
format 2-5
header Keywords 3-10
how they work 3-9
process sections 3-10
return values 3-11
rule matching order 3-10
security 3-8
syntax 3-9

CMD processing
Shadow/REXX 3-9

CMD.TEXT 3-12
CMD.VERB 3-12
CNID A-8
CNTL library 11-4
COBOL 9-1, 13-1, 15-8

example 13-12
listing requirements 13-4
programs - writing 9-6

COBOL/370 9-6
CODE A-8
Code/370 debug tool C-2
codes

language F-1
coding

EXECSQL process sections 10-2
external command procedure TSOSRV 11-13
mixed case 7-5
program process sections 9-2
TSOSRV process section 11-11

Coding URL Hyperlinks 8-17
collection control variable name 8-10
COLOR A-4, A-8, A-13
column 13-7

changing in trace browse A-7
MSGNO A-10, A-11

column_name 14-12
column-name 14-27
column-names 14-21
command

DISPLAY A-7
DOWN MAX A-6
LISTA 11-6
P 3-11
PROFILE A-5
release restrictions 11-3
resource restrictions 11-3
restricting in auxiliary server 11-2
Index-4 Shadow OS/390 Web Server User’s Guide December 1999

Index
RETURN 3-11
row information A-14
time limits TSO/E 11-2
TSO/E formats 11-8

command verb 3-9
ENABLE 2-12
START 2-12

COMMIT 14-22, 14-23, 14-26, 14-29
common area stg display 16-5
Common Gateway Interface

See CGI
communication

session drops 1-8
communications 16-6
conditional statements

else 7-1
endif 7-1
if 7-1

configuring
initialization parameters 11-4

CONNECT 14-17, 14-22, A-4
connection 1-14

encrypted 4-20
request 1-8
SSL 4-20

connectionless
network protocol 1-13
packet delivery 1-12

CONNECTIONTYPE 12-8
connectivity

loss of 14-32
CONTAINS 7-6, 7-11
CONTENTTYPE 6-8, 10-4
continuation character 2-6
CONTROL 3-8
control points

fixed 3-2
other 3-2

control statements
other 7-2

CONTROLBLOCKS 3-3, 3-7, 16-5
controlled transaction paradigm 4-4, 4-21, 4-22, 6-1
conversation 1-12
COOKIE 8-6
cookies 16-1

accepts 16-2
COOKIE-type information sets 8-13
Cookie-type Set 8-14
COPY 12-3
Copy Map 13-11
COUNT 2-7
COUNT(*) 14-25
CPU time 7-3

non-nested statements 7-9
CPULIMIT 3-12
CPUTIME 3-12, A-8
creation dataset 13-7
criterion

ATH 3-2

CMD 3-10
EXC 3-12
GLV 3-15
header statement 2-5
TOD 3-17
TYP 3-21
WWW - See Getting Started Guide

CTOKEN 8-6
cursor advance

DB2 7-18
CURSOR FOR 14-14
CVID A-8

D
D format 14-12
DAN F-1
DAN2 F-1
DASD B-2
DATA frame 16-3
data link layer

See network interface layer
data mapping

checklist 13-2
client programs 13-16
facility 13-1
getting started 13-1
recommendations 13-2
restrictions 13-1
See map

data mapping block 16-4
data set allocation parameters B-4
DATABASE 3-7
Database 16-6
database control 16-6
DATABASE_NAME 14-11
DATABASES 3-3
DATASET 3-3, 3-7
dataset

data mapping creation 13-7
partitioned organized 13-3

dataset format
see format 2-3

DATATYPE 6-5
DATE 14-18, A-8
date 3-19, A-11

statement syntax 7-17
date() 7-17
date(e) 7-17
date(h) 7-17
date(j) 7-17
date(n) 7-17
date(o) 7-17
date(s) 7-17
date(u) 7-17
date_ format 14-19
DB2 1-9, 3-22, 7-2

cursor advance 7-18
DPRTY 3-27
December 1999 Shadow OS/390 Web Server User’s Guide Index-5

Index
table 10-6
writing applications 10-1

DBCLOSE 14-17, 14-22, 14-32
Dbcs translate table 16-4
DBID 14-14, 14-31
DBRM 10-2
DD name 6-2
DDDRUCK 14-3
DDNAME 10-3, 10-4, 11-12, 12-8, 13-11

keyword 6-6
DDName 15-7
DE_SEARCH_ONLY 14-5, 14-20
DEALLOCATED 12-8
DEBUG 13-11
debugging control screen C-1
DECLARE 14-14
DECLARE CURSOR FOR 14-23
default

userid 4-6
DEFAULTDB2PLAN 10-2
DEFAULTDB2SUBSYS 10-2
DEFINE 3-8
DEFINE FILE 6-3
DELETE 3-8, 8-11, 14-17, 14-22, 14-23, 14-29
delimiters

escape 7-2, 7-3
Department of Defense 1-13
DEPENDING ON 13-1
descriptor 14-25, 14-28
DEU F-1
DEU2 F-1
DEV 12-4
developer keywords 3-26
DFSLUEE0 12-1, 12-7
DHCP 1-13
DIS 2-2, 2-10
disable events

See DIS
DISPLAY 3-7, A-2, A-7

using FIND A-13
display 16-9

map 13-6, 13-7
Distributed Transaction Administration 4-7

implementing 4-14
see master ruleset
see subordinate ruleset

DIV B-2
DNS 1-2
DO 7-6
do 7-12

statement syntax 7-13
DO/ENDDO groups 7-3
DOCUMENTROOT

parameter 17-4
DOF 12-4
Domain Name Services

see DNS
DOWN MAX A-6
DPRTY 3-27

DSNAME 10-3, 10-4, 11-12, 12-8
keyword 6-6, 6-7

E
EBCDIC 6-5, 6-9, 11-14
eee

ending byte position 14-12
ELAPSED A-8
element

field 13-1
ELSE 7-6
else 7-1

statement syntax 7-11
embedded blank

See blank
EMIT 3-28
ENA 2-2, 2-10
ENABLE 2-12
Enable Events

See ENA
ENABLED 13-14
encrypted connection 4-20
encryption 9-8
END_OVERRIDES 14-5
end-col A-12
ENDDO 7-3, 7-6
enddo 7-12

statement syntax 7-15
ENDIF 7-6
endif 7-1

statement syntax 7-11
endspec 3-18
ENG F-1
ENG2 F-1
ENU F-1
ENU2 F-1
environment

run-time 9-5
EQ 7-6, 7-11
error codes

ADABAS 14-33
server D-1

error message
301 (URL Has Moved) 4-20
System 403 (Forbidden) 4-20

error recovery 1-7
server detected 1-8

ERRORURL 10-4, 12-8
escape delimiters 7-2, 7-3, 7-4
ESN F-1
ESP F-1
ESP2 F-1
EVENT A-8, A-13
event

blocks B-1
matching 2-1
order of trace browse A-2
related variable 2-6, 2-8
Index-6 Shadow OS/390 Web Server User’s Guide December 1999

Index
related variable - PHASE 2-9
types 2-2

event procedure 2-3
ATH 3-1
CMD 3-8
disabling 2-4
enabling 2-4
EXC 3-12
executing 2-3
header statement 2-4, 2-5
process section 2-4
return values 2-10
rulesets 2-3
structure 2-4
TOD 3-17
TYP 3-21
WWW 3-21

EXAMPLE 14-11
example

COBOL 13-12
EXC 2-1, 2-2, 3-12

criterion 3-12
format 2-5
header keywords 3-13
how they work 3-12
process sections 3-13
return values 3-13
REXX variables 3-14

EXC.OPEXACSR 3-14
EXC.OPEXCNTK 3-14
EXC.OPEXERMG 3-14
EXC.OPEXINFO 3-15
EXC.OPEXSRID 3-14
EXC.OPEXWAOK 3-14
Exception Rules

