
6+$'2:

352*5$00,1*�*8,'(

hadow®

usiness
roperty
.
ative

X/
nload,

ners.

cense

then it

is
c. No
anical,
This document is published by the NEON Systems, Inc. Technical Publications Department and applies to
Shadow® Server™, Version 4, Release 5, Shadow® OS/390 Web Server™, Version 4, Release 5, and S
Enterprise Server™ , Version 2, Release 6.

Copyright 1999 NEON Systems, Inc. All rights reserved. Printed in the U.S.A.

Licensee is granted permission to make a limited number of copies of the documentation for its internal b
purposes only. All such copies shall bear all copyright, trade secret, trademark and any other intellectual p
notices on the original copies. This limited right to reproduce for internal purposes only is not transferable
Furthermore, this limited right DOES NOT include any license to distribute, modify, display or make deriv
works from the Copyrighted materials.

® indicates a trademark registered in the United States.
™ indicates a trademark that is not registered in the United States.

NEON and Shadow are registered trademarks and Activity Monitor, Affinities Server, Connection Facility,
Database Event Facility, Dynamic Index Facility, Halo, Halo SSO, NEON 24X7, PDF, RandomMax, REX
Tools, ShadowDirect, Shadow Enterprise Direct, Shadow Web Server, Speed Key, Speed Load, Speed U
Support Module, SSL Support Module, and Transaction Server are trademarks of NEON Systems, Inc.

All other trademarks, service marks, and product or service names are the property of their respective ow

This software/document contains proprietary information of NEON Systems, Inc.; it is provided under a li
agreement containing restrictions on use and disclosure and is also protected by copyright law. Reverse
engineering of the software is prohibited.

If this software/documentation is delivered to a U.S. Government Agency of the Department of Defense,
is delivered with Restricted Rights and the following legend is applicable:

Restricted Rights Legend

Use, duplication, or disclosure by the Government is subject to restrictions as set forth in
subparagraph (c)(1)(ii) of DFARS 252.227-7013, Rights in Technical Data and Computer
Software (October 1988).

If this software/documentation is delivered to a U.S. Government Agency not within the
Department of Defense, then it is delivered with “Restricted Rights,” as defined in
FAR 52.227-14, Rights in Data—General, including alternate (June 1987).

NEON Systems, Inc. does not warrant that this document is error-free. The information in this document
subject to change without notice and does not represent a commitment on the part of NEON Systems, In
part of this document may be reproduced or transmitted in any form or by any means, electronic or mech
including photocopying and recording, for any purpose without the express written permission of NEON
Systems, Inc.

Address inquiries to:

NEON Systems, Inc.
14100 SW Freeway, Suite 500

Sugar Land, Texas 77478

World Wide Web: http://www.neonsys.com

Phone: 1-800-505-6366
(281) 491-4200 (Corporate Sales, Technical Support)

Fax: (281) 242-3880

December 1999

Contents

. .

. . .

. .

1-1

.
 .
 .

 .
. . 1-8

.

.

.

. 1

2-1

. . 2-
. 2-2

. . 2-7

. . 2-8
 2-10
 About this Publication .xi

How this Publication is Organized. xi
Conventions . xiii
Reader’s Comments . xiii
NEON Systems, Inc. Products . xiv
Year 2000 Compliancy Statement . xiv
Working with Technical Support . . xv

 Chapter 1: Shadow RPC Direct .

Introduction . 1-1
 Product Architecture . 1-2

Client Applications . 1-2
Host Applications . 1-3
Client-RPC Interaction . 1-4

Host Execution Environment . 1-6
Virtual Storage Utilization . 1-6
RPC Libraries . 1-7
Other DD Statements. .. 1-7
Data Transmission between the Client Application and the Host RPC

Using Host Data . 1-8
DB2 . 1-8
 IMS . 1-9
Writing a Host RPC. . 1-9

RPC Debug Support. 1-10
Client API Function Definitions . 1-15

 SCAsciiToEbcdic . 1-16
SCEbcdicToAscii . 1-18
SCReadBuffer . 1-20
SCWriteBuffer. 1-22
SCWriteReadBuffer . -24

 Chapter 2: ODBC CALL RPCs .

Introduction . 2-1
ODBC CALL RPC Examples . 1
Sample ODBC CALL RPC for VSAM .
Other Sample RPCs . 2-7

Writing RPCs that Access DB2.
Special Considerations for Cobol II .
Special Considerations for Cobol for MVS and Other LE/370 Languages
December, 1999 Shadow Programming Guide iii

Contents
 Chapter 3: Running DB2 Stored Procedures . 3-1

Introduction . 3-1
The Syntax . 3-1
DB2 Stored Procedures . 3-2

Preparing a DB2 Stored Procedure . 3-3
Coding Cursors in Return Result Sets . 3-3
Troubleshooting DB2 Stored Procedures . 3-4

 Chapter 4: Shadow IMS Direct . 4-1

Introduction . 4-1
 Product Architecture . 4-1

Single-Threaded Access to IMS Databases and the Message Queue 4-1
Multi-Threaded Access to IMS Databases . 4-3

Installing Shadow IMS Direct . 4-5
Configuring Shadow Server . 4-5
Setting Parameters for Single-Threaded Access . 4-5
Setting Parameters for Multi-Threaded Access. 4-6

Programming IMS Applications . 4-8
Client Applications . 4-8
Client API Function Definitions . 4-9
SCCToDLI. 4-10
SCCToDLIPascal . 4-17
SCPackedToAscii . 4-24
SCAsciiToPacked . 4-26

Sample IMS Batch Message Program Code . 4-27

 Chapter 5: Transaction Server for IMS . 5-1

Introduction . 5-1
Examples of Using Shadow_IMS . 5-4

COBOL . 5-4
Visual Basic 3.0. 5-4
PowerBuilder 4.0 . 5-5
/*EXECSQL . 5-7

 Chapter 6: Transaction Server for CICS . 6-1

Introduction . 6-1
Examples of Using Shadow for CICS . 6-2

COBOL 6-2
Visual Basic 3.0. . . . 6-2
PowerBuilder 4.0 . 6-4
/*EXECSQL . 6-5
iv Shadow Programming Guide December, 1999

Contents
 Chapter 7: Host Application API Function Calls . 7-1

The High-Level Language (HLL) Interface. 7-4
NEON-Supplied Source Copy Members. 7-4
Layout of the HLL Reference Pages . 7-4

ODBC CALL Host APIs . 7-8
SQLBINDCOL (SDCPBC) Function . 7-9
SQLDESCRIBEPARAM (SDCPDP) Function . 7-13
SQLNUMPARAMS (SDCPNP) Function . 7-17
SQLRESETPARAM (SDCPRP) Function . 7-19
SQLRETURNSTATUS (SDCPRS) Function. 7-21
SQLTHROW (SDCPTH) Function. 7-24

IMS/APPC APIs. 7-27
High-Level Language Interface
SQLAPPCCONNECT (SDCPAC) or
SWSAPPCCONNECT (SWCPAC) Function. 7-28
SDBAPCON/SWSAPCON Function . 7-37
High-Level Language Interface
SQLAPPCDISCONNECT (SDCPAD) or
SWSAPPCDISCONNECT (SWCPAD) Function . 7-41
SDBAPDIS/SWSAPDIS Function . 7-45
High-Level Language Interface
SQLAPPCRECEIVE (SDCPAR) or
SWSAPPCRECEIVE (SWCPAR) Function. 7-46
SDBAPRCV/ SWSAPRCV Function . 7-52
High-Level Language Interface
SQLAPPCSEND (SDCPAS) or
SWSAPPCSEND (SWCPAS) Function . 7-54
SDBAPSND/SWSAPSND Function. 7-59

CICS APIs . 7-61
High-Level Language Interface
SQLEXCICONNECT (SDCPEC) or
SWSEXCICONNECT (SWCPEC) Function . 7-62
SDBEXCON/SWSEXCON Function . 7-67
High-Level Language Interface SQLEXCIDPLREQ (SDCPED) or
SWSEXCIDPLREQ (SWCPED) Function . 7-69
SDBEXDPL/SWSEXDPL Function . 7-75
High-Level Language Interface
sqlexciinitusr (SDCPEI) or
SWSEXCIINITUSR (SWCPEI) Function . 7-78
SDBEXINI/SWSEXINI Function . 7-82
High-Level Language Interface
SQLEXCIDISCONN (SDCPEL) or
SWSEXCIDISCONN (SWCPEL) Function . 7-84
SDBEXDIS/SWSEXDIS Function . 7-88

Web Server Specific APIs . 7-90
December, 1999 Shadow Programming Guide v

Contents
High-Level Language Interface
SWSSEND (SWCPSN) Function . 7-91
SWSSEND Function . 7-94
High-Level Language Interface
SWSRESP (SWCPRE) Function. 7-96
SWSRESP Function . 7-100
High-Level Language Interface
SWSFILE (SWCPFI) Function . 7-102
SWSFILE Function . 7-113
The SWSFILE Function with Other REXX-language Interpreters. 7-124
High-Level Language Interface
SWSSET (SWCPSO) Function . 7-130
SWSSET Function. 7-140
High-Level Language Interface
SWSWTO (SWCPWT) Function . 7-142
SWSWTO Function. 7-145

RPC Direct Host APIs . 7-146
sdcpif Function . 7-147
sdcpmg Function . 7-150
sdcprd Function . 7-152
sdcpwr Function . 7-154

General APIs . 7-156
High-Level Language Interface
SQLERROR (SDCPSE)
SWSERROR (SWCPSE) Function . 7-157
SDBERROR/SWSERROR Function . 7-161
High-Level Language Interface
SQLGETINFO (SDCPGI)
SWSINFO (SWCPGI) Function . 7-162
SDBINFO/SWSINFO Function . 7-167
High-Level Language Interface
SQLTRACEMSG (SDCPTM)
SWSTRACEMSG (SWCPTM) Function . 7-169
SDBTRACE/SWSTRACE Function. 7-172
High-Level Language Interface
SDBALLOC (SDCPAL)
SWSALLOC (SWCPAL) Function. 7-173
SDBALLOC/SWSALLOC Function . 7-188
High-Level Language Interface
SDBFREE (SDCPFR)
SWSFREE (SWCPFR) Function. 7-199
SDBFREE/SWSFREE Function . 7-204
High-Level Language Interface
SDBVALUE (SDCPVL)
SWSVALUE (SWCPVL) Function . 7-207
vi Shadow Programming Guide December, 1999

Contents
SDBVALUE/SWSVALUE Function . 7-213
High-Level Language Interface
SQLTOKEN (SDCPTK)
SWSTOKEN (SWCPTK) Function . 7-219
SDBTOKEN/SWSTOKEN Function . 7-225
High-Level Language Interface
SDBCONCT (SDCPCC)
SWSCONCT (SWCPCC) Function . 7-229
SDBCONCT/SWSCONCT Function . 7-232
High-Level Language Interface
SDBDECON (SDCPDC)
SWSDECON (SWCPDC) Function . 7-234
SDBDECON/SWSDECON Function . 7-237

Web Server REXX and SEF APIs . 7-238
 High Level Language SWSClearQueue (SWCPQL) Function . 7-239
SWSCLEDQ Function . 7-242
High-Level Language Interface
SDBECURE (SDCPSC)
SWSECURE (SWCPSC) Function . 7-243
The SDBECURE/SWSECURE Function . 7-251
SWSENQ Function . 7-258
High-Level Language SWSGetQueue (SWCPQG) Function . 7-260
SDBPARM/SWSPARM Function . 7-263
High-Level Language SWSPutQueue (SWCPQP) Function . 7-267
High-Level Language SWSQueryQueue (SWCPQQ) Function. 7-270
SDBSMF/SWSSMF Function. 7-273
SWSXMIT Function . 7-274

 Chapter 8: Shadow Enterprise Direct API Function Calls 8-1

NEONBindCol. 8-2
NEONDescribeParam . 8-5
NEONError . 8-8
NEONGetInfo . 8-10
NEONNumParams . 8-12
NEONResetParam. 8-14
NEONReturnStatus . 8-16
NEONThrow . 8-18
NEONTraceMsg . 8-20

 Chapter 9: Transaction Level Security (TLS) . 9-1

What is TLS? . 9-1
Why use TLS? . 9-1
Implementing TLS . 9-2

Client Side Support . 9-3
December, 1999 Shadow Programming Guide vii

Contents
Host Side Support . 9-4
Passing Generic ID to SAF . 9-5

 Chapter 10: SQLProcedure and SQLProcedure Columns 10-1

Introduction . 10-1
Syntax. 10-1
Stored Procedures. 10-2
Preparing a Stored Procedure to Execute a CICS or IMS Transaction 10-2

 Appendix A: Shadow REXX . A-1

What Is Shadow/REXX? . A-1
Why Shadow/REXX? . A-1
Similarities Between Shadow/REXX and Standard REXX. A-2
Differences Between Shadow/REXX and Standard REXX . A-2
Shadow/REXX Execution Limits . A-3

Resource Use Monitoring . A-3
Parameters that Set Limits . A-3
Overriding Execution Limits . A-3

Elements of Shadow/REXX. A-4
REXX Elements that Shadow/REXX Supports . A-4
Implementation Limits . A-4
Constants in Shadow/REXX . A-5
Symbols in Shadow/REXX . A-5
Variable Values . A-5
Compound Symbols . A-5
Arithmetic Values and Operators . A-5

Shadow/REXX Considerations . A-5
Shadow/REXX Instructions . A-6

INTERPRET Instruction . A-6
OPTIONS Instruction . A-6
Shadow/REXX Built-in Functions . A-8
Shadow Event Facility (SEF) Global Variables . A-8

Shadow/REXX Interfaces . A-8
Shadow/REXX Interface with TSO - ADDRESS TSO . A-8
Shadow/REXX Interface To Out-board TSO Servers - ADDRESS TSOSRV. A-9
Shadow/REXX Interface with SEF - ADDRESS SEF . A-10
Shadow/REXX Interface For Web Data Output - ADDRESS SWSSEND A-10

Compiler Error Messages. A-10
Non-Standard REXX Error Numbers used by Shadow/REXX. A-10
Standard REXX Error Numbers Used by Shadow/REXX . A-12

 Appendix B: MVS Client Support . B-1

Using the ODBC Interface In a COBOL Client Program . B-1
viii Shadow Programming Guide December, 1999

Contents
 Glossary . Glossary-1

 Index . Index-1
December, 1999 Shadow Programming Guide ix

Contents
x Shadow Programming Guide December, 1999

PC
ns.

t

ing

w to
a for
About this Publication

This book contains programming information for Shadow Direct, Shadow OS/390 Web Server, and
Shadow Enterprise.

How this Publication is Organized
This book contains the following chapters:

n Chapter 1, “Shadow RPC Direct,” provides information about Shadow R
Direct, its product architecture, host data, and client API function definitio

n Chapter 2, “ODBC CALL RPCs,” provides ODBC CALL RPC examples,
sample ODBC CALL RPCs for VSAM, and other sample RPCs.

n Chapter 3, “Running DB2 Stored Procedures,” includes information abou
executing, preparing and troubleshooting a DB2 Stored Procedure.

n Chapter 4, “Shadow IMS Direct,” details Shadow IMS Direct, its product
architecture, installation, programming, client API function definitions, and
sample IMS batch message program code.

n Chapter 5, “Transaction Server for IMS,” provides information about
SHADOW_IMS, including examples of using Shadow for IMS.

n Chapter 6, “Transaction Server for CICS,” includes information about
SHADOW_CICS RPC, and examples of using Shadow for CICS.

n Chapter 7, “Host Application API Function Calls,” includes a listing and
detailed description of the following:
n ODBC CALL RPC APIs
n IMS/APPC APIs
n CICS APIs
n Web Server Specific APIs
n General APIs
n Web Server REXX and SEF only APIs
n RPC Direct APIs

n Chapter 8, “Shadow Enterprise Direct API Function Calls,” provides a list
and description of Shadow Enterprise Direct API calls.

n Chapter 9, “Transaction Level Security (TLS),” covers TLS, which was
created to support the new and unique security requirements of Internet
applications, while operating in the traditional enterprise computing
environment.

n Chapter 10, “SQLProcedure and SQLProcedure Columns,” discusses ho
create a pseudo DB2 stored procedure that contains necessary Meta dat
December 1999 Shadow Programming Guide xi

About this Publication

,
,

L
input and output fields, as well as other required parameters for accessing
CICS and IMS transactions.

n Appendix A, “Shadow/REXX,” provides information about Shadow REXX
including its comparison to Standard REXX, its execution limits, elements
considerations, instructions, interfaces, and compiler error messages.

n Appendix B, “MVS Client Support,” covers the ODBC interface in a COBO
client program.

n “Glossary,” lists and defines terms and acronyms that appear in NEON
Systems, Inc. publications.
xii Shadow Programming Guide December 1999

Conventions

ON,

ent
Conventions
This book contains the following highlighting conventions:

BOLD CAPS
Identifies commands. For example:

Use the KEYS command to ...

Text enclosed in single quotes denotes library, data set, and DD names.
For example:

‘SLDSYSIN’ ‘PLUSIN’ ‘RESLIB’

Monospace
Identifies code examples, screen prompts, and messages, as well as
directory paths. For example:

//STEP010 EXEC PGM=NDBA2400

Monospace Italics
Identifies information you must provide at a screen prompt or in a
text field. For example:

PARM=’PARMLIB=your.parmlib’

<KEY> Identifies the key to press. For example:

<ENTER>

NEON Systems, Inc. uses Release.Version to identify software packages. For
example, Product 4.1, denotes the fourth release, first revision of the software.

Reader’s Comments
At NEON Systems, Inc. we are always looking for good ideas. If you have any
comments or suggestions regarding any of our publications, please complete the
Reader’s Comment form (located at the back of this book) and return it to NE
Attention: Technical Publications Department.