See EXC
EXCI 13-7
exclamation point

See ! (under symbols)
EXEC 16-1
EXECIO 11-6
EXECSQL 3-33

coding 10-2
examples 10-5
header statement 10-2

EXECSQL.COLUMN.0 7-20
EXECSQL.COLUMN.n 7-20
EXECSQL.COLUMNS 7-20
EXECSQL.PARTIAL 7-20
EXECSQL.ROW 7-20
EXECSQL.ROWS 7-20
EXECSQL.SQLSTMT 7-20
EXECUTE 3-7
EXIT 1-8, 7-6
exit

statement syntax 7-18
EXITURL 12-8
EXPIRED status 8-11
extended storage 16-4

extensions
file 6-12

extract
BMS 13-5
map 13-4
MFS 13-5
successful 13-6
trace browse archival facility B-2

F
f

format 14-12
FETCH 9-8, 14-14, 14-23
FETCH cursor 14-17
FIELD 14-5
field 13-8

element 13-1
field_name 14-12
FIELDS 13-17
fields 13-7
FIFO buffer 16-5
FILE 3-3, 3-7, 3-25, 3-33, 14-5, 14-31

examples (sequential & PDS) 6-14
keyword syntax 6-5

file
caching 6-2
coding a process section 6-4
explicitly shared 6-3
extension - PC-type 6-11
implicitly shared 6-3
inline processing 6-14
process section 6-3
sharing 6-2
See extensions

File Transfer Protocol
See FTP
see FTP

file_name 14-11
FILESHAREDDN 6-3, 6-6
FILESHAREDSN 6-3, 6-7
FIN F-1
FIN2 F-1
14-17

FIND 14-24, A-11
DISPLAY A-13

find
character strings A-11

FIND NUMBER 14-18
firewall 1-3
Firewalls 8-16
FIRST A-12, A-14
FLUSH 3-24

request 1-7
flush 3-24
flush-to-client 3-27
FMT 12-3
FNR 14-14
foreign-address 1-12
December 1999 Shadow OS/390 Web Server User’s Guide Index-7

Index
foreign-port 1-12
FORMAT 6-9, 13-17, 14-5
format 13-8, 16-9

dataset 2-3
header statement 2-5
pseudo commands 11-7
TOD 3-19
TSO/E command 11-8
See member format
see event procedure

Format Buffer 14-2
format maps

generating 12-2
formatting

/*EXECIMS 12-7
FRA F-1
FRA2 F-1
Frame Relay 1-14
FRC F-1
FTOKEN 8-6
FTP 1-2, 1-10, 1-11, 6-9

comparison to HTTP protocols 1-10
ports 20 and 21 1-11

G
GATEWAY 3-24, 3-26
gateway

filter rules 3-24, 3-26, 3-32
GE 7-6, 7-11
generalized resource name 3-3
generate RPC 13-11
Generating HTML 12-4
GET 11-3
GETMAIN 1-9
GETTIMEOUT 11-7
GIF 6-9

images 6-3
global variable

See GLV
GLOBAL. 8-1
GLOBALS 3-3, 3-7
GLV 2-2, 2-6, 2-7, 3-9, 3-15

criterion 3-15
event 2-8
format 2-5
header keywords 3-16
how they work 3-15
process sections 3-16
return values 3-16
REXX variables 3-16

GLV.NAME 3-16
GLV.NEWVALUE 3-16
GLV.OLDVALUE 3-17
GLV.PROGRAM 3-17
GLV.TEXT 3-17
GLV.USER 3-17
GLVEVENT 2-7

temporary variables 2-6, 2-8

GLVSTATE
variable inventory 8-8

GLVSTATE.0 8-9
GLVSTATE.0.DELETE 8-9
GLVSTATE.0.TRACE 8-9
GLVSTATE.setindex 8-9
GLVSTATE.setindex. 8-9
GLVSTATE.setname 8-8, 8-10
GLVSTATE.setname.DOMAIN 8-8
GLVSTATE.setname.EXPIRES 8-9
GLVSTATE.setname.KEY.0 8-9
GLVSTATE.setname.KEY.keyindex 8-9
GLVSTATE.setname.KEY.keyindex.VALUE 8-9
GLVSTATE.setname.PATH 8-8
GLVSTATE.setname.SECURE 8-9
GLVSTATE.setname.STATUS 8-8, 8-12
GLVSTATE.setname.TIMEOUT 8-8
GLVSTATE.setname.TOKENID 8-8, 8-13
GLVSTATE.setname.TYPE 8-8, 8-12
GLVSTATE.setname.VALUE 8-9
GLVSTATE.setname.VALUE.keyname 8-9
Graphical User Interface

See GUI
graphical user interface

See GUI
groups

DO/ENDDO 7-3
interative example 7-16
named iteration 7-13

GT 7-6, 7-11
GUI xvi, 16-1

H
half-association 1-12
hardware address 1-14
HEAD HTTP 6-4
header

if-modified-since 6-4
last-modified 6-4

header keywords
ATH 3-4
CMD 3-10
EXC 3-13
GLV 3-16
TOD 3-19
TYP 3-21
WWW 3-25

header statement
EXECSQL 10-2
format 2-5
keywords 4-15
TSOSRV 11-11
WWW 3-25, 3-32

header-only rules 2-4, 3-25
URL filter rules 3-22

HEADERS 9-3
HEX notation 14-21
HFS 17-1
Index-8 Shadow OS/390 Web Server User’s Guide December 1999

Index
HFS Security 17-1
HFSAUTHMODE

parameter 17-4
HFSROOT() 17-5
Hierarchical File System

See HFS
high-level language 2-1
HISTOGRAM 14-17, 14-25
HOLD 14-17, 14-25
home page 16-3
HORZ 13-17
HOSTDOMAIN 16-1
host-to-host protocol 1-11
HTM 6-8
HTML 6-3, 6-8

bookmark 1-6
extension - text files 7-2
extension facility 4-26, 7-1

scope and limitations 7-2
extension merge processing 7-19
extension processing trace 3-27
extension statement 6-5
extension statements

rules for coding 7-4
markup tag 7-4
tag language 7-2

HTML forms
using 8-6

HTML Generation 13-15
HTML Source library 12-4
HTTP 1-2, 1-6, 2-2

client/server roles 1-2
comparison to FTP protocols 1-10
inbound 1-8
inbound request 4-26
MIME content type string 6-8
non-parsed response headers 3-29
protocol 1-10
request format error 1-8
response control statement 7-18
response control statements 7-1
response headers 6-4
server parsed response headers 3-29
see also protocol

HTTP Cookie Specification 8-15
HTTP cookies 8-2

using 8-5
HTTP response headers 8-2
HTTP/0.9 1-8
HTTPRESPMODE 3-29
HTX keyword 6-9
HTXINDEX 7-7, 7-9
HTXINDEX.label 7-7, 7-13
HTXTRACE 3-27
hyperde 14-5, 14-11
hyperdescriptor 14-25
HyperText Transfer Protocol

see HTTP

I
IANA

International Assigned Numbers Authority 1-11
IDCAMS B-5
IF 7-6
if 7-1

statement syntax 7-10
IF/ENDIF statements 7-3
IGNORE 10-3
IKJEFT01 11-2, C-1
image

gif 6-12
ief 6-13
jpe 6-12
tiff 6-13
x-bitmap 6-13
x-cmu-raste 6-13
x-MS-bmp 6-13
x-pixmap 6-13
x-portable-anymap 6-13
x-portable-bitmap 6-13
x-portable-graymap 6-13
x-portable-pixmap 6-13
x-rgb 6-13
xwindowdump 6-13

IMS 3-22, 4-21, 16-7
AutoHTML 12-1
example 12-9
LU 6.2 12-7

IMS control facility 16-7
IMS LTERM table 16-7
IMS LU 6.2 12-1
IMS Transaction Server 12-1
IMS/APPC 12-1, 12-8
IMS/DB 16-7
IMS/TM 16-7
imsattr

statement syntax 7-17
IMSevent A-4
IMSFAIL 3-12
inactivity timeout setting 16-7
inbound requests

match found 1-5
inbound URL

See URL
indexes

alternate 15-9
in-flight transactions 16-6
INFO 3-7
information packets 1-13
INIT 2-9, 5-1
INLINE 6-5, 6-9
inline file processing 6-14
Input Map 12-4
INPUTFORM 7-19, 10-3, 11-12
INPUTMAPNAME 12-7
INSERT 14-17, 14-22, 14-26, 14-29
insert
December 1999 Shadow OS/390 Web Server User’s Guide Index-9

Index
variable text 7-1
internal control blocks 16-5
International Assigned Numbers Authority

See IANA
Internet

see protocols
Internet layer 1-12

See IP Address
interpreters

non-Shadow/REXX 3-35
Shadow/REXX 3-34

interval 3-18, 3-19
INVOKE 9-3
IP address 1-13

See Internet layer
IP address tree 16-6
IP interface

single 1-14
IPADDR A-8
IRXEXCOM 7-6
ISL F-1
ISN 14-23
ISN Buffer 14-2
ISPF xvi, 16-1

data mapping panel 13-1
panels 13-3
user profile pool 13-4

ISPF/PDF 11-8
Browse A-1

ISPF/SDF
Primary Options Menu A-1

ITA F-1
ITA2 F-1
iteration

limit operand 7-20
statements 7-1

J
JCL 11-2, 13-11
JES 4-21
Job ID A-8
JOBID A-8
JOBNAME A-4, A-9, A-13
JPE F-1

K
keyindex 8-9
keyname 8-9
keywords

CONTENTTYPE 6-8
DDNAME 6-6
developer 3-26
DSNAME 6-6, 6-7
FORMAT 6-9
GATEWAY 3-26
header security 4-16
header statement 2-5, 4-15
HTX 6-9

MEMBER 6-7
missing See URL parsing
REXX 5-1
security 3-26

KILL 3-8

L
L2/RC command 14-24
L3/RC 14-24
label 7-7, A-11
labels A-10

statement 7-3
language

codes F-1
types - See TYP

LAST A-12, A-14
LE 7-6, 7-11
leading slash character 3-32
LEAVE 7-3
leave 7-12

statement syntax 7-14
LEAVES 7-6
legacy systems 3-22
LENGTH 14-5, A-9
length 13-8
level 13-8
limits

setting for the subsystem 4-21
LINK 9-3
link control 16-6
link layer

See network interface layer
link table 16-6
LINKS 3-3, 3-7
LIST 3-7
LISTA 11-6
LISTALC 11-8
listing requirements

COBOL 13-4
PL/I 13-5

literals
numeric 7-6
string 7-6

lll
length 14-12

LOADLIB 11-4
local-address 1-12
LOCALLUNAME 12-7
LOCATE A-10
LOCKEXCLUSIVE 3-12
LOCKSHARE 3-13
LOCKUPDATE 3-13
logical record length 13-3
logical records 15-8
LOGOFF 3-8
LOGOFF.WWW 3-2
LOGON 3-8
LOGON.WWW 3-2
Index-10 Shadow OS/390 Web Server User’s Guide December 1999

Index
logs
client A-2
server A-2
trace A-2

Lowercase Letters 8-17
LT 7-6, 7-11
LU 6.2 A-9
LUNAME A-9

M
machine resources 7-3
MAIL

see mailto
mailto 1-2
MAP 13-4
map

copy 13-11
display 13-6, 13-7
extract 13-4
Generate RPC 13-11
HTML Geneneration 13-15
merge 13-15
refresh 13-11

Map Defaults 13-3
Map Display 13-6
Map Extract 13-4

VSAM 15-5
Map Library 12-3
Map Refresh 12-3, 12-6
MAP_NAME 14-5, 14-11
MAP_PREFIX 14-5, 14-11
mapping

national language table 6-5
table 1-14
URL 6-1

Mapping Facility
ADABAS 14-3

maps
generating 12-2
make available 12-3

master ruleset 1-5, 3-27, 3-32, 4-8, 6-1
AUTHREQ 4-17
character string restrictions 3-32
coding 4-8
error recovery 1-7
protecting 4-24
proxy userids 4-24
RESOURCE 4-19
RUNAUTH 4-18
SSL 4-21
URL filter rules 3-23

match
least-to-most specific 3-32
order 3-32

MAX_MU 14-5
MAX_PE 14-5
MAXBLOCKS 7-20, 10-3
MAXCHAINEDBUFFERS 3-27

maxexecs 3-18
MAXHTTPRESPBUFFERS 3-28
MAXHTTPRESPBYTES 3-28
MAXRESPBUFFERS 3-28
MAXRESPBYTES 3-28
MAXROWS 7-20, 10-3
mdl 6-12
MEMBER 6-7, 10-3, 10-4, 11-12
MEMBER 1 13-15
MEMBER 2 13-15
member format 6-11
Menu

Primary Options B-5
MENU frame 16-4
merge

data 7-2
processing 7-1, 7-13

Merge Maps 13-15
messages

return 2-12
error - See error messages

MFS
extract 13-5

MID 12-4
MIME 6-8, 7-2

file extensions table 6-11
MIME/filetype table 16-4
MOD 12-4
MODE 12-7
mode

non-parsed header 3-29
refresh A-6
server parsed header 3-29

MODIFY 3-8
MODULE 9-3
module table 16-4
monitoring TSO/E server 11-1
monospace fonts xvii
MQSERIES 3-3, 3-7
MSG 12-3
MSGevent A-4
MSGNO A-9

column A-10, A-11
msgno A-11, A-12
MU 14-4, 14-5, 14-12
multiaccess

broadcast networks 1-13
nonbroadcast networks 1-14

multiple ADABAS files 14-15
multiple VSAM

logical records 15-8
Multipurpose Internet Mail Extensions

See MIME
MVS

file system 6-1
LINK SVC 9-3
security subsystem 3-3
START 11-1, 11-4
Web Server - See SWS
December 1999 Shadow OS/390 Web Server User’s Guide Index-11

Index
MVS subsystem 4-4

N
NAME 9-3, 13-17
name

structure 13-6
named iteration groups

See groups
National Language mapping table 6-5
NATURAL date 14-12
NATURAL date field

setting 14-19
NE 7-6, 7-11
NEON.SVxxxxxx.CNTL E-3
NEON.xxxxxx.ASM E-1
nested 7-3, 7-6

statements 7-9
subdirectories 6-1

NetView 3-9
networks

connectionless protocol 1-13
hierarchical connection 1-13
interface layer 1-13
multiaccess broadcast 1-13
multiaccess nonbroadcast 1-14
point-to-point 1-14

NEW(type,timeout) 8-10
newURLstring 1-7
NEXT 7-6, A-12, A-14
next 7-12

statement syntax 7-14
NLD F-1
NLD2 F-1
NOADVANCE 7-6
node 1-13

three names 16-1
NODENAME A-9
non-nested

CPU time 7-9
non-parsed header mode 3-27, 3-29
non-Shadow/REXX interpreters 3-35
NOPROXY 4-24
NOR F-1
NULL 3-37, 6-10, 7-8
numeric literals 7-6

O
obtaining data from multiple ADABAS files 14-15
OCCURS 13-1
ODBC administrator 14-32
offset 13-8, 13-15

zero parameter 13-6
OLTP 4-21
OP command 14-22
OPEN 14-14, 14-26
OPEN cursor 14-17
OpenEdition 17-1
operand

global 7-7
GLVEVENT 7-7
nesting example 7-9
run-time evaluation 7-8
statement 7-6
WWW 7-7

OPSMRC E-1
OPTION C-2
OPTIONS TRACE 15-13
organization

publication xv
out-board 11-4
outbound response 3-23
output

insert variable text 7-1
Output Map 12-4
Output Screen 12-4
OUTPUTFORMAT 7-19, 10-4
OUTPUTHTML 12-8
OUTPUTMAPNAME 12-7