Mailing Address: NEON Systems, Inc.
14100 SW Freeway, Suite 500
Sugar Land, Texas 77478

Fax Number: (281) 242-3880

You can also send comments to directly to our Technical Publications departm
via the following e-mail address: documentation@neonsys.com.

Thank you!
December 1999 Shadow Programming Guide xiii

About this Publication
NEON Systems, Inc. Products
For a comprehensive list of the products currently marketed by NEON Systems,
Inc., visit our World Wide Web site at: http://www.neonsys.com.

Year 2000 Compliancy Statement
The following products from NEON Systems, Inc., are Year 2000 ready.

n Enterprise Security Management Products
n Enterprise Subsystem Management Product Family
n Shadow® Product Family and Add-On Components

The mainframe code for the Shadow Product Family, Version 3.1 and all
subsequent versions, are Y2K ready.

All versions of the client code associated with Shadow® Direct™ and Shadow

Enterprise Direct® are Y2K ready.

These products use four-digit year values both internally and externally
(although, in a few cases, two-digit year values are displayed while four-digit
year values are maintained internally).

Note:
You can also access and download all of the current NEON publications
from this Web site.

Note:

While Shadow Direct, Shadow® OS/390 Web Server™, and Shadow
Enterprise Direct are Y2K ready, customers should be aware that these
products can provide access to data sources that may not be Y2K ready.
xiv Shadow Programming Guide December 1999

Working with Technical Support
Working with Technical Support
NEON Systems, Inc. provides a number of ways for you to obtain assistance for
our products. All product support inquiries are handled by the same support
group, regardless if you are a trial or a licensed customer. The following are
available support options:

Support
Option

How to Access How it Works This Option is Best for:

E-mail To contact Technical Support via
e-mail:

support@neonsys.com

Email is available for receipt 24 hours
a day, 7 days a week and is answered
between 9AM-7PM CST Monday
through Friday.

Email goes to the support queue,
which is continuously monitored
by a staff of cross-functional
technical experts. It is answered
in the order it is received. It is
logged in the support database
and assigned a trouble ticket
number for tracking purposes.

This type of support is excellent
for low to medium priority
requests. It is a proven method
for providing further information
on critical problems that may
have been phoned in. Email is a
convenient way of sending us a
list of lower priority items you
have collected at a time that is
convenient for you.

Phone To contact Technical Support,
please call:

1-800-505-6366 (U. S. and Canada)
1-281-491-4200 (outside North
America)

During normal working hours
you will be transferred to
someone who can usually answer
your question on the first call.
You may be required to page a
support person via our phone
mail system after hours.

This type of support is best for
high priority requests and initial
installation questions. Use this
option for any obvious system
errors or anytime you need the
most rapid reply to your
question.

Internet To access Internet support, please
visit our Web site at:

www.neonsys.com

Simply visit our Web site.
NEON Systems works to keep
current, relevant materials on our
Web site to support our trial and
licensed customers.

This option provides immediate
access to documentation,
updated client-side drivers, and
our product Knowledge Base.
The Knowledge Base is a
collection of questions answered
by support. Use this option to
answer your own questions or to
get a better understanding of
what customers ask on an
ongoing basis.

Account
Manager

To contact your NEON Systems Sales
Representative, please call:

1-800-505-6366 (U. S. and Canada)
1-281-491-4200 (outside North
America)

Your Sales Representative is
your account manager. This
person is ultimately responsible
for your complete satisfaction
with NEON Systems, Inc.

Contact your Sales
Representative for pricing
information, contract details,
password renewal or if you feel
your needs are not being met.
December 1999 Shadow Programming Guide xv

About this Publication
xvi Shadow Programming Guide December 1999

CHAPTER 1:
Shadow RPC Direct

This chapter covers programming information for Shadow RPC Direct, a component of Shadow Direct
which allows a client application to invoke and communicate with an RPC running on the host.
Iinformation includes product architecture, using host data, and client API function definitions.

This chapter specifically applies to Shadow Direct.

Introduction
Shadow RPC Direct works with any client application supported by Shadow
Direct. The currently supported platforms for client applications include:

n Windows
n Windows 95
n Windows NT
n OS/2
n UNIX.

Client applications can be written in C, or any other language that can call DLL
entry points. Shadow RPC Direct provides both a client and host API. The client
API includes entry points for the following:

n Establishing connections to the host.
n Initiating host RPCs.
n Synchronously and asynchronously sending data to and from the host.
n Terminating host connections.
n Data conversion and other support functions (for example, the ability to

access and update fields in an IMS PCB).
n Sending data to and receiving data from a client program.
n Obtaining information about the current environment.
n Setting environmental information (DB2 plan name).
n Writing messages to the Trace Browse log.

The host RPCs invoked by the client are standard MVS programs that can access
and update DB2 tables, IMS databases, VSAM files, partitioned data sets, etc.
Host RPCs can be written in any high level language or in assembly language. In
all cases, host RPCs use the same host API to communicate with the Shadow
Direct environment.

Host RPCs execute as tasks or threads in the main product address space. A
separate thread is created for every client session. This approach provides the
highest degree of flexibility for the host RPCs and guarantees the maximum
degree of independence between the threads. Each thread can perform whatever
work it needs without any conflicts between itself and other threads.
December 1999 Shadow Programming Guide 1-1

Shadow RPC Direct
 Product Architecture
Using Shadow RPC Direct always involves two separate programs:

n Α client application.
n An MVS RPC.

The client application initiates the host RPC. After the host RPC has been started,
the client application and the host RPC can send messages back and forth, either
synchronously or asynchronously. These messages or data buffers are defined
entirely by the client application and the host RPC. The format, content, and
sequence of these buffers is determined by the application programmers who
create the client and host components. The client and host component must agree
exactly on all aspects of the data flow between them.

No conversions are performed on the data buffers sent between the client
application and the host RPC. Either the client, the host RPC, or both, must take
responsibility for any conversions that are required. The Shadow RPC Direct
client API includes entry points for performing some of these conversions.
However some conversions (of non-message data) are performed on behalf of the
client. For example, the optional OS parameter string passed to the host RPC is
automatically converted from ASCII to EBCDIC (but is not converted to
uppercase).

Client Applications
Shadow RPC Direct client applications are programs written in any one of several
languages that use the Shadow Direct API to invoke and communicate with host
RPCs. These applications are normally written in C or C++, however, these
applications can be written in any language that can call DLL entry points
including Visual Basic (VB), PowerScript, Pascal, COBOL, etc. In practice,
almost any client application programming language can be used to invoke the
Shadow RPC Direct API.

The Shadow RPC Direct API is implemented as:

n A DLL for Windows, Windows NT and OS/2.
n A shared library for UNIX environments (SunOS, etc.) supporting shared

libraries.
n An archive file for other UNIX environments.

Note:
There is no requirement that any data actually flow back and forth
between the client application and host RPC, and zero length
messages are supported.
1-2 Shadow Programming Guide December 1999

Product Architecture
Shadow RPC Direct applications must be linked using one of the two following
import libraries supplied with Shadow RPC Direct:

n SCODBC.LIB, used with SCODBC.DLL.
n SCODBCTS.LIB, used with SCODBCTS.DLL.

Since the SCODBCTS.DLL contains numerous diagnostic, debugging, and support
tools, it should be used for all application development purposes. However,
because the SCODBCTS.DLL is substantially larger and slower than its production
counterpart SCODBC.DLL,production applications that have been fully debugged
should be switched to the SCODBC.DLL for improved performance. .

Shadow RPC Direct applications written in C must include the scpghd.h header
file. This file declares all Shadow RPC Direct structures and API entry points, and
must be included in all Shadow RPC Direct client application functions. It can be
used with both ANSI and non-ANSI C compilers, however, it is strongly
recommended that ANSI C be used for compiling and building Shadow RPC
client application programs. This header file will also work in all client
environments including Windows, OS/2, and UNIX.

Host Applications
Host RPCs can be written in any high-level language or 370 assembler. PL/I,
COBOL, FORTRAN and C are all supported. Host RPCs can be any AMODE
and/or any RMODE. To conserve 24-bit memory, RMODE ANY and AMODE 31
are strongly preferred, however, RMODE 24 and AMODE 24 are supported. Data
areas passed to and from the host RPCs can, in all cases, be either above or below
the 16 MB line.

Host RPCs

Host RPCs execute in the main Shadow address space as ordinary load modules.
In other words, host RPCs can use normal programming procedures to access and
update VSAM data sets, flat files, PDSs, etc. Host RPCs are not subject to any of
the restrictions that are normally associated with the CICS or IMS environments.

As previously mentioned, host RPCs can use standard programming constructs to
access and update host data. In addition, host RPCs can use APIs provided by
Shadow to perform certain additional functions.

Note:
ODBC.LIB must not be used with Shadow RPC Direct applications.
The architecture of Shadow RPC Direct does not support passing
calls from a Shadow RPC Direct application to the Shadow RPC
Direct DLL via the Microsoft driver manager (ODBC.DLL).

Note:
There are certain special considerations for some languages, which
will be discussed below in detail.
December 1999 Shadow Programming Guide 1-3

Shadow RPC Direct

rface.

I

s an

ogram
SPIE

pt an
 all
These APIs include facilities for:

n Sending and receiving data buffers as large as 30 kilobytes.
n Inserting messages into Shadow Server’s Trace Browse log.
n Obtaining information about the current execution environment.
n Updating information about the current environment.

Host RPCs can also access and update IMS databases using the DBCTL inte
This interface allows host RPCs to communicate with either an IMS DB/DC
control region or a DBCTL limited function control region. In either case, the
same API is used to execute DL/I calls. This API is almost identical to the AP
used to execute IMS calls in the CICS environment. A host RPC starts by
scheduling a PSB and then uses the PCB list returned by the PSB schedule
operation to access and update IMS data.

A separate PRB is always created for each host RPC. This approach provide
additional degree of isolation for the RPC. Specifically, the host RPC can use
ESTAE and ESPIE, as need be, to intercept and recover from abends and pr
checks. There is no requirement that a host RPC establish an ESTAE or an E
of its own. Shadow Server will always establish an ESTAE to catch all abend
errors that occur while host RPC is executing. If Shadow Server does interce
abend while the host RPC is executing, the host RPC will be terminated and
database changes (DB2, IMS) will be rolled back.

Client-RPC Interaction
Figure 1–1, Shadow RPC Direct Product Architecture, shows how client
applications interact with the MVS-based RPCs.

Figure 1–1. Shadow RPC Direct Product Architecture

User-Written
Client Application

TCP/IP or
LU 6.2

(1)

Windows/OS/2/UNIX

MVS Host

DB2

IMS

VSAM

PDSs

Flat Files

User-Written
RPCs

Shadow Server
Address Space

(2)

TCP/IP or
LU 6.2

TCP/IP or
LU 6.2
1-4 Shadow Programming Guide December 1999

Product Architecture

e no
C.
1. The client application uses the Shadow RPC Direct API to establish either a
TCP/IP or LU 6.2 session with the host. The host RPC is initiated as part of
the session establishment process. A new host thread (or TCB) is always
created for each new session started using the Shadow RPC Direct API.

2. The host RPC starts execution in the Shadow Server address space. The host
RPC and client application can then communicate back and forth either
synchronously or asynchronously.

3. The host RPCs can access any number of different types of data including
DB2, IMS, VSAM, PDSs, and flat files. DB2 data can be accessed using static
or dynamic SQL, although static SQL is the preferred choice in most cases.
User-specified plans and packages can be used to access DB2 data, and all
DB2 security will be handled using the userid and password provided by the
client. IMS data is accessed using standard DL/I calls. For example:

n The PLITDLI function can be used in PL/I programs.
n COBTDLI can be used in COBOL programs.
n CTDLI can be used in C programs.
n ASMTDLI can be used in 370 assembler programs.

The supported DL/I calls include all DL/I calls that can normally be used in
the CICS environment. This includes all DL/I calls for accessing and updating
databases, but excludes all DL/I calls for accessing and updating the IMS
message queue.

VSAM files, PDSs, and flat files can also be accessed by the host RPC using
normal high-level language programming procedures.

As previously mentioned, the data flow between the client application and RPC is
entirely under the control of the client application and the host RPC. These
programs can be designed to send any combination of data buffers back and forth.
For example, the client application might send one data buffer to the host RPC and
get one response back. Alternatively, a great many data buffers might be sent back
and forth constituting an extended “conversation”. In other cases, there may b
exchange of any data buffers between the client application and the host RP

Note:
Once the client application program sends a message to the host to
initiate execution of the host RPC, Shadow Server responds to the
client before starting execution of the host RPC. In other words, the
client application program will resume execution before the host
RPC starts execution. This means that the client application cannot
determine if the initiation of the host RPC has been successful or
not. This approach must be used to allow the client application to
regain control so that the client application and the host RPC can
send messages back and forth.
December 1999 Shadow Programming Guide 1-5

Shadow RPC Direct
Host Execution Environment
Host RPCs execute in a very specific environment. All host RPCs run as separate
TCBs in the main product address space. A separate TCB is created for each client
session with the host. If a client application creates multiple sessions with one
copy of the product running on the host, multiple TCBs will be created on behalf
of that client. As a consequence of the TCB processing architecture, host RPCs
are completely independent of each other and are executed in an environment very
similar to a TSO application or batch program.

Host RPCs run in problem, not supervisor, state for the following reasons:

n Host RPCs allowed to run in supervisor state could compromise the integrity
of the Shadow Server address space or perhaps even the system as a whole.

n Several high-level languages (PL/I, C) will not execute properly if they are
invoked in supervisor state.

The restriction that all host RPCs execute in problem state should not restrict
which applications can be implemented using host RPCs. Host RPCs will always
execute in KEY 8. This is the standard protection key for all problem programs,
such as TSO applications or batch programs. Once again, this design does not
restrict which applications can be implemented using Shadow Server.

Although non-reentrant programs are supported, RPCs should be designed and
implemented as reentrant programs, if at all possible. This will allow all users of
an RPC application to share one copy of the object code. This approach will
dramatically reduce memory utilization requirements in many cases. If the
application runs in RMODE 24, reentrance is even more important due to the fact
that the storage below the 16 MB line is scarce in many installations. The Shadow
Server address space itself uses no storage below the 16 MB line.

The client application can optionally pass a parameter string to the host RPC. The
parameter string length can range from 0 to 100 bytes. This string is passed to the
host RPC using an OS parameter list. In other words, the first word of the
parameter list points to a two-byte prefix followed by up to 100 characters of
actual parameter data. The parameter string is placed in 24-bit storage so it can be
accessed by all host RPCs.

Virtual Storage Utilization
RPCs running in the Shadow Server address space can acquire and free 24- and/or
31-bit storage. However, use of 31-bit storage is very strongly recommended. As
previously mentioned, 24-bit storage is a scarce resource in many environments,
and serious problems can arise if the entire pool of 24-bit storage is depleted by
RPC applications.

An important consideration in this context is that Shadow RPC applications can
run for a long time. This means that the storage used by these applications can be
long lived. This is an important point for the overall design of RPCs running in the
Shadow Server address space. The total virtual storage utilization of all host RPCs
1-6 Shadow Programming Guide December 1999

Host Execution Environment
executing concurrently must not exceed the available 24- and 31-bit virtual
storage. In practice, there is often a large amount of unused 31-bit storage,
whereas 24-bit storage may be sharply constrained.

One way of circumventing some of these constraints is to use Shadow RPC Direct
RPCs which are in general much more short-lived than their Shadow RPC Direct
counterparts.

RPC Libraries
Each NEON Client RPC is comprised of one or more load modules. The RPC
name must be either a PDS member name or alias name in the RPC library. RPC
load modules must be stored in the SDBRPCLD concatenation of the Shadow
Server address space.

The Shadow Server JCL contains a SDBRPCLB DD statement. As many separate
RPC libraries as necessary can be concatenated using this DD statement. If this
DD statement is coded in the Shadow Server starter task JCL, all RPC load
modules will be loaded from this library concatenation.

There are several reasons for storing RPC load modules in the RPCLIB
concatenation:

n Data sets comprising the RPCLIB concatenation do not need to be APF
authorized. By contrast, the libraries of the STEPLIB concatenation must be
APF authorized. This approach allows host RPC applications developers to
update the RPC library concatenation with a minimum of security. Stringent
security procedures are often required before APF libraries can be updated.
Additionally, this method provides isolation from the STEPLIB
concatenation.

n Use of the RPC library concatenation improves performance.

Other DD Statements
Host RPCs can use any other DD statements in the Shadow Server address space
JCL. Each installation can add additional DD statements for VSAM files, flat
files, PDSs, etc. to meet application requirements. The DD statements used by the
Shadow Server address space itself should not be changed. Please see the Shadow
Server User’s Guide for additional information about the Shadow Server address
space JCL.

The Shadow Server User’s Guide documents procedures for running the Shadow
Server under TSO. This mechanism was specifically designed to facilitate the
development of host RPCs. Each application developer can work with an
individual copy of the Shadow Server running under TSO, allowing the developer
to work independently. The Shadow Server runs unauthorized in the TSO
environment and therefore cannot be used in any way to compromise system
security. All accesses to data are associated with the TSO userid of the application
developer. For additional information please see the Shadow Server User’s Guide.
December 1999 Shadow Programming Guide 1-7

Shadow RPC Direct
Data Transmission between the Client
Application and the Host RPC

Data is transmitted between the client application and the host RPC using
messages. Each message is a single buffer of data, and has a specific length
(possible zero), specified by the sender. It will always be sent and received as a
single entity. In other words the sender passes complete messages on the sending
side, and the receiver receives complete messages on the receiving side. This
approach is different from the TCP/IP stream approach where the data sent by one
side can be received as multiple pieces on the other side, or multiple transmissions
from the sender can be received together by the receiver.