P
packet

connectionless delivery 1-12
information 1-13

panel
ISPF 13-3

parameter 12-7
configuring 11-4
data set allocation B-4
OEHFS 17-3
offset zero 13-6
SEFV31COMPATIBLE 17-5
start-up 2-3, 4-6
subsystem 2-8
security - See WWW header security parameters
See start-up parameter

parameter groups 16-4
parameter value

AUTHREQ 4-17
RUNAUTH 4-18
SSL 4-20

parameters
server start-up 17-3

PARM 9-3, 9-4
PARMS 3-3, 3-7, 4-24
parse 12-4

URLs 6-10
PARSE PULL 3-30, 11-9
parsed header - server side 3-29
PARSETRACE 3-30, 4-26
partitioned organized dataset 13-3
Partner

LU 12-7
TP_NAME 12-7

PARTNERLUNAME 12-7
PASSWORD 12-7, 12-8
password 4-2
Index-12 Shadow OS/390 Web Server User’s Guide December 1999

Index
PASSWORDEXPIRED 1-9, 4-13
PATH Keyword 17-7
Path, Not Prefix 8-18
PATHID A-9
p-code 7-3
PDS 6-5, 6-7
PDSE 6-2
PE 14-4, 14-5, 14-12
period

See . (under symbols)
persistent session support 8-1
PERSQLCPU 3-13
PHASE 2-9, 3-16, 3-20, 3-35

INIT 2-9
PROC 2-9
TERM 2-9

PL/I 9-1, 13-1
listing requirements 13-5
writing programs 9-7

PLAN 1-9, 9-4, 10-2
point-to-point networks 1-14
port

12 1-11
20 and 21 1-11
number 1-12
well-known 1-11
See transport layer

port number 16-2
pound sign

See # (under symbols)
PPP 1-14
PREDICT 14-4
PREFETCH 10-3
PREFIX A-14
PRELOAD 9-3
PREV A-12, A-14
Primary Options Menu B-5
printing

trace browse information A-15
private storage 16-4
PROC 2-9, 5-2
process block 16-4
process section 2-4

ATH 3-4
CMD 3-10
coding REXX 5-2
coding TSOSRV 11-11
EXC 3-13
EXECSQL 10-1
FILE 6-2
file 6-3
FILE header statement 6-4
GLV 3-16
header statement 9-1
header statements 2-6
REXX 5-1
TOD 3-20
TSOSRV 11-10
TYP 3-21

WWW 3-25, 3-33
product control 16-4
PROFILE 12-7, A-5
profile

trace browse A-3
Profile Saved 13-4
PROGRAM 2-4, 3-25, 3-33, 12-8
program

C 9-1
COBOL 9-1
executable ones 9-1
executing user 9-1
PL/I 9-1
process section 9-1
process sections coding 9-2
skeleton 13-11
where they reside 9-2

protocol 1-12
HTTP concepts 1-3
Internet 1-1
stateless 8-1

proxy 4-18
agents 1-6
third party 4-6
userids 3-33, 4-21, 4-24

ProxyARP 1-13
pseudo command 11-6

formats 11-7
issuing 11-7
return values 11-7

pseudo-events 2-2, 2-10
return values 2-10

pseudo-function call 7-8
PTG F-2
PTG2 F-2
PUSH 3-30
pvt area stg display 16-5

Q
Q.STAFF 10-6
QSAM 6-2, 6-3, 6-6
question mark 1-5

See ? (under symbols)
QUEUE 11-9
queued results 11-9
QUEUESIZE 3-30, 11-9
quotes

using double A-12
using single A-12

R
RACF 2-2, 3-1, 3-4, 4-5, 4-12, 11-4, 11-7, 12-8, 17-2

value 3-7
RACROUTE

REQUEST=VERIFY 1-9
RARP 1-13, 1-14
RC A-9
READ 3-7, 11-3
December 1999 Shadow OS/390 Web Server User’s Guide Index-13

Index
READ ISN 14-17, 14-27
READ LOGICAL 14-17, 14-27
READ PHYSICAL 14-17, 14-28
Reader’s Comment form 21
REALM 4-2
REASON A-9
Record Buffer 14-2
record length

logical 13-3
RECORD_TYPE 15-8
recovery

server detected errors 1-8
transaction level 1-8

refresh
mode A-6

Refresh Map 13-11
REJECT 3-4, 3-11
relative URL

See URL
RELEASE 9-8, 14-17, 14-29
re-logons 4-2
remote users 16-6
rescan 1-6, 3-24

error recovery 1-7
request 1-7

reserved
HTML extension statements 7-6
keywords 7-13

RESET 8-11
RESOURCE 3-26, 4-5, 4-16, 4-19

See security keywords
resource

ATH names 3-3
authorization checks 4-19

RESOURCETYPE 4-24
RESPMODE 3-29
response code 4-2
response headers

/*FILE 6-4
Response.AddHeader 7-18

usage 7-18
RESTORED status 8-11
restrictions

data mapping 13-1
resource 11-3

Result Set Column Names 7-20
results

queued 11-9
RETURN 3-11

ACCEPTED 3-11
REJECTED 3-11

RETURN "FLUSH" 1-7
RETURN "RESCAN newURLstring" 1-7
return messages 2-12
return values 1-8

ADDRESS 2-12
ADDRESS TSOSRV 11-8
ATH 3-4
CMD 3-11

enabling rules 2-12
event procedure 2-10
EXC 3-13
GLV 3-16
pseudo-events 2-10
special (EXC) 3-13
TOD 3-20
TYP 3-21
zero 2-12

Reverse ARP
See RARP

REXX 2-4, 3-25, 3-33
coding process section 5-2
dynamic variable 2-6, 2-7
Dynamic Variables 2-11
dynamic variables 7-6
other interpreters 9-4
procedure 3-11
process section 5-1, 9-1
stem variables 7-8
work space 3-31
writing transactions 5-1

REXX variables
See variables

REXXLIB 11-4
RFIND A-12
ROLLBACK 14-22, 14-23, 14-26, 14-29, 14-32
row information commands A-14
RPC 3-3, 3-7

generate 13-11
rule

coding HTML extension statements 7-4
matching - termination 1-7
matching order 3-10
procedural 3-23
types 3-22
URL filter 3-22

Ruleset Definitions 17-5
rulesets 2-3

naming convention 2-3
see also event procedure
see also subordinate rulesets
see master rulesets
see also event procedure

RUNAUTH 3-26, 4-5, 4-9, 4-12, 4-16, 4-18
default userid 4-22
parameter value 4-18
See security keywords

run-time
environment/other REXX interpreters 9-5
operand evaluation 7-8
userid 11-8

S
s

status 14-12
S1/L1/RC command 14-24
S1/RC command 14-25
Index-14 Shadow OS/390 Web Server User’s Guide December 1999

Index
SAY statements 2-11, 3-9
SBCPHD 9-7
SCALE 14-5
sccphd.h 9-6
SDADDM 14-3, 14-13
SDADEX 14-3

input 14-4
output example 14-6, 14-8

SDBBATCH 2-11
SDBFLAGS A-9
SDBMAPP 14-13
SDDATA A-14
SDF 2-1
SDINFO A-14
SDSF 3-9
SDTRAC A-14
Search Buffer 14-2
Search Criterion 14-19
Search Expression 14-20
search order 3-31
SECONDS A-9
Secure Sockets Layer

see SSL
SECURITY 12-8
security 16-1

administration controls 3-26
AUTHREQ 4-17
client authorization 4-4
CMD rules 3-8
gateway filter rules 3-24
header statement keywords 4-15
keywords 3-26
levels 4-4
MVS subsystem 3-3, 4-4
parameters 4-15
processing steps 4-12
product load library 4-23
RESOURCE 4-19
RUNAUTH 4-18
setting limits 4-21
SSL 4-20
subsystem 4-21, 6-2
subsystem permissions 4-22
URL filter rules 3-22
user program library 4-23
web transaction 4-1

security attributes
non-overrideable 4-12
overrideable 4-12

SECURITY(SUBSYS) 4-23
SEF 2-1, 3-3, 3-7

batch environment 2-11
data mapping 13-1
limiting access 4-24
variables 2-6

accessing 2-10
SEFGLVEVENTS 2-2, 2-8
SEFMAXQUEUE 3-30
SEFSIZE 3-31

SELECT 14-17, 14-18, 14-24
Selection Criterion 14-18
SENDTRACE 3-30, 4-26
SEQ 6-5
Sequential 6-7
server 1-3

activating TSO 11-3
domain 4-2
error 1-8
error codes D-1
proxy 1-3
Shadow ADABAS 14-1
TSO/E auxiliary 11-1

server-side state information 8-4
server-side token 8-1
server-side token facility 8-4
services

well-known 1-11
SESSION A-9
sessions 16-7
SET 3-7, 14-17, 14-30
Set-Cookie 8-2
setindex 8-9
setname 8-9
SETOUTPUTTRACE 11-7
SETTIMEOUT 11-7
setting up Shadow Server to run under TSO C-1
Shadow DB2