In all cases, the messages sent between the client application and the host RPC are
compressed to reduce network utilization. The compression/decompression
process is completely transparent at both ends. The compression algorithm used is
simple and fast, and consists of using compression factors of up to 10 and 20:1 for
the sending and receiving of sparse data buffers (many blanks or binary zeros).

Using Host Data
Host RPCs can access and update many different types of host data including
VSAM, DB2 and IMS. In general, host RPCs can use normal high-level language
facilities to access and update these databases. However, special considerations do
apply in some cases, and these considerations should be carefully reviewed before
attempting to access and update the databases listed below.

DB2
Host RPCs can use either static or dynamic SQL to access DB2 databases,
however, static SQL is used in most cases. Host RPC programs using either static
or dynamic SQL can be prepared using standard DB2 program development
procedures.

At run time, the plan name used by a host RPC with DB2 can be specified in the
following two ways:

n The client program that invokes the host RPC can specify the host DB2
subsystem name and the plan name.

In this case, both the DB2 subsystem name and the plan name will be padded
with blanks and translated from ASCII to EBCDIC. Shadow Server will use
the DB2 subsystem name and the plan name to establish a connection to DB2
immediately prior to the execution of the host RPC. This approach eliminates
the need for the host RPC to establish its own connection to DB2.

The connection to DB2 will automatically be broken as soon as the host RPC
terminates. DSNALI close will be called to terminate the DB2 connection and
release any DB2 resources. DSNALI close will be called with a close type of
either SYNC or ABRT. By default, SYNC will be used to commit any
1-8 Shadow Programming Guide December 1999

Using Host Data

 ‘I’.

 or
e-
.
face
uncommitted changes. However, if the host RPC abended, ABRT will be used
to roll back any uncommitted DB2 changes.

n A host RPC can establish its own connection to DB2 using DSNALI.

This approach is not recommended. If a host application establishes its own
connection with DB2 using DSNALI, then the authorization ID that DB2 uses
to validate all host RPC requests to access/update data will be undefined.
This restriction can be removed by installing the Shadow Server modification
to the DSN3@ATH exit. The best approach is simply to let Shadow Server
provide the DSNALI open and close calls rather than incorporating these calls
into the host RPC application.

 IMS
Host RPCs can access and update IMS databases using the DBCTL interface. This
interface allows any number of host RPCs to concurrently and independently
access and update IMS databases, however, it does not provide access to IMS
message queues. Host RPCs that use DBCTL to communicate with IMS can use
all the IMS facilities that are available to CICS transactions. In other words, host
RPCs have the same IMS programming facilities available as transactions running
under CICS. Host RPCs use the same mechanism (DBCTL) to communicate with
IMS as do CICS transactions running under CICS Version 3 and later releases.

DBCTL is a feature of IMS Version 3 and later releases. The DBCTL API is
provided by either a separate DBCTL address space or by an IMS DB/DC system.
See the IMS general information manual (GC26-4275) for additional information
about installing and utilizing DBCTL. There are no special IMS generation or
run-time parameters required to use the DBCTL API.

The DBCTL feature of the Shadow Server address space is not enabled by default.
This feature must be enabled using the required product feature string letter,
The product feature string is processed during product initialization.

Writing a Host RPC

Using DBCTL API

Host RPCs using the IMS interface can be written in any high-level language
assembler. In each case, the application programmer should call the languag
specific interface routine. Host IMS RPCs are not passed a PCB list on entry
Instead they must schedule a PSB by calling the language-specific IMS inter
function. This call (the function code is ‘PCB’) returns a PCB list to the caller.

Note:
A slightly different link-edit procedure must be used for host RPCs
versus DSNALI command applications. Host RPCs must be linked
with DSNALI and DSNHLI2 rather than DSNELI. The correct
approach is to include only DSNALI in the link-edit step.
December 1999 Shadow Programming Guide 1-9

Shadow RPC Direct
The PCB list can then be used for subsequent IMS calls. Standard IMS function
codes (‘GN‘ , ‘DELT’ , ‘ISRT’ , ‘REPL’) can be used to get segments, delete
segments, insert segments, and replace IMS segments.

The host RPC can either commit any changes it makes or terminate. If a host RPC
neither commits changes nor terminates the PSB, Shadow Server will
automatically perform these tasks after the host RPC terminates. Shadow Server
will commit all changes made up to that point, if the RPC terminates normally.
Shadow Server will roll back any uncommitted changes, if the RPC abends.

VSAM

Host RPCs running under Shadow Server can use VSAM data sets. Each host
RPC must start by opening whatever data sets it needs. The DD statements for
these data sets should be incorporated into the Shadow Server address space
started task JCL. In the test environment, the VSAM data sets should be allocated
by the TSO user running a test copy of the Shadow Server address space.

Host RPCs can use normal high-level language facilities to access and update
VSAM records. Standard VSAM data sharing facilities can be used to coordinate
updates to VSAM files.

RPC Debug Support
Version 4.5 of Shadow Direct provides access to a GUI, source level debugger for
RPC. This feature is called the Visual Age TM Remote Debugger (VAD) and is a
product of IBM. It allows each programmer developing RPCs or stored
procedures to debug them on his or her own personal computer.

A major benefit of this debugger is that a programmer no longer has to run a
private copy of Shadow Server under TSO. In addition, this debugger requires no
changes to the invoking ODBC application or to Shadow Direct on the host.
Shadow Direct automatically invokes VAD on the same PC that is running the
ODBC application.

For more information about the VAD debugger, check the IBM website at http://
www-4.ibm.com/software/ad/c390/pt/.

To use the debugger:

1. Make sure that VAD and Shadow Direct, Version 4.5, have both been properly
installed on your system. For more information about this step, check the IBM
installation documentation for VAD, and the Shadow Installation Guide for
Shadow Direct.

2. On the mainframe, compile and link the Stored Procedure written in C, C++,
Cobol, or PL/I with the TEST option.
1-10 Shadow Programming Guide December 1999

RPC Debug Support

it

d
3. Copy the load module to the standard RPC load module library, which will be
a STEPLIB or RPCLIB in the started task environment. If the Shadow Server
is invoked using TSO, the load module can also be stored in the ISPLLIB.

4. Use the ODBC Administrator to set the Host Debug option to the correct
language type. To get to this screen, perform the following steps (for more
detailed information about these steps, refer to the NEON Client User’s
Guide, Chapter 2, “Installing NEON Client”):

a. Select the Neon_Client_Debug_Sample32 option from the User Data
Sources screen.

b. Click the <ADVANCED> button at the bottom of the Neon Client 32-b
screen.

c. Click the <MORE> button at the bottom of the NEON Client Advance
Information Screen. This will take you to the NEON Optional Client
Information Screen, as shown below:

Figure 1–2. NEON Client Optional Information Screen

Note:
The output listing from the compile step must be stored in a file
and not routed to SYSOUT.
December 1999 Shadow Programming Guide 1-11

Shadow RPC Direct

 or
d. Select “Host Debugging Values” as the optional setting.

e. Select the appropriate keyword value. Options include:

n COBOL
n C
n C++
n PL/I

5. Start the VAD Remote Debugger Daemon from the Windows Start menu,
by clicking on an icon. You should see the following screen:

Figure 1–3. Daemon Startup Screen

6. Start the ODBC application that invokes the host RPC. The following figure
shows an example of the GUI Debug screen. This screen will appear as soon
as the ODBC appplication executes the SQL CALLS for the RPC:
1-12 Shadow Programming Guide December 1999

RPC Debug Support

Figure 1–4. ODBC Test Debug Screen

7. Use the VAD as needed to debug the host program. Figure 1–5 and Figure 1–
6 show examples of what the VAD screens look like when they are in the
process of debugging.
December 1999 Shadow Programming Guide 1-13

Shadow RPC Direct
Figure 1–5.

Figure 1–6.
1-14 Shadow Programming Guide December 1999

RPC Debug Support
The following information and restrictions apply to the VAD debugger:

n VAD can only be used to debug Shadow RPCs or Stored Procedure. It does
not support DB2 Stored Procedures at this time, however, it will in the future.

n VAD can only be used with OE TCP/IP and Interlink TCP/IP as long as the
interlink stack is being ussed via OE sockets. It does not, and never will,
support LU6.2 and IUCV TCP/IP.

n VAD can only be used with LE/370, version 1.8 and later.

n VAD supports only OS/390 2.4 and later.

n VAD can be used with both started task and TSO versions of the Shadow
Server. The started task version eliminates the need to configure a separate
copy of Shadow Server (with its own port number) for each RPC developer,
and the TSO version provides a separate copy of Shadow Server to each RPC
developer.

n The current version of VAD gets a GPF in the termination phase. The GPF
occurs after host RPC has completed execution, and has no harmful effect.
December 1999 Shadow Programming Guide 1-15

Shadow RPC Direct
Client API Function Definitions
The Shadow RPC Direct API calls are used by Shadow RPC Direct applications
to establish a connection to the host and to transmit data to and from the host. All
these functions use the Pascal calling convention. None of these functions take a
variable number of arguments.

The following functions are available:

n SCAsciiToEbcdic: Converts a string from ASCII to EBCDIC
n SCEbcdicToAscii: Converts a string from EBCDIC to ASCII
n SCReadBuffer: Receives a data buffer from the host
n SCWriteBuffer: Sends a data buffer to the host
n SCWriteReadBuffer: Writes a buffer to the host and receives data buffer
1-16 Shadow Programming Guide December 1999

Client API Function Definitions
 SCAsciiToEbcdic
IMS DirectSCAsciiToEbcdic converts character data from ASCII to RPC Direct
EBCDIC. This function is normally used to convert data areas that are sent to the
host.

Syntax

RETODBC SCAsciiToEbcdic(hdbc, rgbAscii, rgbEbcdic, cbValue)

Arguments

The SCAsciiToEbcdic function accepts the following arguments:

Returns

n SQL_SUCCESS
n SQL_SUCCESS_WITH_INFO
n SQL_ERROR
n SQL_INVALID_HANDLE

Diagnostics

When SCAsciiToEbcdic returns SQL_ERROR or
SQL_SUCCESS_WITH_INFO, an associated SQLSTATE value may be obtained
by calling SQLError. The following table lists the SQLSTATE values commonly
returned by SCAsciiToEbcdic and explains each one in the context of this
function. The return code associated with each SQLSTATE value is
SQL_ERROR, unless noted otherwise.

Type Argument Use Description

HDBC hdbc Input Connection handle.

PTR rgbAscii Input Pointer to storage area containing ASCII character data to be converted.

PTR rgbEbcdic Output Pointer to output area where converted EBCDIC characters should be stored.

SDWORD cbValue Input Number of bytes to convert from ASCII to EBCDIC.

SQLSTATE Error Description

01000 General warning Driver-specific informational message (function returns
SQL_SUCCESS_WITH_INFO).

08003 Connection not open Connection specified by hdbc argument was not open. Connection
processes must be completed successfully (and the connection must be
open) for the driver to perform this function.

S1009 Invalid argument value Either rgbAscii or rgbEbcdic pointer was null.

S1090 Invalid string or buffer length Value specified for cbValue was less than zero.
December 1999 Shadow Programming Guide 1-17

Shadow RPC Direct

Comments

This function is used to convert a character string from ASCII to EBCDIC. The
character string can be converted in place.

Code Example

None at this time.

Related Functions

For information about converting from EBCDIC to ASCII see the
“SCEbcdicToAscii,” section on page 1-19.

Note:
In the Visual Basic environment, fixed length character strings cannot be
converted in place. Visual Basic imposes this restriction because it
copies each of the character string arguments of this function into
temporary data areas and then restores temporary data areas in an
unpredictable order. However, variable length Visual Basic character
strings may be converted in place using this function.
1-18 Shadow Programming Guide December 1999

Client API Function Definitions
SCEbcdicToAscii

IMS Direct/RPC Direct

SCEbcdicToAscii converts character data from EBCDIC to ASCII. This function
is normally used to convert data areas that are received from the host.

Syntax
RETODBC SCEbcdicToAscii(hdbc, rgbEbcdic, rgbAscii, cbValue)

Arguments

The SCEbcdicToAscii function accepts the following arguments:

Returns

n SQL_SUCCESS
n SQL_SUCCESS_WITH_INFO
n SQL_ERROR
n SQL_INVALID HANDLE

Diagnostics

When SCEbcdicToAscii returns SQL_ERROR or
SQL_SUCCESS_WITH_INFO, an associated SQLSTATE value may be obtained
by calling SQLError. The following table lists the SQLSTATE values commonly
returned by SCEbcdicToAscii and explains each one in the context of this
function. The return code associated with each SQLSTATE value is
SQL_ERROR, unless noted otherwise.

Type Argument Use Description

HDBC hdbc Input Connection handle.

PTR rgbEbcdic Input Pointer to storage area containing EBCDIC character data to be converted.

PTR rgbAscii Output Pointer to output area where converted ASCII characters should be stored.

SDWORD cbValue Input Number of bytes to convert from EBCDIC to ASCII.

SQLSTATE Error Description

01000 General warning Driver-specific informational message. (Function returns
SQL_SUCCESS_WITH_INFO.)

08003 Connection not open Connection specified by hdbc argument was not open. Connection
processes must be completed successfully (and the connection must be
open) for driver to perform this function.

S1009 Invalid argument value Either rgbAscii or rgbEbcdic pointer was null.

S1090 Invalid string or buffer length Value specified for cbValue was less than zero.
December 1999 Shadow Programming Guide 1-19

Shadow RPC Direct

Comments

This function is used to convert a character string from EBCDIC to ASCII. The
character string can be converted in place.

Code Example

None at this time.

Related Functions

For information about converting from ASCII to EBCDIC see the
“SCAsciiToEbcdic,” section on page 1-17.

Note:
In the Visual Basic environment, fixed length character strings cannot be
converted in place. Visual Basic imposes this restriction because it
copies each of the character string arguments of this function into
temporary data areas and then restores temporary data areas in an
unpredictable order. However, variable length Visual Basic character
strings can be converted in place using this function
1-20 Shadow Programming Guide December 1999

Client API Function Definitions
SCReadBuffer

RPC Direct

SCReadBuffer reads a complete data buffer from the host. Execution is suspended
until the data buffer is available or an error is detected.

Syntax

RETODBC SCReadBuffer(hdbc, rgbValue, cbValueMax, pcbValue)

Arguments

The SCReadBuffer function accepts the following arguments:

Returns

n SQL_SUCCESS
n SQL_SUCCESS_WITH_INFO
n SQL_ERROR
n SQL_INVALID_HANDLE

Diagnostics

When SCReadBuffer returns SQL_ERROR or SQL_SUCCESS_WITH_INFO,
an associated SQLSTATE value may be obtained by calling SQLError. The
following table lists the SQLSTATE values commonly returned by SCReadBuffer
and explains each one in the context of this function. The return code associated
with each SQLSTATE value is SQL_ERROR, unless noted otherwise.

Type Argument Use Description

HDBC hdbc Input Connection handle.

PTR rgbValue Output Buffer for input data. Part or all of this buffer may be filled
with data obtained from host.

SDWORD cbValueMax Input Maximum length of rgbValue buffer.

SDWORD FAR * pcbValue Output Total number of bytes read into buffer pointed to by rgbValue.

SQLSTATE Error Description

01000 General warning Driver-specific informational message. (Function returns
SQL_SUCCESS_WITH_INFO.)

08003 Connection not open Connection specified by hdbc argument was not open.
Connection process must be completed successfully (and
connection must be open) for driver to perform this function.

08S01 Communication link failure Communication link between driver and data source failed
before or while the data buffer was being read from the host.
December 1999 Shadow Programming Guide 1-21

Shadow RPC Direct
Comments

This function is used to read a buffer of data from the host. It will suspend
execution until either a data buffer is received from the error or a communication
error is detected. The size of the data buffer can range from zero to cbValueMax.
Zero length buffers are supported and can be transmitted both to and from
the host.

Code Example

None at this time.

Related Functions

22003 Buffer size error Buffer transmitted from host was larger than data area
provided to receive buffer. Entire host buffer was discarded.

S1009 Invalid argument value Value specified for argument rgbValue was null.

S1090 Invalid string or buffer length Value specified for argument cbvalueMax was less than zero.

Note:
The buffer data area provided by the caller must be large enough to
contain the entire buffer transmitted from the host. If the data area is
not large enough, the entire buffer will be discarded and an error will
be reported to the calling program.

For information about See

Converting data from ASCII to EBCDIC SCAsciiToEbcdic

Converting data from EBCDIC to ASCII SCEbcdicToAscii

Sending a buffer to the host SCWriteBuffer

Writing a buffer to a host and receiving a reply SCWriteReadBuffer

SQLSTATE Error Description
1-22 Shadow Programming Guide December 1999

Client API Function Definitions
SCWriteBuffer

RPC Direct

SCWriteBuffer sends a buffer of data from the client application to the host RPC
program. Execution of the client application program is suspended until the data is
copied from the buffer provided by the caller.

Syntax
RETODBC SCWriteBuffer(hdbc, rgbValue, cbValue)

Arguments

The SCWriteBuffer function accepts the following arguments:

Returns

n SQL_SUCCESS
n SQL_SUCCESS_WITH_INFO
n SQL_ERROR
n SQL_INVALID_HANDLE

Diagnostics

When SCWriteBuffer returns SQL_ERROR or SQL_SUCCESS_WITH_INFO,
an associated SQLSTATE value may be obtained by calling SQLError. The
following table lists the SQLSTATE values commonly returned by SCWriteBuffer
and explains each one in the context of this function. The return code associated
with each SQLSTATE value is SQL_ERROR, unless noted otherwise.

Type Argument Use Description

HDBC hdbc Input Connection handle.

PTR rgbValue Input rgbValue argument contains a pointer to data buffer that should be
transmitted to host. This buffer is not null terminated.

SDWORD cbValue Input cbValue argument contains number of bytes to be transmitted to host.
This value must be greater than or equal to zero.

SQLSTATE Error Description

01000 General warning Driver-specific informational message. (Function returns
SQL_SUCCESS_WITH_INFO.)

08003 Connection not open Connection specified by hdbc argument was not open.
Connection processes must be completed successfully (and
connection must be open) for driver to perform this function.
December 1999 Shadow Programming Guide 1-23

Shadow RPC Direct
Comments

This function is used to write a buffer of data from the client to the host. The
length of the buffer can range from zero up to approximately 30,000 bytes.
Control returns to the invoking application as soon as the data in the application
buffer is copied into the communication buffers. There is no guarantee that when
this function returns, the data has actually been transmitted to the host, nor is there
any way of suspending execution until the data has been successfully transmitted.

This function will NOT turn the line around after the write operation is completed.
This means that the host RPC will not be able to send a reply to the client. The
SCWriteReadBuffer function should be used if the host RPC is expected to send a
response buffer.

Code Example

None at this time.

Related Functions

08S01 Communication Link Failure Communication link between driver and data source to which
driver was connected failed before function completed
processing.

S1009 Invalid argument value rgbValue argument was a null pointer.

S1090 Invalid string or buffer length Value specified for argument cbValue was less than zero.

Note:
 This is a consideration only for LU 6.2 client/server sessions.

For information about See

Writing a buffer to a host and receiving a reply SCWriteReadBuffer

Reading a buffer of data from the host SCReadBuffer

Converting data from ASCII to EBCDIC SCAsciiToEbcdic

Converting data from EBCDIC to ASCII SCEbcdicToAscii

SQLSTATE Error Description
1-24 Shadow Programming Guide December 1999

Client API Function Definitions
SCWriteReadBuffer

RPC Direct

SCWriteReadBuffer writes a buffer of data to the host and receives a reply buffer
from the host. Execution of the client application program is suspended until a
buffer is received from the host, or a communication error occurs.

Syntax
RETODBC SCWriteReadBuffer (hdbc, rgbValue, cbValue, cbValueMax,
pcbValue)

Arguments

The SCWriteReadBuffer function accepts the following arguments:

Returns

n SQL_SUCCESS
n SQL_SUCCESS_WITH_INFO,
n SQL_ERROR
n SQL_INVALID_HANDLE.

Diagnostics

When SCWriteReadBuffer returns SQL_ERROR or
SQL_SUCCESS_WITH_INFO, an associated SQLSTATE value may be obtained
by calling SQLError. The following table lists the SQLSTATE values commonly
returned by SCWriteReadBuffer and explains each one in the context of this
function. The return code associated with each SQLSTATE value is
SQL_ERROR, unless noted otherwise.

Type Argument Use Description

HDBC hdbc Input Connection handle.

PTR rgbValue I/O rgbValue argument points to the data buffer used to both send
and receive data. Buffer must initially contain data that will be
transmitted to host. This buffer is not null-terminated. Upon
successful completion of this function, buffer will contain data
received from host.

SDWORD cbValue Input cbValue argument contains number of bytes of data to send to
host.

SDWORD cbValueMax Input Maximum length of rgbValue buffer.

SDWORD FAR * pcbValue Output Total number of bytes read into buffer pointed to by the
rgbValue argument.
December 1999 Shadow Programming Guide 1-25

Shadow RPC Direct

e

host
Comments

This function is used to write a data buffer to the host and then receive a reply.
Control is not returned to the invoking application until either the reply is received
or a communication error is detected. This function is normally used to send
“transactions” to the host and then receive a reply. If the data area is not larg
enough, the entire buffer will be discarded and an error will be reported to the
calling program.

This function will turn the line around after the operation is completed. This
means that the host PC will be able to send a reply to the client. The
SCWriteBuffer function should be used if multiple buffers must be sent to the
without an intervening read.

Code Example

None at this time.

Related Functions

SQLSTATE Error Description

01000 General warning Driver-specific informational message. (Function returns
SQL_SUCCESS_WITH_INFO.)

08003 Connection not open Connection specified by hdbc argument was not open. Connection
processes must be completed successfully (and connection must be
open) for driver to perform this function.

08S01 Communication link failure Communication link between driver and data source to which driver
was connected failed before function completed processing.

22003 Numeric value out of range Buffer transmitted from host was larger than data area provided to
receive buffer. Entire host buffer was discarded.

S1009 Invalid argument value rgbValue argument was a null pointer.

S1090 Invalid string or buffer length Value specified for argument cbValue was less than zero.

Note:
This is a consideration only for LU 6.2 client/server sessions.

For information about See

Writing a buffer to a host SCWriteBuffer

Reading a buffer of data from the host SCReadBuffer

Converting data from ASCII to EBCDIC SCAsciiToEbcdic

Converting data from EBCDIC to ASCII SCEbcdicToAscii
1-26 Shadow Programming Guide December 1999

CHAPTER 2:
ODBC CALL RPCs

This chapter covers programming information for ODBC CALL RPCs, which can be used to access
most types of data residing on the mainframe.The information covered here includes ODBC CALL
RPC examples, sample ODBC CALL RPCs for VSAM, and other sample RPCs.

This chapter applies to Shadow Direct and Shadow OS/390 Web Server.

Introduction
ODBC CALL RPCs can be used to access almost any type of data residing on the
mainframe in the same manner RPC Direct RPCs can. This includes DB2, IMS,
VSAM, PDSs, Flat Files, ADABAS, and M204. However, ODBC CALL RPCs
have a major advantage over RPC Direct RPCs:

n ODBC CALL RPCs do not require any additional coding from the client
application.

n Relational ODBC result sets are returned.
n Multiple RPCs can be executed from the same connection.
n ODBC CALL RPCs execute and end, unlike RPC Direct RPCs which remain

loaded for the life of the connection or are terminated.

ODBC CALL RPCs can be executed with a CALL statement from any ODBC
compliant client application, such as Visual Basic, Powerbuilder, MS-Access, etc.
Since they are written using APIs provided on the host, they can return an ODBC
result set to the client application. With ODBC CALL RPCs, the remote programs
execute and end similar to the way a normal DB2 query executes and ends. The
results of the RPC are accessed in the same manner as the results of a DB2 query.

ODBC CALL RPC Examples
All the source to the sample ODBC CALL RPCs is located in the
NEON.SV040100.SAMP dataset on the MVS host. Compiled copies of these
samples are also provided in the NEON.SV040100.RPCLIB dataset.

The Visual Basic application, VBDEMO, which is shipped with the client ODBC
drivers, can be used to execute the sample ODBC CALL RPCs. In order to invoke
the RPC, use the CALL statement preceding the RPC. Parameters to the RPCs are
defined by placing the parameters with parenthesis. Each parameter is separated
by a comma, literals are placed in quotes, and numeric data is left alone.

Example:

CALL RPCNAME(‘This is a literal’,’The next parameter is a
number’,100)
December 1999 Shadow Programming Guide 2-1

ODBC CALL RPCs

s

nd
ader
he
tion
et:
Sample ODBC CALL RPC for VSAM
NEON.SV040100.SAMP(SDCOVSP) is a sample COBOL program that returns
records from a VSAM dataset. This program can return all rows of the VSAM
dataset or only the rows specified by an optional parameter.

Use the following steps to set up the sample application:

1. Allocate the sample VSAM cluster and populate it with sample data. Job
DEFSTAFF in NEON.SV040100.CNTL will allocate the VSAM cluster and
repro the sample data into the dataset.

2. Uncomment the SDBVS01 DDNAME in the main SDBB started task PROC.
Then update the DSNAME with the fully qualified name of the VSAM
dataset allocated in step 1, and restart Shadow Server. You can avoid
allocating the VSAM dataset within the SDBB started task by using dynamic
allocation within your RPC application.

3. The sample SDCOVSP program should already be compiled and linked and
placed in the NEON.SV040100.RPCLIB dataset. If necessary, the sample
program can be recompiled and re-linked using the source code provided in
NEON.SV040100.SAMP.

To run the sample, you can use any ODBC-compliant application on your client
workstation to issue a CALL program_name. The client application must have
the ability to run a user-defined SQL script, such as MS-Query, Visual Basic, etc.
The VBDEMO application that is shipped with Shadow Direct can be used for
this.

The sample RPC to VSAM is a prime example of how to use Shadow Direct’
unique ODBC CALL RPC approach for developing your client-server
applications. The sample SDCOVSP RPC will:

n Read the VSAM dataset.
n Place the output in a relational ODBC result set.
n Return the results to the calling client application.

There are six ODBC calls used in this sample for this purpose. These calls a
others have all been simplified for the application developer by a common he
file that should be included in your RPC applications. These files provide all t
definitions needed for support of the Host APIs, and also contain documenta
for each API. The following header files are included in the SDB.SAMP datas

n SBCPHD For COBOL
n SCCPHD for C
n SPCPHD for PL/1
2-2 Shadow Programming Guide December 1999

Sample ODBC CALL RPC for VSAM
The following procedure division shows how to emulate ODBC calls in a host
RPC, using the program SDCOVSP as an example (for detailed information about
each parameter, please see the comments in the Header files):

1. CALL ’SDCPGI’ USING CONNECTION-HANDLE SQL-USER-NAME SQL-
USERID SQL-USERID-LEN SQL-USERID-ACTUAL-LEN.

SDCPGI or SQLGETINFO can be used to return information from Shadow
Server about the current environment. Examples of this information include
Userid of the person calling the RPC, the DB2 subsystem being accessed, etc.
For a complete list of possible values, refer to the Header file in the
SDB.SAMP dataset.

n SQL-USER-NAME is the actual information requested.
n SQL-USERID is the pointer to storage for the information.
n SQL-USERID-LEN is the maximum length of the requested data.
n SQL-USERID-ACTUAL-LEN is the actual length of the returned

information.

2. CALL ’SDCPNP’ USING STATEMENT-HANDLE SQL-PARAM-
COUNT.

SDCPNP or SQLNUMPARAMS is used to return to the program the number of
parameters sent to the RPC. This number will be returned in SQL-PARAM-
COUNT.

3. CALL ’SDCPDP’ USING STATEMENT-HANDLE

SQL-PARAM-NUMBER

SQL-DATA-TYPE

SQL-PRECISION

SQL-SCALE

SQL-NULLABLE-TYPE

SQL-PARAM-TYPE

SQL-PARAM-ADDRESS

SQL-PARAM-LENGTH

SDCPDP or SQLDESCRIBEPARAM performs a describe parameter on behalf of
an ODBC CALL RPC. This call is used to obtain information about the
parameter passed from the client to the host. SDCPDP should be executed for
each parameter being passed to the RPC.

n SQL-PARAM-NUMBER should be set by the programmer to the parameter
number being requested.
December 1999 Shadow Programming Guide 2-3

ODBC CALL RPCs
n SQL-DATA-TYPE returns the datatype of the parameter, SQL-
VARCHAR, SQL-SMALLINIT, etc.

n SQL-PRECISION returns the precision of the parameter.

n SQL-SCALE returns the scale of the parameter, used mainly with decimal
values.

n SQL-NULLABLE-TYPE specifies whether or not the parameter is
nullable.

n SQL-PARAM-TYPE returns the type of parameter, which will mainly be
SQL-PARAM-INPUT.

n SQL-PARAM-ADDRESS returns the pointer in storage for the parameter.

n SQL-PARAM-LENGTH returns the actual length of the column. The
length will be the same as the precision except for variable length fields
(character and binary). For variable length fields, the length will be the
current length.

4. CALL ’SDCPBC’ USING STATEMENT-HANDLE

SQL-COLUMN-NUMBER

SQL-C-DEFAULT

SQL-SMALLINT

SQL-PRECISION

SQL-SCALE

SQL-NO-NULLS

ID-VALUE

SQL-COLUMN-LEN

SQL-COLUMN-NAME

SQL-COLUMN-NAME-LEN

SDCPBC or SQLBINDCOL performs a bind column on behalf of an ODBC call
RPC. This call must be executed for each column being returned to the client.
SQLBINDCOL assigns the storage and data type for a column in a result set.
The following values will should be set by the RPC to properly bind the
column:

n SQL-COLUMN-NUMBER is the number of the column in the result set.

n SQL-C-DEFAULT is the C data type column of the column data. This
value must be set to SQL_C_DEFAULT at this time. This means that the
C type must match the SQL type.
2-4 Shadow Programming Guide December 1999

Sample ODBC CALL RPC for VSAM

an

e

d

e

is
n SQL-SMALLINIT is the SQL data type of the column data.

n SQL-PRECISION is the precision of the data. This value is used
primarily with character and decimal data. If the value is an integer, it
should be set to “1”.

n SQL-SCALE is the scale of the data type, used primarily with decimal
data.

n SQL-NO-NULLS is the parameter specifying whether or not the data c
be nullable. This value will either be SQL-NO-NULLS or SQL-
NULLABLE.

n ID-VALUE is the actual value to be bound. If this value is a variable
field, the first two bytes must contain the length of the data.

n *SQL-COLUMN-LEN is used to determine if the data is NULL; should b
set to “1” if the data is not NULL.

n SQL-COLUMN-NAME is the name of the column.

n SQL-COLUMN-NAME-LEN is the precision of the name of the column.

5. CALL ’SDCPTH’ USING STATEMENT-HANDLE SQL-THROW-ROW.

SDCPTH or SQLTHROWROW sends a row from the RPC into the output buffer
created using the SQLBINDCOLUMN calls. This command is issued after a row
of data has been retrieved from the requested database. Calling SDCPTH with
a parameter of SQL-THROW-DONE signifies no more data is to be returned an
flushes the buffer, sending the results down to the client application.

Note:
When using RPCs to access DB2, if you want to return NULL data to th
client application, you will need to update the SQL-COLUMN-LEN field and
set it to SQL-NULL-DATA or -1. For every column that may contain NULL
data, a separate value should be used for SQL-COLUMN-LEN. When a row is
fetched from the database, the RPC needs to inspect whether the data
NULL. If it is NULL, the corresponding SQL-COLUMN-LEN value defined
in the SQLBINDCOL call must be set to SQL-NULL-DATA or -1.
December 1999 Shadow Programming Guide 2-5

ODBC CALL RPCs
6. CALL ’SDCPSE’ USING ENVIRONMENT-HANDLE

CONNECTION-HANDLE

STATEMENT-HANDLE

SQLSTATE-DATA-AREA

NATIVE-ERROR-CODE-AREA

ERROR-MESSAGE-AREA

FB256 ERROR-MSG-LENGTH-AREA

SDCPSE or SQLERROR is used to obtain error information that may have been
stored by a prior function call. Environment-Handle, Connection-
Handle and Statement-Handle are ignored since only one host RPC can
execute at a time.

n SQLSTATE-DATA-AREA must be set to at least 6 bytes to allow for the
return of the SQL-Code from this call.

n NATIVE-ERROR-CODE-AREA returns a value describing the error.

n ERROR-MESSAGE-AREA returns a pointer to storage for the error
message text. This will always be null-terminated.

n FB256 is the maximum length of the error message buffer; the
recommended setting is 256.

n ERROR-MSG-LENGTH-AREA returns the actual length of the error
message.

7. CALL ’SDCPRS’ USING CONNECTION-HANDLE TRACE-MESSAGE-AREA
SQL-NTS NATIVE-ERROR-CODE-AREA.

SDCPRS or SQLRETURNSTATUS returns the status to the client from an ODBC
call. The status data determines the return code from the SQLEXECDIRECT,
SQLPREPARE, or SQLEXECUTE function that started the RPC. The client
application can retrieve the status data (message and native code) by calling
SQLERROR. The Connection-Handle is ignored since only one host RPC
can execute at a time. The following parameters are required:

n ERROR-MSG-LENGTH-AREA returns the actual length of the error
message.

n TRACE-MESSAGE-AREA is the address of the message text.

n SQL-NTS is the length of the message text to be returned. This value can
be an actual length or SQL-NTS can be specified if the message is null-
terminated.

n NATIVE-ERROR-CODE-AREA is the Native Error code. If this value is
negative, the client return code will be SQL-ERROR. If this value is
2-6 Shadow Programming Guide December 1999

Other Sample RPCs
positive, the client return code will be SQL-SUCCESS-WITH-INFO.
This field cannot be zero.

Other Sample RPCs
Other sample RPC programs are available for use in the NEON.SV040100.SAMP
dataset. These RPC samples access various other types of databases using
COBOL, PL/1 and C. All use the same types of ODBC function calls as the
VSAM sample above, in addition to other function calls necessary to access a
desired database, e.g. IMS, M204. The following Cobol RPC samples are
provided; () indicates that the sample supports an optional parameter.

SDCOIM
Reads sample data from the IMS parts database using IMS/DBCTL.
The IMS PARTs database is provided by IBM during the IMS IVP
install.

SDCOIMAP
Uses IMS/APPC to access the IMS Parts database. The IMS PARTs
database is provided by IBM during the IMS IVP install.

SDCOM24P()
Uses IFAM calls to access the sample M204 database provided by
M204.

SDCODB()
A sample DB2 RPC that reads the Q.staff table provided by QMF.

SDCOCIEC
A sample RPC to access CICS using EXCI.

Writing RPCs that Access DB2
With DB2 RPCs, such as the sample SDCODB, special considerations must be
followed. Refer to the NEON.SV040100.CNTL dataset, member cob2db2, for the
Sample JCL to compile and link a Cobol for MVS RPC.

1. Since SDCODB uses static SQL, the program must first be run through the
DB2 precompiler to produce a DB2 DBRM.

2. The code is then compiled and linked. On the link step, DSNALI must be
linked into the RPC load module.

3. Since Shadow Server will manage opening the thread to DB2 before
connecting to the Shadow Server, either in the ODBC datasource definition or
in the connection string, the PLAN parameter should be set to the name of the
plan bound into DB2 for this RPC. Optionally multiple RPC DBRMs can be
placed into a single plan.
December 1999 Shadow Programming Guide 2-7

ODBC CALL RPCs
4. In the datasource, Static SQL (CD) should be selected or set to YES in the
connection string.