Version A-10
Shadow Diagnostic Facility

See SDF
Shadow Direct ADABAS Server 15-1
Shadow Event Facility

See SEF
Shadow REXXTOOLS 5-1, 6-2
Shadow VSAM 15-9
Shadow Web Interface 16-1
Shadow Web Server

See SWS
Shadow/REXX 2-4, 5-1, 9-1

interpreter 3-34
return values 1-7
writing TSO/E transaction 11-6
See non-Shadow/REXX interpreters

Shadow/REXXTOOLS 3-31
DB2/SQL interface 10-1

Shadow_ADABAS
multiple files 14-15

Shadow_VSAM
codes 15-17

Shadow_VSAM for CICS 15-11
SQL syntax 15-14

shared
dataset 6-7
files - See file

SHOW 3-7, 14-17, 14-30
skeleton program 13-11
SLIP 1-14
SMF
December 1999 Shadow OS/390 Web Server User’s Guide Index-15

Index
supported fields E-1
type 05 records E-1

SMF fields
SMF type 06 records E-3

SMF type 06 records E-3
SMFNUMBER E-1
SMFSWS05 E-1
SMFTRANSACT E-3
SNAlink 1-14
SOCKET A-9
socket 1-12

address 1-12
interface 1-12
See transport layer

Source Library 12-3
SPCPHD 9-7
special characters

avoid these 1-6
use Internet format on these 1-6
See URL

SQL
ADABAS 14-2
request 7-2
rules 2-1
statement 10-4

SQLBINDCOL 13-11, 13-14
BEGIN 13-14
END 13-14

SQLCA A-14
SQLCODE A-14
SQLevent A-4
SQLFAIL 3-13
SQLRC A-9
SSL 3-26, 4-16, 4-20

parameter values 4-20
using fetch and release 9-8
See security keywords

START 2-12
start-col A-12
started task

data mapping 13-1
JCL 11-4
parameters - userid 4-23

starting TSO/E server 11-1
start-up parameter 2-2, 3-3, 6-2, B-3

See Parameters (tab) in the User Documentation for
a complete list

see event procedure
see parameter

STARTUPURL 12-8
State Information 8-2
state information

set name 8-7
set variables 8-8

statement 7-4
date syntax 7-17
do syntax 7-13
else syntax 7-11
enddo syntax 7-15

endif syntax 7-11
exit syntax 7-18
IDCAMS B-8
if syntax 7-10
imsattr syntax 7-17
labels 7-3
leave syntax 7-14
next syntax 7-14
operands 7-6
Response.AddHeader 7-18
source file 7-5
SQL 10-4
text insertion syntax 7-9
time syntax 7-17
TSO/E command 11-12
HTTP response control - See HTTP

statements
conditional 7-1
control 7-2
HTML continuation 7-5
IF/ENDIF 7-3
iteration 7-1
nested 7-6, 7-9
rules for coding 7-4
text insertion 7-5

Status B-5
status area B-1
stemvar.I 2-7
STEPLIB 9-2, 11-4
STGevent A-4
STOP 3-11
stopping TSO/E server 11-1
storage 16-4
string A-12, A-13

literals 7-6
STRIPPROMPTS 11-7
structure

event procedure 2-4
name 13-6

subde 14-5
subdirectories

nested 6-1
Submit Logon Request 16-3
subnets 1-13
subordinate ruleset 3-27, 4-22

AUTHREQ 4-17
character string restrictions 3-32
protecting 4-24
RESOURCE 4-19
RUNAUTH 4-18
SSL 4-20

subordinate rulesets 4-9
coding 4-9

subset 15-1
SUBSYS 1-9, 9-4, 10-2, 14-4
SUBSYS keyword 14-30
SUBSYS= 11-2
subsystem

ID value 1-9
Index-16 Shadow OS/390 Web Server User’s Guide December 1999

Index
parameter 2-8
security 4-21, 6-2

SUBSYSTEM NAME C-2
subsystem_name 14-11
subtask 1-8
superde 14-5

concatenation of fields 14-20
superdescriptor 14-20, 14-25, 14-28
support, technical xix
SVC 14-14, 14-30
SVE F-2
SWCPSN 9-7
SWCPTK 9-7
SWCPVL 9-7
SWCW1 9-6
SWF F-2
SWG F-2
SWICNTL 16-1
SWIURLNAME 16-1
SWPLIW1 9-8
SWRXSQ 10-2
SWS 3-3

native MVS Web server 1-1
processing transactions - see inbound requests 1-5

SWS Control B-5
SWS.xxxxxx 2-3
SWSBATCH 2-11
SWSCNTL 4-11
SWSDATA A-14
SWSFILE 6-4, 7-3, 7-7
SWSINFO 7-8, A-14
SWSINMAP 12-4, 12-6
SWSMAPP 12-2, 12-4, 13-2, 13-11, 14-13
SWSRESP 7-1
SWSRESP(“add” 7-18
SWSRPCLB 9-2
SWSS 1-9, 11-5
SWSSEND 4-26, 9-7
SWSSET 1-8
SWSTOKEN 9-7
SWSTRAC A-14
SWSTSO 11-4, 11-5
SWSVALUE 2-7, 2-8, 3-35, 4-26, 9-7
SWSxIN00 6-3, 11-4, 16-1
SWSZOOM A-14
SYMBOLICNAME 12-7
syntax

date 7-17
do 7-13
else 7-11
enddo 7-15
endif 7-11
exit 7-18
FILE 6-5
if 7-10
imsattr 7-17
leave 7-14
next 7-14
Response.AddHeader 7-18

SQL 15-12
text insertion 7-9
time 7-17
WWW rules 3-25

SYSEXEC 2-11, 11-4
dataset 5-2

System Abend S913 1-8
system error

See error messages
SYSTEM/ERROR/400 1-8, 1-9
SYSTEM/ERROR/401 1-9
SYSTEM/ERROR/403 1-9
SYSTEM/ERROR/403 (Forbidden) 4-19
SYSTEM/ERROR/500 1-9, 10-5
SYSTEM/ERROR/501 1-9
SYSTEM/ERROR/AUX 1-9, 10-4, 10-5, 12-8
SYSTEM/ERROR/nnn 1-10
SYSTEM/ERROR/SSL 4-20
SYSTSIN 11-1, 11-2
SYSTSPRT 2-11, 11-1, 11-2, 11-5

T
TABLE 10-3
tables

vector B-1
target WWW rule 3-23, 3-32

example 3-33, 3-34
ultimate targets 3-23

tasks 16-4
TCB storage summary 16-5
TCBADDR A-9
TCP

See transport layer
TCP/IP 1-2

application layer 1-11
architecture 1-11
host 1-13
transport layer 1-11

TCPevent A-4
TCPRC A-9
technical support xix
Telenet 1-11

server port 12 1-11
TERM 2-9, 5-2
Terminal Monitor Program

See TMP
TERMNAME A-9
test

copies C-1
trace browse archive B-4
version - starting C-1

TEXT 6-9, A-12
text

insertion statement syntax 7-9
insertion statements 7-5

text/HTML 7-2
text/html 6-12
text/plain 6-8, 6-12, 7-2
December 1999 Shadow OS/390 Web Server User’s Guide Index-17