5. Under the Advanced/More option of the datasource definition, Always
Convert Dynamic SQL (ALCD) should be set to NO. If it is not, the Shadow
ODBC driver will attempt to convert ALL SQL sent through the driver to
Static. Although all the SQL in the RPC will run statically, the initial CALL
statement for the RPC is run dynamically. ALCD=YES can also be set in the
connection string of the application.

6. Customer-written PL/I programs must NOT use the FETCH, CALL, or
RELEASE statements if SSL is used for encryption of session data. This is
due to Language Environment for VM & MVS restrictions.

Special Considerations for Cobol II
Cobol II was originally designed with CICS in mind. Under CICS, Cobol II
programs are kept serialized and thus can be Reentrant. If you wish to use Cobol
II with NEON Client, the following restrictions apply:

n All RPCs, including RPC Direct, must be compiled with NORENT, NORES
and NODYNAM.

n All RPCs, including RPC Direct, must also be linked with NORENT.

n All RPCs must be AMODE 31, regardless of language, if you are passing
parameters to the RPC.

n Programs must be linked with AMODE 31, since Shadow stores the
parameter in a 31-bit address.

These restrictions, with the exception of being AMODE 31, are not necessary if:

Note:
If the 4th character of the Plan Name is an R, the NEON Client
ODBC driver assumes that your application is using a plan where
the plan was bound using an Isolation value of Repeatable Read. If
you are not using Repeatable Read please ensure that your plan
name does NOT have an R in the 4th character of the plan name as
does the Shadow default plan SDBR1010. If it is any other character
than an R we assume the plan was bound with an Isolation Level of
Cursor Stability.

Note:
If you are running client code dated 11/19/97 or above, selecting
Static SQL and setting ALCD=NO is no longer required.
2-8 Shadow Programming Guide December 1999

Other Sample RPCs
n You are using the latest releases of the Cobol compiler, including Cobol for
MVS or Cobol/370 as it was recently called.

n You are using PLI, C or Assembler.

The following information (in italics) is from the IBM VS Cobol II Application
Programming Guide for MVS and VSE:

Multiple tasks within the same region are supported for RESIDENT run units
only under CICS. Multiple OS tasks within the same region are not supported
by COBOL in conjunction with the Library Management feature (RES
option). COBOL does not preclude multitasking if the run units are compiled
with NORES. However, any restrictions and conventions of multitasking
imposed by the operating system, access methods, and so on, must be
observed.

With Cobol II you have the following valid combinations of DYNAM,
RESIDENT, and RENT:

There are five valid combinations of the DYNAM, RESIDENT, and RENT
compiler options.

n NORENT and NORES and NODYNAM
Nonreentrant code, no COBOL Library Management feature, CALL
literal is static call.

n NORENT and RES and NODYNAM
Nonreentrant code, COBOL library routines called dynamically, CALL
literal is static call.

n NORENT and RES and DYNAM
Nonreentrant code, COBOL library routines and user subprograms all
called dynamically.

n RENT and RES and NODYNAM
Reentrant code, COBOL library routines called dynamically, CALL
literal is static call.

n RENT and RES and DYNAM
Reentrant code, COBOL library routines and user subprograms all called
dynamically.RENT or DYNAM causes the RESIDENT option to be forced
on.

As the IBM restrictions indicate, RES is only allowed running multiple tasks
under CICS. As a result, the only valid combination for NORES is NORENT,
NORES and NODYNAM. Attempting to run two simultaneous RPCs under
Shadow with DYNAM or RENT will result in an abend followed by a IGZ015I
Cobol error which states:

A recursive call was attempted to a program that was still active. COBOL
does not allow reinvocation of a program which has begun execution, but has
December 1999 Shadow Programming Guide 2-9

ODBC CALL RPCs
not yet terminated. For example, if program A calls program B, program B
cannot call program A. The job was canceled.

Running Cobol II RPCs can also cause storage problems. Since all RPCs must be
coded NORENT, NORES and NODYNAM, all external routines must be
statically linked in with the RPC, causing a separate RPC to be loaded for each
execution of the RPC. If the number of loaded Non-Reentrant RPCs exceeds the
amount of private storage available to Shadow Server, an S806 abend will occur.
In this case, one of the following actions must be chosen:

n Upgrade to Cobol for MVS.
n Set up multiple Shadow Servers and do work load balancing.
n Place the RPCs in the RPC Special Requirements parameter list.

The RPC Special Requirements parameter list is used to define the RPCs that
should be serialized. By placing the RPC name on this list, Shadow Server will
serialize all executions of these RPCs. This means that no more than one of these
RPCs will be allowed to execute at a time. All other execution requests for the
same RPC will be queued for execution. This function can cause significant
performance degradation for a high-transaction environment.

The Special Requirements parameter list can be specified in the Shadow
Initialization exec member, SDBxIN00, located in the dataset allocated to
SYSEXEC in the Shadow Server started task. The parameter is
RPCxxSPECIALREQ where xx is a number between 01 and 10. The syntax for
placing this in the Shadow Initialization exec is:

MODIFY PARM NAME (RPCxxSPECIALREQ)VALUE(rpcname)

You can also add these RPCs dynamically using option 5.2 from the Shadow
Server Primary Options menu (SDF ISPF panel), and selecting the the PRODRPC
group of parameters. However, all changes made in this manner are only
temporary until the next time the Shadow Server started task is recycled. To make
the changes permanent, they should be placed in the SDBxIN00 initialization
exec.

For more detailed information and restrictions about running Cobol II, please
refer to the IBM VS Cobol II Application Programming Guide for MVS and VSE.

Special Considerations for Cobol for MVS and
Other LE/370 Languages

With Cobol for MVS or other LE/370 languages, your RPCs will perform best if
you minimize the amount of storage that your application programs use to below
the 16 megabyte line. Whenever possible, design your RPCs to run above the 16
megabyte line. If you use the default LE/370 run-time options, you can only run a
small number of RPCs concurrently within the Shadow Server address space. For
programs that can run above the line, do the following:

n For COBOL programs, use the RES and DATA(31) compiler options.
2-10 Shadow Programming Guide December 1999

Other Sample RPCs
n Link-edit the program with the AMODE(31) and RMODE(ANY) attributes.

n Use the following LE/370 run-time options:

n HEAP(,,ANY) allocates program heap storage above the 16MB line.
n STACK(,,ANY) allocates program stack storage above the line.
n STORAGE(,,,4K) reduces the storage area below the 16MB line to 4K.
n BELOWHEAP(4K,,) reduces the below the 16MB heap storage to 4K.
n LIBSTACK(4K,,) reduces the library stack below the line to 4K.

n Compile and link-edit the RPC as reentrant.

n ALL31(ON) indicates that all programs contained in this stored procedure run
with AMODE(31) and RMODE(ANY).

JCL for compiling and linking a user CEEUOPT module can be found in member
CEEWUOPT of the NEON.SV040100.CNTL dataset. This JCL can be used to
override system installation defaults for Cobol for MVS. CEEWUOPT has been
modified to contain the current recommendations for running Cobol for MVS
application under Shadow Server. This module should be linked with any Cobol
for MVS programs in order for the options to be used. If not, the installation
defaults for Cobol for MVS will be used. Optionally, the recommended changes
can be made to CEEDOPT, thus making these options the default, and eliminating
the required link for every RPC with CEEUOPT.

To improve performance, all eligible LE/370 runtime modules should be moved
into the MLPA. The following information (in italics) was obtained from the IBM
Language Environment for MVS & VM Installation and Customization on MVS
Release 5 Document Number SC26-4817-06. Please reference this manual for up-
to-date information.

Placing Language Environment Modules in Shared
Storage
Placing routines in shared storage reduces overall system storage requirements.
Also, initiate/terminate (init/term) time is reduced for each application, since load
time decreases.

All of the re-entrant modules in CEE.V1R5M0.SCEERUN can be included in
shared storage on MVS. To include them:

n Authorize the data set CEE.V1R5M0.SCEERUN.

n Include CEE.V1R5M0.SCEERUN in the LNKLSTnn concatenation (optional
for MVS/ESA Version 4).

n Create an IEALPAnn member in SYS1.PARMLIB that lists the modules to be
made resident in the MLPA when the system is IPLed.

Several members are installed in CEE.V1R5M0.SCEESAMP for you to use as
examples in creating your IEALPAnn member. The table below lists the members,
their content, and the level of MVS/ESA they are to be used in. Note that the
December 1999 Shadow Programming Guide 2-11

ODBC CALL RPCs
format of the IEALPAnn member changed between MVS/SP Version 3 and MVS/
ESA SP Version 4. Use the format appropriate for the release level of MVS at your
site.

 If you want to load modules into the LPA under MVS/ESA Version 4, you do not
need to place CEE.V1R5M0.SCEERUN in the LNKLSTnn concatenation. For
earlier versions of MVS, you must do one of the following:

n Add CEE.V1R5M0.SCEERUN to the LNKLSTnn concatenation.

n Make the non-LPA modules available to steps that run Language Environment
applications by either:

n Copying the non-LPA modules to a data set that is in the LNKLSTnn
concatenation, or

n Copying the non-LPA modules to a data set that can be used as a STEPLIB or
a JOBLIB.

Using the entire CEE.V1R5M0.SCEERUN dataset as a STEPLIB defeats the
purpose of placing the modules in the LPA.

Shared Storage Considerations

Modules you copy into another (non-LPA) data set are not automatically updated
by SMP/E when you apply a service update. You must rerun your copy job after

Member Name Description MVS/ESA Level

CEEWMLPA All language Environment base modules eligible for the LPA except
callable service stubs.

Version 3

EDCWMLP1 All C/C++ component modules eligible for LPA. Version 3

IGZWMLP1 All language Environment COBOL component modules eligible for LPA
assuming modified, full COBPACKs (must reside below the 16M line).

Version 3

IGZWMLP2 All language Environment COBOL component modules eligible for LPA
assuming COBPACKs will reside above the 16M line (All routines with
RMODE (ANY)).

Version 3

IBMALLP1 All language Environment PL/I component modules eligible for LPA. Version 3

AFHWMLP1 All language Environment FORTRAN modules eligible for LPA. Version 3

CEEWMLP2 See description for CEEWMLPA. Version 4

EDCWMLP2 See description for EDCWMLP1. Version 4

IGZWMLP3 See description for IGZWMLP1. Version 4

IGZWMLP4 See description for IGZWMLP2. Version 4

IBMALLP2 See description for IBMALLP1. Version 4

AFHWMLP2 See description for AFHWMLP1. Version 4
2-12 Shadow Programming Guide December 1999

Other Sample RPCs
you apply service to Language Environment to make the updated modules
available in the LNKLSTnn data set or in the STEPLIB.

Examine the lists carefully to make sure that you are installing the correct module
for the national language support you have installed. Comments in CEEWMLPA,
CEEWMLP2, EDCWMLP1, EDCWMLP2, IBMALLP1, and IBMALLP2 identify
the mixed-case U.S. English modules and the Japanese modules. In IGZWMLP1,
IGZWMLP2, IGZWMLP3, and IGZWMLP4 remove the module name
IGZCMGEN if U.S. English mixed-case is not installed and add IGZCMGJA if
Japanese is installed and you want it to be in the LPA.

Refer to the following books for more information on including modules in the
LPA:

n MVS/ESA System Programming Library: Initialization and Tuning for MVS/
SP Version 3, GC28-1828

n MVS/ESA Initialization and Tuning Reference for MVS/ESA SP Version 4,
GC28-1635

n MVS/ESA Initialization and Tuning Reference for MVS/ESA SP Version 5,
SC28-1452

When all recommended modules have been placed into MLPA, the runtime
library from the Shadow Server started task SDBRPCLB concatenation can be
removed to take advantage of the modules in MLPA.

It is also recommended that the PRELOAD option be used to preload the
following LE runtime modules:

n CEEEV005
n IGZEINI
n IGZEPLF
n IGZEPCL
n CEEBINIT
n CEEPLPKA
n IGZCPAC

Using LE/370 languages for RPCs with Shadow Direct provides several important
advantages:

n Shadow Direct can exploit the LE/370 Library Routine Retention feature. If
the LIBKEEP parameter (in the PRODRPC parameter group) is set to YES,
Library Routine Retention support is enabled for LE/370 programs. Shadow
Direct will preload the required Library Retention support routines at
initialization time, and create the Library Routine Retention environment for
each transaction program TCB. Initial tests have shown a 50% decrease in
total CPU time for RPCs executed with the new Library Retention support
enabled. Benchmarks are easily performed by simply turning the LIBKEEP
parameter on and off. The following MODIFY PARM statement placed in the
Shadow Initialization exec, SDBxIN00 will turn on the Library Routine
Retention support:
December 1999 Shadow Programming Guide 2-13

ODBC CALL RPCs
MODIFY PARM NAME(LE370LIBKEEP)VALUE(YES)

n Shadow Direct provides an RPC Preload feature. In high transaction volume
environments, applications that utilize RPCs must repeatedly invoke
operating system services to bring programs into memory for execution. This
can cause severe performance degradation and overhead, to the point of
eliminating the performance benefit of RPCs.

Shadow Direct provides an extremely effective solution to this problem. The
PRELOAD option when set to YES will preload programs from a special
library designed to contain RPCs which have very sensitive response time
requirements. Shadow Direct will also bypass operating systems services
which are typically used to pass control to programs and give control to these
programs directly. This library should be allocated to the SDBRPCPL ddname
in the Shadow Server started task JCL.

The performance improvement and CPU time reduction when using the
Preload feature has shown to be substantial for high volume RPC transactions.
The Preload feature can also be used with PLI or C. The only requirement for
these RPCs is that they be compiled and linked with the REENTRANT
option. With the following parameter set, all RPCs allocated to the
SDBRPCPL ddname in the Shadow Server Started Task JCL will be
preloaded at Shadow Server startup time.

MODIFY PARM NAME(PRELOAD)VALUE(YES)

n Support for compiling programs with DYNAM option.

Using ODBC CALL RPCs in Visual Basic

The following sample Visual Basic code is an example of using Visual Basic with
DAO to return the results of an SQL query and returning the results from the
sample ODBC CALL RPC, SDCOVSP. This sample can be found on the NEON
Systems CD, in the sample/vb4/daotest directory.

Dim myDB As Database
Dim MyRs As Recordset
Dim MySQL As String
Dim MyRPC As String
Dim rc As String

Note:
Any changes made to these RPCs will require the Shadow
Server started task to be recycled in order to pick up the new
changes. Also, since each preloaded RPC will be stored in the
Shadow Server private area below the 16 meg line, the more
RPCs loaded will decrease the amount of private storage
available for Shadow Server’s use. Only highly used RPCs that
have sensitive response time requirements should be placed in
this library.
2-14 Shadow Programming Guide December 1999

Other Sample RPCs

er’s

Set myDB = Workspaces(0).OpenDatabase("", False, False, "ODBC")
MyRPC = “call sdcovsp”
MySQL = “Select * from Q.STAFF”

You can base the record set after a DB2 table, a query, or the
RPC.
‘SDCOVSP also returns the same column names as the Q.Staff table.

’Set MyRs = myDB.OpenRecordset(MyRPC, dbOpenDynaset,
dbSQLPassThrough)
’Set MyRs = myDB.OpenRecordset(MySQL, dbOpenDynaset,
dbSQLPassThrough)

‘Q.STAFFI is a DB2 table with a unique index on the id column.