Index
TGET 11-2
tilde

See ~ (under symbols)
TIME 14-18, A-10
time 3-19, A-11

statement syntax 7-17
time limits

TSO/E commands 11-2
time(c) 7-17
time(l) 7-17
time(n) 7-17
TIMELIMIT 11-12
TIMERONLIMIT 3-13
TIMEX A-10
Tip

dynamically assigned ports 1-12
TITLE 10-3
TMP 9-5, 11-1, 11-3, 11-6, 11-13
TOD 2-1, 2-2, 3-17

criterion 3-17
format 2-5
header keywords 3-19
how it works 3-17
process sections 3-20
return values 3-20
REXX variables 3-20

Time-Of-Day Rules
See TOD rules

TOD.NEXTFIRE 3-20
TOD.USER 3-20
todspec 3-18
token control 16-4
TOKENS 3-3, 3-7
Top of Messages A-6
TopSecret 3-2, 3-4, 11-4
TPUT 11-2
TRACE 14-17, 14-31
trace

HTML extension processing 3-27
limiting access to data 4-25
logs A-2
records A-1

trace browse 16-1, 16-5, A-1
archival facility B-1
censorship options 4-25
changing columns A-7
order of events A-2
position display A-6
printing A-15
profile A-3
wildcard A-5

trace browse records 16-6
TRACE OPTION C-2
TRACE output 2-11
TRACE1 A-10
TRACEBROWSE 3-3, 4-24, 4-25
TRACEDATA 3-3, 3-7, 3-8, 4-25
TRACEHTML 3-30
TRACEURLPARSE 3-30

Tracing 14-32
transaction level recovery 1-8
transmitting state information 8-2
transport

address 1-12
transport layer

ports and sockets 1-11
TCP 1-11
terminology 1-12
See TCP/IP

TSO 3-3, 3-7, 16-7
activating server facility 11-3
error condition 1-10

TSO servers 16-7
TSO/E 3-22, 11-2, 11-6

API 11-3
auxiliary 9-1
auxiliary servers 11-1
command formats 11-8
command statement 11-12
REXX 9-5
REXX routine 9-4
services 11-1
userids 11-2

TSOMAXSERVERS 11-1, 11-5
TSOMINSERVERS 11-1, 11-5
TSOPLUS C-1
TSOSRV 3-33

example 11-13
header statement 11-11
operation 11-11
process section 11-10

TSOSRVACTIVE 11-5
TSOSRVCMDRUNTIME 11-5
TSOSRVCPUTIME 11-5
TSOSRVDORMANTTIME 11-1, 11-5
TSOSRVMAXLINES 11-5
TSOSRVMAXQUEUE 11-5
TSOSRVPROCNAME 11-5
TSOSRVQUEUEADD 11-1, 11-5
TSOSRVSTARTUPPARM 11-5
TSOSRVSWAPPABLE 11-5
TSOSRVTIMELIMIT 11-5
TSOSRVWAITTIME 11-5
TXT 6-8
TYP 2-2, 3-21

criterion 3-21
format 2-5
header keywords 3-21
process sections 3-21
return values 3-21
REXX variables 3-21

TYPE 9-3
types

events 2-2
rules 3-22
variable 2-6
Index-18 Shadow OS/390 Web Server User’s Guide December 1999

Index
U
unallocated storage 16-5
UNCENSORZOOMONLY 4-26
undefined/uninitialized variables 7-8
unique numerical address

See IP address
UNIX 1-6, 3-22

file system 6-1
UNIX-to-MVS 3-22
UPDATE 14-17, 14-22, 14-29, 14-31
UQE

dangling 14-32
URL 1-6, 3-3, 3-7, 4-2, 16-2

alternate mapping 6-1
filter rule example 3-33
filter rules 3-22, 3-23, 3-32
forbidden 1-9
inbound 2-1, 6-1
master ruleset 1-5
parse 6-4
parsing 6-10
relative 1-6
selective access 4-5
special characters 1-5
structure 3-33
SYSTEM/ERROR/AUX 1-10
values 6-1
See rescan

URL Criterions 17-7
URL Not Found 1-9, 3-23, 6-6, 6-8
URLRESOURCETYPE 4-24
URL-to-rule 1-7

matching string 1-6
USER 3-8
user

executing programs 9-1
ISPF profile pool 13-4

User Agent 1-3
user identification

ADABAS 14-32
USERID 12-7, 12-8, A-4, A-10, A-13
userid 4-2, 11-2

client 4-6
configuring default 4-22
default 4-6
default runtime 17-2
effective 4-5, 4-18
prompting 4-2
proxy 4-24
RUNAUTH 4-6
run-time 11-8
started task 4-23, 17-2
subsystem 4-23

USERS 3-3, 3-7

V
Value Buffer 14-2
Value Buffers 14-24

var1 7-9
variable 2-6

GLVEVENT 2-7, 2-8
WWW.AUXxxxxx 1-10

variable names
reserved words 7-6

variable text
inserting into output 7-1

variables
/*EXECSQL 7-19
ATH REXX 3-4
ATH stem 3-5
collection status 8-11
event related 2-6, 2-8, 2-11, 7-1
EXC REXX 3-14
global 2-11, 3-15, 7-1, 7-7
GLV 2-6, 2-7, 3-9
GLV REXX 3-16
GLVENENT 2-11
GLVEVENT 2-6, 7-7
HTXINDEX 7-7
PHASE 2-9
REXX dynamic 2-6, 2-7, 7-6
REXX stem 7-8
TOD REXX 3-20
TYP REXX 3-21
types 2-6
undefined/uninitialized 7-8
when accessed 2-10
WWW 3-34, 7-7

vector tables B-1
VERSION A-10
VERT 13-17
video

mpeg 6-13
quicktime 6-13
x-msvideo 6-13

View Backups B-5
virtual storage 16-5, B-1
VSAM 5-1, 6-2

Data Mapping Facility 15-4
Map Extract 15-5

VSAM Cluster 15-9
VSAM Data Set Files 15-4
VSAM Data set name 15-7
VSAM DDName 15-7
VSAM DSN 15-7
VSAM Listing Requirements 13-5
VTAMRC A-10

W
WAITTIME 3-13
Warning 4-25

TYP event procedure 3-21
Web browser

re-logons 4-2
Web Enabling IMS Transactions 12-1
Web enabling transactions 12-1
December 1999 Shadow OS/390 Web Server User’s Guide Index-19

Index
Web Page 17-8
Web site

address 1-13
name 1-13

WELCOMEPAGE Keyword 17-7
well-known

ports 1-11
services 1-11

wildcard 3-2, 3-10, 3-15, 3-22, 3-32, 3-34
trace browse profile A-5

Word Wide Web event 2-2
COMMIT 14-17
ROLLBACK 14-17
WORKSIZE 3-31
World Wide Web

See WWW
WRITE 3-8
WWW 1-1, 2-2, 3-21

character string restrictions 3-32
event procedures 2-6
EXECSQL 3-33
FILE 2-4, 3-33
format 2-5
gateway filter rules 3-24
header keywords 3-25
header security parameters 4-16
header statement 3-25, 3-32
header-only rules 2-4
match order 3-32
procedural rule 3-23
process section 3-25, 3-33
PROGRAM 2-4, 3-33
REXX 3-33
REXX transaction 5-1
rule examples 3-33
rule mechanism 2-1
rule syntax 3-25
rule types 3-22
search order 3-31
Shadow/REXX 2-4
target rules 3-23
transaction procedures 1-8
TSOSRV 3-33
variables 3-34, 7-7
See Getting Started Guide

WWW.ABENDCODE 3-35
WWW.ABENDREASON 3-35
WWW.ACCEPT.0 3-36
WWW.ACCEPT.n 3-36
WWW.ACCEPT_CHARSET 3-35
WWW.ACCEPT_ENCODING 3-35
WWW.ACCEPT_LANGUAGE 3-35
WWW.AUTH 3-36
WWW.AUTHDATA 3-36
WWW.AUTHMETHOD 3-36
WWW.AUTHMSG 3-36
WWW.AUTHORIZATION 3-37
WWW.AUXABEND 3-37
WWW.AUXCOMPONENT 3-37

WWW.AUXMSG 3-37
WWW.AUXOTHER 3-37
WWW.AUXRC 3-37
WWW.AUXREASON 3-37
WWW.AUXxxxxx variables 1-10
WWW.CONTENT_LENGTH 3-38
WWW.CONTENT_TYPE 3-38
WWW.COOKIE 3-37
WWW.COOKIE.xxxxx 3-38
WWW.CURRENTURL 3-38
WWW.DATE 3-38
WWW.ERRORCODE 3-38
WWW.FIELD.0 3-38
WWW.FIELD.n.NAME 3-38
WWW.FIELD.n.VALUE 3-38
WWW.FORWARDED 3-38
WWW.FROM 3-39
WWW.IF_MODIFIED_SINCE 3-39
WWW.INPUTURL 2-8, 3-39
WWW.LINE.0 3-39
WWW.LINE.n 3-39
WWW.MATCHVALUE 3-39
WWW.MESSAGE_ID 3-39
WWW.METHOD 3-39
WWW.MIME_VERSION 3-39
WWW.PRAGMA 3-39
WWW.PROTOCOL 3-39
WWW.QUERY 3-39
WWW.REFERER 3-40
WWW.SSL 3-40
WWW.STATUSCODE 3-40
WWW.TEXT 3-40
WWW.USER_AGENT 3-40, 7-10
WWW.USERID 3-40, 7-7
WWW.VAR.FILENAME 11-13
WWW.VAR.xxxxx 3-40
WWWDEFAULTAUTHREQ 4-9, 4-12
WWWDEFAULTRUNAUTH 4-6, 4-22
WWWEPROSET 4-8
WWWRUNAUTHFORMATS 4-19, 4-24
WWWRUNAUTHLOCATIONS 4-19

X
X'0A 6-9
X'FF'||NULL 11-13
X.25 1-14
XREF(FULL) 13-4

Z
zero return value 2-12
Index-20 Shadow OS/390 Web Server User’s Guide December 1999

Reader’s Comment Form

At NEON Systems, Inc. we are always looking for good ideas. If you have a suggestion or comment
regarding any of our publications, please complete this form, and mail or fax it to us at the following
address. Thank you.

Please mail or fax this page to:

NEON Systems, Inc.
14100 SW Freeway, Suite 500

Sugar Land, Texas 77478, U. S. A.

Fax Number: (281) 242-3880

Please complete the following information, or attach your business card here.

Your Name:

Phone Number:

Your Company:

Address:

Publication Name:

Version and Edition Numbers (see page ii):

Suggestion/Request:
Reader’s Comment Form

	About this Publication
	How this Publication is Organized
	Conventions
	Reader’s Comments
	NEON Systems, Inc. Products and Publications
	Year 2000 Compliancy Statement
	Working with Technical Support

	An Overview
	What Is Shadow OS/390 Web Server?
	Internet Protocols
	What Protocols Govern
	TCP/IP
	Internet Application Layer Protocols

	Client/Server Roles in HTTP
	Terminology
	Important HTTP Protocol Concepts

	Processing Web Transactions and URLs
	How the Web Server Handles URLs
	Handling Inbound Requests

	Supported URL Values
	Restrictions
	Special Characters and URL Strings
	Rescanning to a New URL Value
	Rescan Request
	Error Recovery
	FLUSH Request
	Shadow/REXX Return Values
	Other WWW Transaction Procedures

	Recovery From Server Detected Errors
	Transaction Level Recovery

	A Word About HyperText Transfer Protocol (HTTP)
	TCP/IP Architecture
	Application Layer
	Transport Layer
	Internet Layer
	Network Interface Layer

	The Shadow Event Facility (SEF)
	What It Does
	How It Works
	Event Types

	Event Matching
	Event Procedure Execution

	Event Procedure Rulesets
	Naming Convention
	Start-up Parameters
	Event Procedure Dataset Format
	Enabling Event Procedures
	Enabling and Disabling Event Procedure Rules

	Structure of an Event Procedure
	Event Procedure Header Statement (Required)
	Process Section Header Statements
	Header-Only Rules

	SEF Event Procedure Variables
	WWW Event Procedures
	REXX Dynamic Variables
	Global Variables
	GLVEVENT Temporary Variables
	Event Related Variables
	Event Procedure Return Values
	Accessing SEF Variables

	Controlling SEF from a Batch Environment
	Return Messages

	Defining Event Procedure Types
	Different Event Procedure Types
	Authorization (ATH) Event Procedures
	How They Work
	ATH Event Procedure Criterion
	ATH Event Procedure Header Keywords
	Allowed Process Sections
	ATH Valid Return Values
	ATH Event Procedure REXX Variables
	ATH Access Type Values

	Command (CMD) Rule Event Procedures
	How They Work
	Command Rule Syntax
	Event Procedure Criterion
	Event Procedure Header Keywords
	Allowed Process Sections
	Valid Return Values
	Special Considerations for STOP Rules
	CMD Event Procedure REXX Variables

	Exception (EXC) Event Procedures
	How They Work
	EXC Event Procedure Criterion
	EXC Event Procedure Header Keywords
	EXC Allowed Process Sections
	EXC Valid Return Values
	EXC Event Procedure REXX Variables

	Global Variable (GLV) Event Procedures
	How Global Variable (GLV) Work
	GLV Event Procedure Criterion
	GLV Event Procedure Header Keywords
	GLV Allowed Process Sections
	GLV Valid Return Values
	GLV Event Procedure REXX Variables

	Time-of-Day (TOD) Event Procedures
	How Time-of-Day (TOD) Rules Work
	TOD Event Procedure Criterion
	TOD Event Procedure Header Keywords
	TOD Allowed Process Sections
	TOD Valid Return Values
	TOD Event Procedure REXX Variables

	Type (TYP) Event Procedures
	TYP Event Procedure Criterion
	TYP Event Procedure Header Keywords
	TYP Allowed Process Sections
	TYP Valid Return Values
	TYP Event Procedure REXX Variables

	WWW Event Procedure Rules
	How WWW Rules Work
	WWW Rule Types
	Syntax of WWW Rule Definitions
	WWW URL-to-Rule Matching
	WWW Rule Header Statements
	WWW Rule Process Sections
	WWW Event-Related Variables

	Web Transaction Security
	About Web Browsers
	Userid Prompting
	Controlled Transaction Paradigm
	Levels of Security
	MVS Security Subsystem
	Client Authorization (Optional)
	Effective Userid
	Security Option Summary

	Distributed Transaction Administration
	The Master Ruleset
	Subordinate Rulesets
	Security Attributes Processing
	Security Processing Steps
	How to Implement Distributed Administration

	Specifying Web Transaction Security Parameters
	WWW Header Statement Keywords

	Configuring Secure Sockets Layer (SSL) Support
	WWW Header Security Parameters and Keywords
	AUTHREQ (YES | NO | LOCK)
	RUNAUTH(NONE | CLIENT | proxy-id)
	RESOURCE (string)
	SSL(NO | COND | YES | LOCK | LOCKCOND)

	Shadow OS/390 Web Server Subsystem Security
	Setting Limits for the Subsystem
	Protecting Subsystem Command and Control Interfaces

	Writing Web Transactions in REXX
	Shadow/REXX
	/*REXX Process Sections
	/*REXX Statement Keywords

	Coding the Process Section
	Shadow/REXX Built-in Functions

	File Serving Using Shadow OS/390 Web Server
	URL Values and the UNIX File System
	MVS File System