Set MyRs = myDB.OpenRecordset(“Q.STAFFI”, dbOpenDynaset)

The below Text fields are text boxes on the main form
‘The record set is updatable if the record set is based on a table
with a unique index

rc = MyRs.Updatable
MyRs.MoveFirst
txtname.Text = MyRs(“name”)
Txtid.Text = MyRs(“id”)
txtjob.Text = MyRs(“job”)
txtdept.Text = MyRs(“dept”)

Using ODBC CALL RPCs in Powerbuilder

The following sample Powerbuilder script is an example of using Powerbuild
support for stored procedures to execute and return the results of the sample
ODBC CALL RPC, SDCOVSP. This code is supplied on the NEON System’s
CD-ROM, and can be found in directory samples/pb/test.pbl.

string ls_EmpName, ls_EmpJob
long ll_EmpID, ll_EmpDept, ll_EmpYears, ll_NewRow, ll_Row,
ll_InputNum
//
//Assign values to the ShadowDirect transaction
//
ShadowDirect = Create Transaction
ShadowDirect.DBMS = “ODBC”
ShadowDirect.AutoCommit = TRUE
ShadowDirect.database = “”
ShadowDirect.userid = “”
ShadowDirect.dbpass = “”
ShadowDirect.logid = “”
ShadowDirect.logpass = “”
ShadowDirect.servername = “DB2A”
ShadowDirect.dbparm = “ConnectString='DSN=Sample_Direct'”
// Connect to the ShadowDirect ODBC transaction object
CONNECT USING ShadowDirect;
//
//Reset the DataWindow
December 1999 Shadow Programming Guide 2-15

ODBC CALL RPCs
//
DW_1.Reset()
//
//Get the employee ID entered from the input box
//
ll_InputNum = Long(em_1.Text)
//
//When the input is zero, call the RPC without a parameter
//
IF ll_InputNum = 0 THEN
//
//Declare the RPC
//
Declare GetStaffInfoWOParam Procedure for SDCOVSP
using ShadowDirect;
//
//Call the RPC
//
Execute GetStaffInfoWOParam;
//
//Process the result set
//
CHOOSE CASE ShadowDirect.SQLCode
 CASE 0
DO WHILE ShadowDirect.SQLCode = 0
FETCH GetStaffInfoWOParam INTO :ll_EmpID
,:ls_EmpName
,:ll_EmpDept
,:ls_EmpJob
,:ll_EmpYears;
IF ShadowDirect.SQLCode = 0 THEN
ll_NewRow = Dw_1.InsertRow(0)
ll_Row = DW_1.ScrollToRow(ll_NewRow)
DW_1.SetItem(ll_NewRow,"empid" , ll_EmpID)
DW_1.SetItem(ll_NewRow,"empdept" , ll_EmpDept)
DW_1.SetItem(ll_NewRow,"empjob" , ls_EmpJob)
DW_1.SetItem(ll_NewRow,"empname" , ls_EmpName)
DW_1.SetItem(ll_NewRow,"empyears" , ll_EmpYears) END IF
LOOP
 CASE ELSE
 END CHOOSE
//
//Close the procedure
//
Close GetStaffInfoWOParam;
ELSE
//
//Declare the RPC with a parameter
//
Declare GetStaffInfo Procedure for SDCOVSP :ll_InputNum
using ShadowDirect;
//
//Call the RPC
//
2-16 Shadow Programming Guide December 1999

Other Sample RPCs
Execute GetStaffInfo;
//
//Process the result set
//
 CHOOSE CASE ShadowDirect.SQLCode
CASE 0
DO WHILE ShadowDirect.SQLCode = 0
FETCH GetStaffInfo INTO :ll_EmpID
, :ls_EmpName
, :ll_EmpDep
, :ls_EmpJob
, :ll_EmpYears;
IF ShadowDirect.SQLCode = 0 THEN
ll_NewRow = Dw_1.InsertRow(0)
ll_Row = DW_1.ScrollToRow(ll_NewRow)
DW_1.SetItem(ll_NewRow,"empid" , ll_EmpID)
DW_1.SetItem(ll_NewRow,"empdept" , ll_EmpDept)
DW_1.SetItem(ll_NewRow,"empjob" , ls_EmpJob)
DW_1.SetItem(ll_NewRow,"empname" , ls_EmpName)
DW_1.SetItem(ll_NewRow,"empyears" , ll_EmpYears) END IF
LOOP
 CASE ELSE
 END CHOOSE
//
//Close the procedure
//
Commit using ShadowDirect;
Close GetStaffInfo;
END IF
DISCONNECT USING ShadowDirect ;

Using ODBC CALL RPCs in /*EXECSQL

The following sample /*EXECSQL script is an example of using /*EXECSQL
support for stored procedures to execute and return the results of the sample
ODBC CALL RPC, SDCOVSP, which reads a VSAM file:

 /*WWW /NEON/IMSEXEC1

* SAMPLE APPLICATION THAT ILLUSTRATES THE USE OF AN EXECSQL *

* PROCESS SECTION. THE AUTOFORMAT KEYWORD CALLS FOR THE ROW *

* DATA TO BE FORMATTED INTO AN HTML TABLE. *

* *

/*EXECSQL MAXROWS(100) -
December 1999 Shadow Programming Guide 2-17

ODBC CALL RPCs
 SUBSYS(NONE) PLAN(NONE) -

 AUTOFORMAT(TITLE(’SAMPLE RPC CALL USING /*EXECSQL’) -

 BODY(’BGCOLOR="#FFCC33"’) -

)

CALL SDCOVSP(100)

Note:
This applies to Shadow OS/390 Web Server only.
2-18 Shadow Programming Guide December 1999

CHAPTER 3:
Running DB2 Stored Procedures

This chapter covers programming information for running DB2 stored procedures. It includes
information about the execution, preparation, and troubleshooting of the DB2 stored procedures.

This chapter applies to Shadow Direct and Shadow OS/390 Web Server.

Introduction
IBM stored procedures are fully supported by Shadow Direct and Shadow Web
Sever version 3.1 and above at maintenance level SVFX3270 and above. In order
to run DB2 stored procedures, you must be running DB2 version 4.1 or above. For
specific information on writing and using DB2 stored procedures, please refer to
the IBM DB2 Application Programming and SQL Guide.

The Syntax
The syntax for invoking an IBM stored procedure using the Neon Client ODBC
driver is

Call SYSPROC.procedure-name(parameter,parameter,….)

Where:

SYSPROC
is the prefix that identifies the stored procedures as IBM rather than a
NEON stored procedures (RPCs).

procedure-name
is the procedure name in the DB2 catalog.

parameter, parameter, ...
are the parameters for the DB2 stored procedures.

This syntax matches the IBM SQL stored procedure naming conventions.
December 1999 Shadow Programming Guide 3-1

Running DB2 Stored Procedures
DB2 Stored Procedures
Result Sets

Shadow Direct supports returning zero or one result set from an IBM stored
procedure. If the DB2 stored procedure returns more than one result set, the
remaining result sets are ignored (without any error messages or warnings). This
is the same restriction for NEON RPCs.

Retrieving Column Names

If you want to retrieve column names from any DB2 stored procedures that return
result sets, the DESCSTAT installation parameter must be set to YES. (DESCSTAT
is set in the DB2 DSNZPARM member at DB2 install time. DSNZPARM is created via
the DB2 installation job, DSNTIJUZ.).

You must bind the DBRM used by Shadow Direct (OPRXSQ) or Shadow OS/390
Web Server (SWRXSQ) with the package used by the DB2 stored procedure in
order for this procedure to be called successfully.

Samples

n Result Set. A sample job, DB2PROC1, has been provided in the
NEON.SV040100.CNTL dataset which shows how to properly compile and
bind a DB2 stored procedure that returns a result set. This sample processes
the example stored procedure, DB2PROC1, in the NEON.SV040100.SAMP
dataset.

n VBOutput Parameter. A sample job, DB2PROC2, has been provided in the
NEON.SV040100.CNTL dataset which shows how to properly compile and
bind a sample DB2 stored procedure that returns an output parameter. This
sample processes the example stored procedure, DB2PROC2, in the
NEON.SV030100.SAMP dataset.

n VB4.0 Program. A sample VB 4.0 program is provided in the Shadow/
samples/vb4/DB2Proc2 directory with the install of the Neon Client
32-bit driver version 3.02 or above. This sample shows how to properly use
the ODBC API to invoke DB2PROC2.

n VB5.0 Program. A sample VB 5.0 program is provided in the Shadow/
Samples/vb5/ADOSamp directory with the install of the NEON Client 32-
bit driver version 3.04 or above. This sample shows how to do the following
using ADO:

Note:
If the DESCSTAT DB2 installation parameter is not set to YES, then the
result set column names will always be zero length strings. Some IBM
documentation incorrectly implies that this is a BIND parameter. It is not a
BIND parameter and must be set as part of the installation of DB2.
3-2 Shadow Programming Guide December 1999

DB2 Stored Procedures

e

ages.

ny

n Call a DB2 stored procedure that returns a result set.
n Call a DB2 stored procedure that returns an output parameter.
n Call a Shadow RPC program.
n Create an updateable recordset using an SQL query.

Preparing a DB2 Stored Procedure
The following steps need to be completed to properly prepare a DB2 stored
procedure:

1. Update the DB2 SYSIBM.SYSPROCEDURES table with information regarding
the stored procedure. If any of this information changes, you must stop the
DB2 stored procedure and restart it using the DB2 –START and –STOP
PROCEDURE command. If you don’t, the changes will not take effect.

2. Run the DB2 Pre-Compiler against the DB2 stored procedure to create th
DBRM.

3. Compile the DB2 stored procedure.

4. Link-edit the DB2 stored procedure. The DB2 stored procedure must be
placed into a library in the STEPLIB of the DB2 stored procedure address
space.

5. Bind the DB2 stored procedure into a DB2 package.

6. Bind the DB2 plan with the DB2 packlist and the Neon DBRM.

The plan used for the connection to DB2 must have available the packages used
by all of the stored procedures. Since only packages are supported for stored
procedures, the plan must include a PKLIST that has all of the required pack

Coding Cursors in Return Result Sets
When coding DB2 stored procedures, the cursors used in stored procedures
should be declared WITH HOLD in addition to WITH RETURN. Otherwise, a
COMMIT (either issued by DB2 or by Shadow Server) will destroy the result
set(s). If WITH HOLD is not specified and if COMMIT_ON_RETURN is set to

Note:
If the 4th character of the Plan Name is an R, the NEON Client
ODBC driver assumes that your application is using a plan where
the plan was bound using an Isolation value of Repeatable Read. If
you are not using Repeatable Read please ensure that your plan
name does NOT have an R in the 4th character of the plan name as
does the Shadow default plan SDBR1010. If it is any other character
than an R we assume the plan was bound with an Isolation Level of
Cursor Stability.
December 1999 Shadow Programming Guide 3-3

Running DB2 Stored Procedures

d

tamp
e

ove).

wn
t be

not

e

e
“Y” in SYSIBM.SYSPROCEDURES, each stored procedure will not appear to
return any result sets, even if it actually does.

Here’s an example of an EXEC SQL statement in a DB2 stored procedure:

EXEC SQL
 DECLARE C1 CURSOR WITH HOLD WITH RETURN
 FOR SELECT ID, NAME, DEPT, JOB,
 YEARS, SALARY, COMM
 FROM Q.STAFF
END-EXEC.

Troubleshooting DB2 Stored Procedures
Be aware of the following situations that can arise when executing DB2 store
procedures:

n It is common to get a zero (0) SQLCODE from a stored procedure that
actually failed because it could not access the associated package (times
errors, etc.). The reason is that all of the DB2 operations attempted by th
stored procedure failed and there is no indication why.

n All stored procedures that actually create result sets exit with a +466
SQLCODE unless the result set is destroyed by a commit (as described ab
This is neither an error nor a warning. It just means the stored procedure
successfully created at least one result set.

n A -204 SQLCODE indicates that the DB2 stored procedure name is unkno
to DB2. Unlike NEON stored procedures, all IBM stored procedures mus
defined in the DB2 catalog.

n A -440 SQLCODE indicates the parameters passed by the application do
match the parameter definitions in the DB2 catalog.

n A -480 SQLCODE indicates that the stored procedure created one or mor
results without using WITH HOLD cursors and a subsequent COMMIT issued by
Shadow Server destroyed those result sets before the DESCRIBE PROCEDURE
was completed.

n A zero (0) SQLCODE can result from a DB2 stored procedure that is
designed to return one or more results sets for at least two reasons.

n All of the EXEC SQL statements in the stored procedure are failing becaus
the required package is not available.

n The cursors used to return the result sets were not declared with WITH HOLD,
and COMMIT_ON_RETURN is set to ’Y’.
3-4 Shadow Programming Guide December 1999

 only
ce is
CHAPTER 4:
Shadow IMS Direct

This chapter provides programming information for Shadow IMS Direct, a component of Shadow
Direct. Information includes the product architecture and installation, the progrmming of IMS
applications, client API function definitions, and Sample IMS batch message program code.

This chapter applies specifically to Shadow Direct.

Introduction
Shadow IMS Direct allows you to write client DL/I applications that:

n Access and update IMS databases.
n Access and update the IMS message queue.

These client applications can be written in almost any programming language,
including C, C++, Visual Basic (VB), and PowerScript.

This chapter assumes that the reader is generally familiar with IMS and
specifically familiar with DL/I programming.

 Product Architecture
Shadow IMS Direct allows two types of DL/I programs to be written:

n A Batch Message Program (BMP), providing single-threaded access to IMS
databases and the message queue.

n A DBCTL program, providing multi-threaded access to IMS databases.

The type of program that is chosen depends on the type of access needed.

Single-Threaded Access to IMS Databases and
the Message Queue

For accessing and updating the IMS message queue, a Batch Message Program
(BMP) should be run in Shadow Server’s address space. However, because
one copy of the BMP can run inside Shadow Server at a time, this IMS interfa
December 1999 Shadow Programming Guide 4-1

Shadow IMS Direct
limited to one client application at any given time. In other words, only single-
threaded access is possible.

This type of access is shown in Figure 4–1.

Figure 4–1. Shadow IMS Direct Product Architecture
(IMS Message Queue and Database Access)

The steps in this process are:

1. A session begins when IMS Direct is invoked by a Windows/OS/2/UNIX
client application and establishes a TCP/IP or LU 6.2 connection to Shadow
Server.

2. The Shadow Server address space receives the request from the Windows/OS/
2/UNIX client and attaches the IMS Batch Message Program (BMP). The
IMS BMP then waits for work from the client system.

Note:
If multiple requests are received to run a BMP, all subsequent requests
will be enqueued. As each BMP request is completed, a request will be
removed from the queue and processed. The queuing process is
automatic and invisible (save for possible delays) to client applications.

(1,3) IMS
Application

Program

(4,7)
Shadow IMS

Interface

Windows/OS/2/UNIX Client MVS Host

IMS
DB/DC or
DBCTL
Control
Region

(2)
Shadow Server
Address Space

(5)
TCP/IP TCP/IP or

LU 6.2

LU 6.2

TCP/IP or
VTAM

IMS
Databases

IMS Msg
Queue

(6)
IMS Direct

BMP
4-2 Shadow Programming Guide December 1999

Product Architecture

or

r

ck to

ch
n
he

base
3. On the client system, the user’s application program calls the IMS Direct
DL/I interface function (SCCToDLI*) to access and update IMS databases
the IMS message queue.

4. The Shadow IMS interface routine analyzes and checks each DL/I call.

5. Shadow IMS Direct compresses each requests and sends it via TCP/IP o
LU 6.2 to the BMP running inside the Shadow Server address space.

6. The BMP decompresses each request and invokes the actual IMS DL/I
interface. The BMP compresses the data returned by IMS and sends it ba
the client system.

7. The Shadow Direct SCCToDLI interface routine checks and analyzes ea
result and returns control to the application program. When the applicatio
program terminates, Shadow IMS Direct terminates the BMP running in t
Shadow Server address space and closes the communication link.

Multi-Threaded Access to IMS Databases
If you do not need to access IMS message queues, you can write client
applications that take advantage of Shadow IMS Direct’s multi-threaded data
access. These client applications architecturally resembles a CICS DL/I
transaction program.† They are therefore subject to the same restrictions as CICS
transactions that issue DL/I calls.

This type of access is illustrated in Figure 4–2.

* The SCCToDLI function is used with C and C++ language applications; the SCCToDLIPascal function is used
with Visual Basic and PowerBuilder.

† Shadow IMS Direct does not use any CICS facilities.
December 1999 Shadow Programming Guide 4-3

Shadow IMS Direct
Figure 4–2. Shadow IMS Direct Product Architecture
(Multi-Threaded Database Access)

The steps in the process are:

1. A session begins when Shadow IMS Direct is invoked by a Windows/OS/2/
UNIX client and establishes a TCP/IP or LU 6.2 connection to Shadow
Server.

2. The Shadow Server address space recognizes the request from the Windows/
OS/2/UNIX client and establishes a link to IMS.

3. An IMS application program requests IMS services using the DL/I interface
routine (SCCToDLI) to access and update IMS databases.

4. The Shadow DL/I interface routine checks and analyzes each request and
sends it via TCP/IP or LU 6.2 to the Shadow Server address space.

5. Shadow Server decompresses requests and invokes the actual IMS DL/I
interface. When IMS returns information, Shadow Server compresses it and
sends it back to the client system.

6. The Shadow IMS Direct SCCToDLI routine decompresses the returned
information and returns control to the application program.

(1) IMS
Application

Program

(3,6)
Shadow IMS

Interface

Windows/OS/2/UNIX Client MVS Host

IMS DB/DC or
DBCTL Control

Region

 Shadow Server
Address Space

(4)

TCP/IP or
LU 6.2

LU 6.2

TCP/IP or
VTAM

IMS
Databases

(2,5)
IMS Direct
4-4 Shadow Programming Guide December 1999

Installing Shadow IMS Direct

g

by

sing

at, in

sed

s
Installing Shadow IMS Direct

Configuring Shadow Server
Before any programs created using Shadow IMS Direct can be used to
communicate with the mainframe, several of Shadow Server’s parameters must be
properly set. This section will assume that Shadow Server is already installed and
running on the mainframe. If not, refer to the Shadow IMS section in the Shadow
Server User’s Guide. This guide is useful for maneuvering through the various
screens of the ISPF/SDB application.

By default, the Shadow Server address space does not allow either single-threaded
or multi-threaded access to IMS. Each of these facilities must be enabled using a
letter in the feature code string. IMS support is enabled using the feature letter
code ‘I’.

To specify which feature is to be used by Shadow Server, one of the followin
access parameters should be set to YES before the product is started:

n Single-threaded access.
n Multi-threaded access.

These parameters, which are explained in the following sections, can be set
entering them into the SDBxIN00 initialization REXX EXEC:DBCTL for multi-
threaded or BMP for single-threaded. After start time, they can be modified u
the SDB Parameters screen (SDB option 5.2) of the ISPF/SDB application.*

Setting Parameters for Single-Threaded Access
The following parameters are used for single-threaded access to IMS. Note th
almost all cases, the default values are appropriate. The parameters are:

BMPPARM
Specifies the IMS BMP Parameter string. This parameter is not u
at this time, but may be used at some point in the future.

BMPNAME
Enters the name of the IMS BMP Region Controller. The default i
DFSRRC00.

Note:
Only one single-threaded or multi-threaded IMS feature per Shaodw
Server can be enabled at a time.

* For information on the initialization EXEC, see Appendix A of the Shadow Server User’s Guide. For information
about the SDB Parameters window, see Chapter 3 of the Shadow Server User’s Guide. Some parameters must be
set before the Shadow Server address space is started; see the Shadow Server User’s Guide for details.
December 1999 Shadow Programming Guide 4-5

Shadow IMS Direct

0”.

t

le

e
IMSBMPTIMEOUT
Specifies the IMS BMP read time out value in units of seconds. This
value is used to control how long the IMS BMP will wait for
additional DL/I calls from the client application. If the time out limit
is reached, the communication session with the client application will
automatically be severed, and all IMS updates will automatically be
rolled back. This value is used to prevent a failing client application
or network problem from hanging the BMP in the main Shadow
Server address space indefinitely. There is no default value for this
field.