	Files Supported Directly by Shadow OS/390 Web Server
	File Sharing and Caching

	How Shadow OS/390 Web Server Handles Files
	Building File Serving WWW Rules Using /*FILE
	Coding a /*FILE Process Section
	/*FILE Transaction Operation
	/*FILE Statement Keyword Syntax
	Parsing URLs to Supply Missing /*FILE Keyword Values
	Inline File Processing
	Examples of /*FILE Rules

	HTML Extension Facility
	Using the HTML Extension Facility
	Insert Variable Text Into the Output
	HTTP Response Control Statements
	Conditional Statements
	Iteration Statements
	Other Control Statements
	Merging Data From Other Server Facilities
	Scope and Limitations of the Facility

	Rules for Coding HTML Extension Statements
	HTML Extension Statement Escape Delimiters
	No Continuation of Statements
	Single Statement Per Source Record (Except Text Insertions)
	Mixed Case Coding Allowed
	Reserved Words Not Valid as Variable Names
	Using Statement Operands
	Run-time Operand Evaluation
	HTML Extension Text Insertion Statement

	HTML Extension Run-time Condition Checking
	<%if%> Statement Syntax
	<%else%> Statement Syntax
	<%endif%> Statement Syntax
	Condition Statement Example

	HTML Extension Iteration Statements
	Using Named Iteration Groups
	<%do%> Statement Syntax
	<%leave%> Statement Syntax
	<%next%> Statement Syntax
	<%enddo%> Statement Syntax
	Operation Of Iterative Groups
	Iterative Group Example

	Other HTML Extension Statements
	<%date(_)%> Statement Syntax
	<%time(_)%> Statement Syntax
	<%exit%> Statement Syntax
	DB2 Result Set Cursor Advance
	HTTP Response Control Statement

	HTML Extension Merge Processing
	Interface With /*EXECSQL
	Special /*EXECSQL Variables

	Automated State Management Facility (ASMF)
	What is a Stateless Protocol?
	Persistent Session Support

	What is ASMF?
	Why use ASMF?

	What Constitutes 'State' Information?
	Transmitting State Information
	Server-Side State Information
	Using HTTP Cookies
	Using HTML Forms

	Using State Information Sets
	State Information Set Name
	State Information Set Variables
	GLVSTATE. Variable Inventory
	Collection Control Variable Name
	Collection Status Variables

	Using COOKIE-Type Information Sets
	How Cookies Work
	Creating a Cookie-type Set

	The unOfficial HTTP Cookie Specification
	Anomalies You May Encounter
	Making HTTP Cookies Work Reliably
	Some Suggestions

	Executing User Programs
	Program Process Sections
	What Programs Can be Executed
	Where is CGI?
	Where the Programs Must Reside
	Coding PROGRAM Process Sections

	Using Other REXX Interpreters
	Executing a Non-Shadow/REXX Interpreter
	Run-time Environment of Other REXX Interpreters
	Web Server APIs for Other REXX Interpreters

	Writing C/370 Web Transaction Programs
	Writing COBOL Web Transaction Programs
	Writing PL/I Web Transaction Programs

	Writing DB2-Based Web Applications
	Shadow/REXXTOOLs DB2/SQL Interface
	/*EXECSQL Process Sections
	Operation of EXECSQL Sections
	Coding EXECSQL Process Sections
	SQL Statement
	EXECSQL Examples

	Using TSO/E Services For Web Transaction Processing
	How TSO/E Auxiliary Servers Operate
	Auxiliary Server Operation
	Using TSO/E Commands in Web Transactions
	Restrictions on Commands Executed Within an Auxiliary Server
	Release Restrictions

	Activating the TSO Server Facility
	Setting Up the SWSTSO Started-Task JCL
	Configuring Initialization Parameters

	Building Shadow/REXX Based TSO/E Web Transactions
	ADDRESS TSOSRV - Command Types
	Pseudo Command Formats
	TSO/E Command Formats
	ADDRESS TSOSRV Example

	/*TSOSRV Process Sections
	Operation of TSOSRV Sections
	Coding TSOSRV Process Sections
	TSOSRV Example
	Coding the External Command Procedure

	AutoHTML - Web Enabling Transactions
	IMS Implementation
	Installation and Configuration Overview
	Enable Web Transactions

	Data Mapping Facility
	How It Works
	Restrictions

	Getting Started
	Recommendations

	Data Mapping Checklist
	The ISPF Panels
	Map Defaults
	Map Extract
	Map Display
	Copy Map
	Refresh Map
	Generate RPC
	Merge Maps
	HTML Generation

	Using Data Maps in Client Programs

	Shadow ADABAS Server
	How It Works
	Shadow Mapping Facility
	SDADEX
	SDADDM
	Dynamic ADABAS Data Mapping

	Cursor Processing
	Obtaining Data From Multiple ADABAS files
	SQL Syntax Supported
	Selection Criterion
	Search Criterion
	ASSIGNMENTS
	CLOSE
	COMMIT
	CONNECT
	DBCLOSE
	DELETE
	FETCH
	{FIND} SELECT
	HISTOGRAM
	HOLD
	INSERT
	OPEN
	READ
	RELEASE
	ROLLBACK
	SET
	SHOW
	TRACE
	UPDATE

	ADABAS User Identification
	Loss of Client Connectivity
	Tracing
	The ODBC Administrator and ADABAS Usage
	Compatibility with Other Software AG Products
	Installation Requirements
	ADABAS Link Routine

	Messages and Codes

	Shadow_VSAM and Shadow_VSAM for CICS
	What are they?
	How do they work?
	Shadow Data Mapping Facility
	Defining the VSAM Data Set Files

	Defining Multiple VSAM Logical Records Within the Same Physical File
	An Alternate Approach

	Using Alternate Indexes for a VSAM Cluster
	Shadow VSAM
	Shadow_VSAM for CICS

	SQL Supported Syntax
	Shadow_VSAM
	Shadow_VSAM for CICS
	Syntax

	Codes

	Shadow Web Interface
	The Shadow Web Interface
	Before you Begin
	Logging On
	The Home Page
	The TITLE Frame
	The DATA Frame
	The MENU Frame

	Examples
	Drilling Down through the Panels
	Updating a Parameter

	Additional Screens
	Trace Browse Records
	Trace Browse Control

	Security Features

	Using the OS/390 UNIX OpenEdition Hierarchical File System (HFS)
	Steps to Setting up HFS
	OpenEdition and HFS Security
	OpenEdition Security Subsystem (RACF) Configuration

	Server Start-up Parameters
	OEHFS Parameter (Required)
	HFSAUTHMODE Parameter (Required)
	DOCUMENTROOT Parameter (Optional)
	SEFV31COMPATIBLE Parameter

	Ruleset Definitions
	HFSROOT()
	HFSROOT vs. DOCUMENTROOT

	/*WWW Rules
	URL Criterion
	PATH Keyword Operand
	WELCOMEPAGE Keyword Operand

	Displaying the Web Page

	Trace Browse
	Starting Trace Browse
	Order of Trace Browse Events
	The Trace Browse Profile
	Using the Specification Display
	Using the PROFILE Command
	Wildcards for Trace Browse Profile

	Positioning Trace Browse
	Changing Trace Browse Columns
	Displaying Extra Columns of Information
	Trace Browse Columns

	Using Labels in the MSGNO Column
	Locating Messages
	Using the FIND Command
	Finding Character Strings
	Repeating a FIND Command
	Finding With DISPLAY Columns

	Row Information Commands
	Printing Trace Browse Information

	Trace Browse Archival Facility
	What is it
	How it works
	Backups and Extracts
	Configuring Automatic Backups
	To Begin Testing
	Data Set Allocation Parameters

	Using the Trace Browse Archival Facility

	Starting a Test Version
	Setting Up Shadow Server to Run under TSO
	Test Copies
	Using the Debugging Control Screen
	Using the Code/370 Debug Tool

	Sever Error Codes
	Supported SMF Fields
	SMF Type 05 Records
	SMF Type 06 Records

	Language Codes
	Glossary
	Index
	Reader's Comment Form