Setting Parameters for Multi-Threaded Access
The following parameters are used for multi-threaded access to IMS databases:

IMSID
Specifies the IMSID of the DBCTL region. This should be the four-
character name of the DBCTL region, which is the same as the
IMSID parameter in the DBCTL procedure. There is no default value
for this parameter. A DBCTL region is not required to use multi-
threaded access to IMS databases. All IMS DB/DC systems
automatically provide DBCTL functionality as of IMS/ESA Release
3.0 or later. Required.

IMSUSERID
Specifies the userid of the product region. This should be the eight
character name of the CCTL region. There is no default value.
Optional.

IMSFUNCLEVEL
Specifies the function level of the product region. This parameter
should indicate what DRA level the CCTL supports, so setting this
parameter to 1 means that the CCTL uses the DRA at the IMS 3.1
level. The default value is 1. Optional.

IMSSUFFIX
Specifies the suffix of the DFSPZP module. The default value is “0

IMSMAXTHREADS
Sets the maximum number of DRA thread TCBs to be available a
one time. The maximum number is 255. The default is “1”.

IMSMINTHREADS
Specifies the minimum number of DRA thread TCBs to be availab
at one time. The maximum number is 255. The default is “1”.

IMSWAITTIME
Sets the identity retry wait time. This parameter should indicate th
amount of time (in seconds) that the DRA should wait between
attempts to identify itself to CCTL during an INIT request. The
default is 60 seconds.
4-6 Shadow Programming Guide December 1999

Installing Shadow IMS Direct

nd

e

ght
L

Ls

f

ed

CTL,
 at
,

ICS
dy
IMSDDNAME
Specifies the DDname used to allocate RESLIB. This should be the
one to eight character DDname that will be used to dynamically
allocate the DBCTL RESLIB data set. The default DDname is
CCTLDD. This library must contain the DRA modules.

IMSDSNAME
Specifies the DSName of the DRA RESLIB. This should be the one
to forty-four character name of the DBCTL RESLIB data set. This
library must contain the DRA modules and must be MVS APF
authorized. The default data set name is ‘IMS.RESLIB’.

IMSFPBUFFERS
Indicates the number of Fast Path DEDB buffers to be allocated a
fixed per thread. The default is “0”.

IMSFPOVERFLOW
Indicates the number of the Fast Path DEDB overflow buffers to b
allocated per thread. The default is “0”.

IMSCLASS
Specifies the snap dump sysout output class.

IMSGROUPNAME
Specifies the Application Group Name. This should be a one to ei
character application group name to be used as part of the DBCT
security function.

IMSNBABUFFERS
Specifies the total number of Fast Path NBA buffers that the CCT
can use.

IMSTIMEOUT
Enters the DRA term time out value. This should be the amount o
time (in seconds) that a CCTL should wait for the successful
completion of a DRA TERM request. This value should be specifi
only if the CCTL is coded to use it. This value is returned to the
CCTL upon completion of an INIT request.

 In order to set up the connection between Shadow Server and IMS using DB
the IMS DBCTL interface will need to be active. DBCTL requires DBRC to be
the SHARECTL level; if it is not, DBCTL will not start. To initialize the RECON
specify (or let it default to) INIT.RECON SHARECTL. The example below
shows some sample JCL you can copy to initialize the RECON. If you have C
already connected to IMS and you are using DBCTL, this has probably alrea
been done.

Note:
 In almost all cases the default values are appropriate. The only
parameter that must be set is the IMSID.
December 1999 Shadow Programming Guide 4-7

Shadow IMS Direct
//INITREC JOB 1,PGMERID,CLASS=Q,MSGCLASS=A
//*
//RECON EXEC PGM=DSPURX00,REGION=1000K
//STEPLIB DD DSN=IMS.RESLIB,DISP=SHR
//DFSRESLB DD DSN=IMS.RESLIB,DISP=SHR
//SYSPRINT DD SYSOUT=*
//RECON1 DD DSN=IMS.RECON1,DISP=SHR
//RECON2 DD DSN=IMS.RECON2,DISP=SHR
//SYSIN DD *
INIT.RECON SSID(IMSA)
/*

For further information on how to setup DBCTL, refer to the CICS-IMS Database
Control Guide.

Programming IMS Applications
Using Shadow IMS Direct always involves two separate programs:

n A client application.
n An MVS transaction program.

The client initiates the MVS transaction program. After the transaction program
has been started, the client application sends requests to the host TP for execution.
All requests are executed synchronously. By default, all data areas sent from the
IMS application program to the host are converted, as needed. Most data areas are
simply translated from ASCII to EBCDIC before being sent to the host, and from
EBCDIC back to ASCII upon receipt from the host. PCBs are converted to host
format on a field by field basis. All conversions can be turned off by passing
negative length values to the Shadow IMS Direct interface function. The
SCAsciiToEbcdic and SCEbcdicToAscii functions are provided to Shadow IMS
Direct applications for any data conversions needed.

Client Applications
Shadow IMS Direct client applications are programs written in any one of several
languages that use the Shadow IMS Direct API to execute IMS DL/I requests on
the host. These applications are normally written in C or C++. However, these
applications can be written in any language that can call DLL entry points,
including Visual Basic (VB), PowerScript, Pascal, COBOL, etc. In practice,
almost any client application programming language can be used to invoke the
Shadow IMS Direct API.

The Shadow IMS Direct API is implemented as a DLL in the Windows, Windows
NT, and OS/2 environments. The Shadow IMS Direct API is implemented as a
shared library object in those UNIX environments (SunOS, etc.) that support
shared libraries. In other UNIX environments, the API is implemented as an
archive file.

Shadow IMS Direct applications must be linked using one of the two import
libraries supplied with Shadow IMS Direct:
4-8 Shadow Programming Guide December 1999

Programming IMS Applications
SCODBC.LIB, which is used with SCODBC.DLL
SCODBCTS.LIB, used with SCODBCTS.DLL

The SCODBCTS.DLL contains numerous diagnostic, debugging, and support tools.
As a result, this DLL should be used for all application development purposes.
However, since the SCODBCTS.DLL is substantially larger and slower than its
production counterpart (SCODBC.DLL), production applications that have been
fully debugged should be switched to SCODBC.DLL for improved performance.

 Shadow IMS Direct applications written in C or C++ must include the scpghd.h
header file. This header file declares all the Shadow IMS Direct structures and
API entry points, and must be included in all Shadow IMS Direct client
application functions. The header file can be used with both ANSI and non-ANSI
C compilers, however, ANSI C is the recommended choice for compiling and
building Shadow RPC client application programs. This header file will also work
in all client environments including Windows, OS/2, and UNIX.

Client API Function Definitions
The following functions are available with Shadow IMS Direct API calls:

n SCCToDLI: Execute DL/I calls from a C or C++ program.
n SCCToDLIPascal: Execute DL/I calls from a VB or PowerBuilder program.
n SCPackedToAscii: Convert packed decimal data to ASCII.
n SCAsciiToPacked: Convert an ASCII string to packed decimal data.

These API calls, which are detailed in the following sections, are used by Shadow
IMS Direct applications to establish a connection to the host and to execute DL/I
calls on the host.

Note:
ODBC.LIB must not be used with Shadow IMS Direct applications.
The architecture of Shadow IMS Direct does not support passing
calls from a Shadow IMS Direct application to the Shadow IMS
Direct DLL, via the Microsoft driver manager (ODBC.DLL).
December 1999 Shadow Programming Guide 4-9

Shadow IMS Direct
SCCToDLI

IMS Direct

SCCToDLI executes DL/I requests on behalf of a client application. Most DL/I
requests are passed to the host for processing, and the results are returned to the
client application program. However, in a few cases, DL/I requests are executed
locally. This function takes a variable number of arguments, and is intended to be
called by C or C++ application programs. It cannot be called by Visual Basic or
PowerScript applications.

Syntax
RETODBC SCCToDLI(hdbc, cpar, rgbIMSFunction, rgbValue1,
rgbValue2, rgbValue3, rgbValue4, rgbValue4, rgbValue5, rgbValue6,
rgbValue7, rgbValue8, rgbValue9, rgbValue10, rgbValue11,
rgbValue12, rgbValue13, rgbValue14, rgbValue15, rgbValue16,
rgbValue17, rgbValue18, rgbValue19, rgbValue20, rgbValue21,
rgbValue22, rgbValue23, rgbValue24, rgbValue25, rgbValue26,
rgbValue27, rgbValue28, rgbValue29, rgbValue30, rgbValue31,
rgbValue32, rgbValue33, rgbValue34)

Arguments

The SCCToDLI function accepts the following arguments:

Type Argument Use Description

HDBC hdbc Input Connection handle.

SDWORD cpar Input Number of parameters. This value includes the IMS function string,
but does not include the connection handle, the number of
parameters itself, or any length values provided for the other
arguments.

PTR rgbIMSFunction Input IMS function code. This field must point to a four-byte string
containing the IMS function code. The function code does not need
to be null-terminated, but must be in uppercase and padded with
trailing blanks, if needed

PTR rgbValue1-17 I/O Use of this argument depends on the IMS function code string and
the number of parameters. See the comments below for additional
information.

PTR rgbValue18-34 Input Use of this argument depends on the IMS function code string and
the number of parameters. See the comments below for additional
information.
4-10 Shadow Programming Guide December 1999

Programming IMS Applications
Returns

n SQL_SUCCESS
n SQL_SUCCESS_WITH_INFO
n SQL_ERROR
n SQL_INVALID_HANDLE
n A positive IMS status code stored in the least significant two bytes of the

return code.

Diagnostics

When SCCToDLI returns SQL_ERROR or SQL_SUCCESS_WITH_INFO, an
associated SQLSTATE value may be obtained by calling SQLError. The
following table lists the SQLSTATE values commonly returned by SCCToDLI
and explains each one in the context of this function. The return code associated
with each SQLSTATE value is SQL_ERROR, unless noted otherwise.

SQLSTATE Error Description

01000 General warning Driver-specific informational message. (Function returns
SQL_SUCCESS_WITH_INFO.)

08003 Connection not open Connection specified by hdbc argument was not open. Connection
processes must be completed successfully (and the connection must
be open) for driver to perform this function.

08S01 Communication link failure Communication link between driver and data source to which driver
was connected, failed before function completed processing.

S1000 General error Error occurred for which there was no specific SQLSTATE and for
which no implementation-specific SQLSTATE was defined. Error
message returned by SQLError in the argument szErrorMsg
describes error and its cause.

S1009 Invalid argument value The parameter count cpar was less than one.

The parameter count cpar exceeded the maximum value. The
maximum value is 18.

The rgbIMSFunction pointer was null.

One of the rgbValue arguments was null.

One of the argument length values was not set.

For the “PCB “ IMS Function code, the parameter count cpar was
not 3.

For either the “GPCB” or “PPCB” IMS function code values, the
cpar parameter count was not 4.

The IMS function code rgbIMSFunction did not contain a valid IMS
function code string.

The PCB length value passed was invalid.

An invalid PCB address was detected.
December 1999 Shadow Programming Guide 4-11

Shadow IMS Direct
Comments

The SCCToDLI function provides all IMS services to an IMS Direct client
application. This function can be used three ways

n To issue standard DL/I calls that get, replace, insert, and delete IMS segments.
n To obtain the PCB list and the number of PCBs on behalf of the caller.
n To access and update individual fields in a PCB. Different arguments are

passed for each use of this function.

The correct arguments for each use of this function are described below.

n All of the arguments passed to this function must be four bytes long.

n The SDWORD cast can be used to ensure integers are passed to this function
correctly.

n Some forms of this function (see below) take a PCB as the fourth argument
(rgbValue1). PCBs can be passed as either an address or a four-byte PCB
number. Visual Basic and PowerScript applications must pass a PCB number
value.

n The number of arguments passed to this function is variable. The actual
number will range from three to thirty-seven.

n Length values are required for all arguments except for the first three. The
length values always follow the data arguments. If, for example, cpar is two,
the cpar argument will be followed by two data areas and one length. If cpar
is three, the cpar argument will be followed by three data areas and two
lengths. The number of lengths will always be one less than the number of
data areas, because a length value is not provided for the rgbIMSFunction
argument.

Note:
In many cases, large data areas are passed to this function,
however, these data areas are passed using pointers that are
actually four bytes long. The practical significance of this
requirement is that all length and count values must be passed as
four-byte integers. Length and count values can be cast to four-
byte integers, if needed. The SDWORD cast can be used to
ensure integers are passed to this function correctly.

Note:
The actual number will always be equal to the cpar argument
value, multiplied by two, plus one. This relationship can be
explained as follows: a length parameter must be supplied for all
data arguments other than the IMS function code string pointed
to by rgbIMSFunction; in addition, the cpar argument does not
include itself and the connection handle.
4-12 Shadow Programming Guide December 1999

Programming IMS Applications

on

 This
l
ave

B “
PCB

sion

bility
n The SCCToDLI function can only be called by languages that support passing
a variable number of arguments. This means that this function cannot be
called by Visual Basic and PowerBuilder applications. Visual Basic and
PowerBuilder applications can, however, call the SCCToDLIPascal function
described below. A C or C++ program can use this function without
restriction.

n The return code from this function will either be an ODBC return code or an
IMS status code. The ODBC return codes are described above. IMS status
codes are two byte character strings stored in the return code variable. The
sample IMS applications show how these status codes can be tested.

Obtaining the PCB List Structure

This function can be used to obtain the PCB list from the Shadow IMS Direct
interface. The PCB list is a structure that contains the number of PCBs, a vector of
pointers to PCBs, and some additional information. The PCB list structure imst is
typedef’ed in the scpghd.h header file. The PCBs pointed to by the PCB list in
this structure are copies of the actual PCBs on the host. Shadow IMS Direct
automatically synchronizes the client application PCBs and the actual PCBs
the host. The first PCB pointed to by the PCB list vector is the I/O PCB. The
second, and all subsequent PCBs in the PCB list vector are database PCBs.
structure, and the PCBs pointed to by this structure, cannot be used in Visua
Basic and PowerBuilder applications. Visual Basic and PowerBuilder do not h
adequate capabilities for pointer manipulation.

SCCToDLI is called as follows, in order to obtain the PCB list structure:

 rc = SCCToDLI(hdbc, 3, “PCB “, “DUMMYPSB”, &lcimst, 8,
sizeof(imst))

The parameter count for retrieving the PCB list structure is always 3. The “PC
function code is used on the host to schedule a PSB and returns a vector of
pointers. However, the SCCToDLI function returns the PCB vector list but does
not actually schedule the PSB. The PSB is scheduled as part of the host ses
initiation process. The PSB name is specified using the PSB keyword in the
connection string or in a section of the ODBC.INI file.

The “DUMMYPSB” argument is the PSB name; as mentioned above, this
function cannot be used to schedule a PSB. However, PSB scheduling capa

Note:
If an IMS operation succeeds, the IMS status code will be two
blank characters. However, the two blank characters will NOT
be stored in the return code variable. Instead, a return code of
SQL_SUCCESS (which is actually zero) will be returned to the
caller. This is the same convention that the mainframe CTDLI
function uses. For more information about IMS status codes, see
IMS Messages and Codes (SC26-4290).
December 1999 Shadow Programming Guide 4-13

Shadow IMS Direct

e

e

t

he

ys

n

eger
may be added at some point in the future. The “DUMMYPSB” string should b
passed to maintain upward compatibility with future versions of this function.

The lcimst argument is the local data area structure into which the PCB list
structure will be copied. This area should be allocated using the imst typedef.

The length values are the sizes of the “DUMMYPSB” string and the size of th
local imst area, respectively. The sizeof function is used to determine the size of
the imst as a convenience and to ensure future upward compatibility.

Accessing and Updating PCB Fields

The function can also be used to access and update fields in the PCB. This
capability is provided for languages such as Visual Basic, or PowerScript, tha
cannot access PCB fields using pointers. Of course, this function can also be
called from C or C++ applications. The IMS function code is “GPCB” for
accessing PCB fields and “PPCB” for updating PCB fields. The SCCToDLI
function is called as follows to access or update a PCB field:

 rc = SCCToDLI(hdbc, 4, rgbIMSFunction, rgbValue1, data type, data
area, sizeof(PCB_STRUCT_8_TYPE), sizeof(data type), sizeof(data
area))

The parameter count for accessing and updating PCB fields is always four. T
IMS function code string rgbIMSFunction must either be “GPCB” or “PPCB” as
mentioned above. The PCB (argument 3) itself can be passed one of two wa

n As a pointer to a PCB.
n As the PCB number (cast to a SDWORD).

PCBs in the PCB vector list are numbered starting with “1” for the I/O PCB. I
other words, the first database PCB is always PCB number 2.

The data type is either a pointer to a null-terminated character string or an int
cast to a SDWORD with the data type number. Make absolutely sure that, if the
data type is passed as an integer, a four-byte integer is used. Do not pass a two-
byte integer in any case. You will get a program fault.

Note:
The PSB string must be null-terminated.

Note:
Do not pass the global const values defined in the Visual Basic
sample programs without first assigning them to long integer values.
4-14 Shadow Programming Guide December 1999

Programming IMS Applications

CB”
 the
f the

rea.

eric
is

 of
ed.

MS

The possible data type values are:

The data area must be large enough to contain any data returned by the “GP
function code. If the “PPCB” function code is used, this area must contain all
data that will be copied into the PCB. The first length value must be the size o
PCB passed using rgbValue1. The actual size will depend on whether the client
application program is passing an I/O or a DB PCB. The size of I/O PCBs is
always fixed; the size of DB PCBs depends on the size of the key feedback a

The size of the data type will depend on whether a character string or a num
data type is passed. In either case, the correct length should be passed to th
function. If a character string data type is passed, the size is the length of the
string. If a numeric data type is passed, the size will always be four. The size
the data area will depend on field in the PCB that is being accessed or updat
The correct size of the data area should always be passed to this function.

Sending DL/I Requests to the Host

This most common use of this function is to pass DL/I calls to the host. The I
function codes that can be used for this purpose are documented in the IMS

Data Type Integer Data Type String Description

SC_DB_PCB “SC_DB_PCB” Entire DB PCB area

SC_DATABASE_NAME “SC_DATABASE_NAME” DB PCB database name

SC_SEGMENT_LEVEL_NUMBER “SC_SEGMENT_LEVEL_NUMBER” DB PCB segment level number

SC_STATUS_CODE “SC_STATUS_CODE” DB and DC PCB status code

SC_PROCESSING OPTIONS “SC_PROCESSING OPTIONS” DB PCB processing options

SC_SEGMENT_NAME “SC_SEGMENT_NAME” DB PCB segment name

SC_KEY_AREA_LENGTH “SC_KEY_AREA_LENGTH” DB PCB key feedback area length

SC_SENSITIVE_SEGMENTS “SC_SENSITIVE_SEGMENTS” DB PCB number of sensitive
segments

SC_KEY_AREA “SC_KEY_AREA” DB PCB key feedback area

SC_DC_PCB “SC_DC_PCB” Entire DC PCB area

SC_TERMINAL_NAME “SC_TERMINAL_NAME” DC PCB terminal name

SC_CURRENT_DATE “SC_CURRENT_DATE” DC PCB current date

SC_CURRENT_TIME “SC_CURRENT_TIME” DC PCB current time

SC_SEQUENCE_NUMBER “SC_SEQUENCE_NUMBER” DC PCB input message sequence
number

SC_DESCRIPTOR_NAME “SC_DESCRIPTOR_NAME” DC PCB output descriptor name

SC_USERID “SC_USERID” DC PCB user identification
December 1999 Shadow Programming Guide 4-15

Shadow IMS Direct
Application Programming: DL/I Calls manual (SC26-4274). See the CICS with
DBCTL section of the table documenting which IMS calls are available in which
environments. Of course, all the standard get, delete, insert, and replace calls can
be used with the SCCToDLI function. SCCToDLI is called as follows for passing
DL/I calls to the host.

 rc = SCCToDLI(hdbc, cpar, rgbIMSFunction, rgbValue1, rgbValue2,
...)

The rgbIMSFunction will contain the IMS function code that will be sent to the
host and executed. This argument must point to a four-byte uppercase string
containing IMS function code padded with blanks, if needed. This string is not
null-delimited. rgbValue1 can either point to a PCB or contain a four-byte PCB
number. rgbvalue2 through rgbValue17 are used to pass a segment and segment
search arguments to this function. The segment and the segment search arguments
may or may not be passed, depending on the IMS function code. A length value
must be supplied for each of the rgbValues that are actually passed. The number of
arguments will be one plus the number of optional data areas actually passed. The
length values must immediately follow the last data area passed to this function.

Code Example

None at this time.

Related Functions

For information about See

Executing DL/I calls from a VB or PowerBuilder program SCCToDLIPascal

Converting data from ASCII to EBCDIC SCAsciiToEbcdic

Converting data from EBCDIC to ASCII SCEbcdicToAscii
4-16 Shadow Programming Guide December 1999

Programming IMS Applications
SCCToDLIPascal

IMS Direct

SCCToDLIPascal executes DL/I requests on behalf of a client application. Most
DL/I requests are passed to the host for processing and results are returned to the
client application program. However, in a few cases, DL/I requests are executed
locally. This function takes a fixed number of arguments and is intended to be
called by Visual Basic or PowerScript applications, however, it can also be called
by C or C++ application programs.

Syntax
RETODBC SCCToDLIPascal(hdbc, cpar, rgbIMSFunction, rgbValue1,
rgbValue2, rgbValue3, rgbValue4, rgbValue5, rgbValue6, rgbValue7,
rgbValue8, rgbValue9, rgbValue10, rgbValue11, rgbValue12,
rgbValue13, rgbValue14, rgbValue15, rgbValue16, rgbValue17,
cbValue1, cbValue2, cbValue3, cbValue4, cbValue5, cbValue6,
cbValiue7, cbValue8, cbValue9, cbValue10, cbValue11, cbValue12,
cbValue13, cbValue14, cbValue15, cbValue16, cbValue17)

Arguments

The SCCToDLIPascal function accepts the following arguments:

Returns

n SQL_SUCCESS
n SQL_SUCCESS_WITH_INFO
n SQL_ERROR, SQL_INVALID_HANDLE
n A positive IMS status code stored in the least significant two bytes of the

return code.

Type Argument Use Description

HDBC hdbc Input Connection handle.

SDWORD cpar Input Number of parameters. This value includes the IMS function string, but does
not include connection handle, number of parameters itself, or any length
values provided for the other arguments.

PTR rgbIMSFunction Input IMS function code. This field must point to a four-byte string containing the
IMS function code. The function code does not need to be null-terminated, but
must be in uppercase and padded with trailing blanks if necessary.

PTR rgbValue1-17 I/O Use of this argument depends on IMS function code string and number of
parameters. See comments below for additional information.

SDWORD cbValue1-17 Input These arguments are the lengths of the rgbValue1-17 arguments. Number of
lengths actually used must be equal to number of rgbValue1-17 values that are
actually used.
December 1999 Shadow Programming Guide 4-17

Shadow IMS Direct
Diagnostics

When SCCToDLIPascal returns SQL_ERROR or
SQL_SUCCESS_WITH_INFO, an associated SQLSTATE value may be obtained
by calling SQLError. The following table lists the SQLSTATE values commonly
returned by SCCToDLIPascal and explains each one in the context of this
function. The return code associated with each SQLSTATE value is
SQL_ERROR, unless noted otherwise.

Comments

The SCCToDLIPascal function provides all IMS services to a direct client
application. This function can be used three ways:

n To issue standard DL/I calls that get, replace, insert, and delete IMS segments.
n To obtain the PCB list and the number of PCBs on behalf of the caller.
n To access and update individual fields in a PCB.

The arguments passed to this function for each of these uses are different. The
correct arguments for each use of this function are described below.

SQLSTATE Error Description

01000 General warning Driver-specific informational message. (Function returns
SQL_SUCCESS_WITH_INFO.)

08003 Connection not open Connection specified by hdbc argument was not open.
Connection processes must be completed successfully (and
connection must be open) for driver to perform this function.

08S01 Communication link failure Communication link between driver and data source to which
driver was connected, failed before function completed
processing.

S1000 General error Error occurred for which there was no specific SQLSTATE
and for which no implementation-specific SQLSTATE was
defined. Error message returned by SQLError in argument
szErrorMsg describes error and its cause.

S1009 Invalid argument value Parameter count cpar was less than one.

Parameter count cpar exceeded maximum value. Maximum
value is 18.

IMS Function was null.

One of the rgbValue arguments was null.

One of the argument length values was not set.

For “PCB “ IMS Function code, parameter count cpar was not
3.

For either “GPCB” or “PPCB” IMS function code values, cpar
argument was not 4.

The IMS function code rgbIMSFunction did not contain a
valid IMS function code string.

PCB length value passed was invalid.

An invalid PCB address was detected.
4-18 Shadow Programming Guide December 1999

Programming IMS Applications

ided

nt
B
ber

++
e

an
us
he
n All of the arguments passed to this function must be four bytes long.

n The number of arguments passed to this function is fixed. The actual number
will always be thirty-seven. The cpar argument must be set to the number of
rgbValues that are actually used plus one for the IMS function code string,
pointed to by rgbIMSFunction. A null pointer must be passed for all of the
unused rgbValues. Actual lengths must be passed using the cbValues for all
the rgbValues that are actually used. Zero must be passed for all the unused
length values. The number of used length values will always be equal to cpar
minus one.

n Length values are required for all arguments except the first three. The length
values always follow the data arguments. If, for example, cpar is two, then the
cpar argument will be followed by two used data areas, 16 unused data areas,
one actual length, and 16 unused lengths. If cpar is three, then the cpar
argument will be followed by three data areas, 15 unused data areas, two
actual lengths, and 15 unused lengths. The number of lengths will always be
“1” less than the number of data areas because a length value is not prov
for the rgbIMSFunction argument.

n Some forms of this function (see below) take a PCB as the fourth argume
(rgbValue1). PCBs can be passed as either an address or a four-byte PC
number. Visual Basic and PowerScript applications must pass a PCB num
value.

n The SCCToDLI function can be called by all languages. This function is
intended for use by Visual Basic and PowerBuilder applications. C and C
programs can call the SCCToDLI function without dummy arguments. Th
SCCToDLI is described above.

n The return code from this function will either be an ODBC return code or
IMS status code. The ODBC return codes are described above. IMS stat
codes are two-byte character strings stored in the return code variable. T
sample IMS applications show how these status codes can be tested.

Note:
In many cases, large data areas are passed to this function.
However, these data areas are passed using pointers that are
actually four bytes long. The practical significance of this
requirement is that all length and count values must be passed as
four-byte integers. Length and count values can be cast to four-
byte integers, if needed. The SDWORD (no embedded blanks)
cast can be used to ensure integers are passed to this function
correctly.
December 1999 Shadow Programming Guide 4-19

Shadow IMS Direct

n

on

. This
asic

“
PCB
 but
t

d in
Obtaining the PCB List Structure

This function can be used to obtain the PCB list from the Shadow IMS Direct
interface. The PCB list is a structure that contains the number of PCBs, a vector of
pointers to PCBs, and some additional information. The PCB list structure imst is
typedef’ed in the scpghd.h header file. The PCBs pointed to by the PCB list i
this structure are copies of the actual PCBs on the host. Shadow IMS Direct
automatically synchronizes the client application PCBs and the actual PCBs
the host. The first PCB pointed to by the PCB list vector is the I/O PCB. The
second, and all subsequent PCBs in the PCB list vector, are database vectors
structure and the PCBs pointed to by this structure cannot be used in Visual B
and PowerBuilder applications. Visual Basic and PowerBuilder do not have
adequate capabilities for pointer manipulation. SCCToDLIPascal is called as
follows, in order to obtain the PCB list structure:

rc = SCCToDLIPascal(hdbc, 3, “PCB “, “DUMMYPSB”, &lcimst, (PTR)
NULL, (PTR) NULL,
(PTR) NULL , (PTR) NULL,
(PTR) NULL , (PTR) NULL,
(PTR) NULL , (PTR) NULL ,
(PTR) NULL , (PTR) NULL ,
(PTR) NULL , (PTR) NULL ,
(PTR) NULL , (PTR) NULL ,
(PTR) NULL, 8, sizeof (imst),
(SDWORD) 0, (SDWORD) 0,
(SDWORD) 0, (SDWORD) 0,
(SDWORD) 0, (SDWORD) 0,
(SDWORD) 0, (SDWORD) 0,
(SDWORD) 0, (SDWORD) 0,
(SDWORD) 0, (SDWORD) 0,
(SDWORD) 0, (SDWORD) 0,
(SDWORD) 0)

The parameter count for retrieving the PCB list structure is always “3”. “PCB
function code is used on the host to schedule a PSB and returns a vector of
pointers. However, the SCCToDLIPascal function returns the PCB vector list
does not actually schedule the PSB. The PSB is scheduled as part of the hos
session initiation process. The PSB name is specified using the PSB keywor
the connection string or in a section of the ODBC.INI file.

Note:
If an IMS operation succeeds, the IMS status code will be two
blank characters. However, the two blank characters will NOT
be stored in the return code variable. Instead, a return code of
SQL_SUCCESS (which is actually zero) will be returned to the
caller. This is the same convention that the mainframe CTDLI
function uses. For more information about IMS status codes, see
IMS Messages and Codes (SC26-4290).
4-20 Shadow Programming Guide December 1999

Programming IMS Applications

bility
e

ich

g

he

n

e
e
The “DUMMYPSB” argument is the PSB name; as mentioned above, this
function cannot be used to schedule a PSB. However, PSB scheduling capa
may be added at some point in the future. The “DUMMYPSB” string should b
passed to maintain upward compatibility with future versions of this function.

The lcimst argument is the local data area structure into which the PCB list
structure will be copied. This area should be allocated using the imst typedef.

The length values are the sizes of the “DUMMYPSB” string and the local imst
area, respectively. The sizeof function is used to determine the size of the imst as a
convenience and to ensure future upward compatibility.

Accessing and Updating PCB Fields

This function can also be used to access and update fields in the PCB. This
capability is provided for languages such as Visual Basic or PowerScript, wh
cannot access PCB fields using pointers. Of course, this function can also be
called from C or C++ applications. IMS function code is “GPCB” for accessin
PCB fields and “PPCB” for updating PCB fields. The SCCToDLIPascal function
is called as follows to access or update a PCB field:

rc = SCCToDLIPascal(hdbc, 4, rgbIMSFunction, rgbValue1, data type,
data area, (PTR) NULL,(PTR) NULL, (PTR) NULL, (PTR) NULL,
(PTR) NULL, (PTR) NULL, (PTR) NULL,
(PTR) NULL, (PTR) NULL, (PTR) NULL,
(PTR) NULL, (PTR) NULL, (PTR) NULL,
(PTR) NULL,
sizeof(PCB_STRUCT_8_TYPE),
sizeof(data type), sizeof(data area),
(SDWORD) 0, (SDWORD) 0,
(SDWORD) 0, (SDWORD) 0,
(SDWORD) 0, (SDWORD) 0,
(SDWORD) 0, (SDWORD) 0,
(SDWORD) 0, (SDWORD) 0,
(SDWORD) 0, (SDWORD) 0,
(SDWORD) 0, (SDWORD) 0)

The parameter count for accessing and updating PCB fields is always four. T
IMS function code string rgbIMSFunction must either be “GPCB” or “PPCB” as
mentioned above. The PCB itself can be passed one of two ways:

n As a pointer to a PCB.
n As the PCB number (cast to SDWORD).

PCBs in the PCB vector list are numbered starting from “1” for the I/O PCB. I
other words, the first database PCB is always PCB number 2.

The data type is either a pointer to a null-terminated character string data typ
description or an integer cast to a SDWORD with the data type number. Mak

Note:
The PSB string must be null-terminated.
December 1999 Shadow Programming Guide 4-21

Shadow IMS Direct

CB”
 the
f the

rea.

eric
is
ing
sed to

S

h

t

 A
sed.

a
absolutely sure that if the data type is passed as an integer, a four-byte integer is
used. Do not pass a two-byte integer in any case. You will get a program fault.
Do not pass the global const values defined in the Visual Basic sample programs
without first assigning them to long integer values. See the SCCToDLI function
located in this chapter for the data type list.

The data area must be large enough to contain any data returned by the “GP
function code. If the “PPCB” function code is used, this area must contain all
data that will be copied into the PCB. The first length value must be the size o
PCB passed using rgbValue1. The actual size will depend on whether the client
application program is passing an I/O or a DB PCB. The size of I/O PCBs is
always fixed; the size of DB PCBs depends on the size of the key feedback a

The size of the data type will depend on whether a character string or a num
data type is passed. In either case, the correct length should be passed to th
function. The size of the data area will depend on what field in the PCB is be
accessed or updated. The correct size of the data area should always be pas
this function.

Sending DL/I Requests to the Host

The most common use of this function is to pass DL/I calls to the host. The IM
function codes that can be used for this purpose are documented in the IMS
Application Programming: DL/I Calls manual (SC26-4274). See the CICS wit
DBCTL section of the table. This section documents which IMS calls are
available, and in which environments. Of course, all the standard delete, get,
insert, and replace calls can be used with the SCCToDLIPascal function.
SCCToDLIPascal is called as follows for passing DL/I calls to the host.

 rc = SCCToDLIPascal(hdbc, cpar, rgbIMSFunction, rgbValue1,
rgbValue2, ..., cbValue1, cbValue2,...)

The rgbIMSFunction will contain the IMS function code that will be sent to the
host and executed. This argument must point to a four-byte uppercase string
containing IMS function code padded with blanks if needed. This string is not
null-delimited. rgbValue1 can either point to a PCB or contain a four-byte PCB
number. rgbvalue2 through rgbValue17 are used to pass segments and segmen
search arguments to this function. The data area and the segment search
arguments may or may not be passed, depending on the IMS function code.
length value must be supplied for each of the rgbValues that are actually pas
The number of arguments will be one plus the number of optional data areas
actually passed. The length values must immediately follow the last data are
passed to this function.

Code Example

None at this time.
4-22 Shadow Programming Guide December 1999

Programming IMS Applications
Related Functions

For information about See

Executing DL/I calls from a C or C++ program SCCToDLI

Converting data from ASCII to EBCDIC SCAsciiToEbcdic

Converting data from EBCDIC to ASCII SCEbcdicToAscii
December 1999 Shadow Programming Guide 4-23

Shadow IMS Direct
SCPackedToAscii

IMS Direct

SCPackedToAscii converts packed decimal data to ASCII. To properly display
IMS Data that contains packed decimal fields, the data must be converted
manually to ASCII. Since the SCCToDLIPascal API translates data from
EBCDIC to ASCII automatically, conversion should be turned off to properly
process the packed decimal data. To do this, specify a negative value for the
length of the data being returned. If the value is negative, no EBCDIC to ASCII
translation will occur using SCCToDLIPascal. Next, call the SCEbcdicToAscii
API to convert the EBCDIC data, and call the SCPackedToAscii API to convert
the packed decimal data.

Syntax
RETODBC SCPackedToAscii(hdbc, packed, precision, scale, rc, ascii)

Arguments

The SCPackedToASCII function accepts the following arguments::

Returns

n SQL_SUCCESS
n SQL_SUCCESS_WITH_INFO
n SQL_ERROR
n SQL_INVALID_HANDLE
n A positive IMS status code stored in the least significant two bytes of the

return code

Diagnostics

When SCPackedToAscii returns SQL_ERROR or
SQL_SUCCESS_WITH_INFO, an associated SQLSTATE value may be obtained
by calling SQLError. The following table lists the SQLSTATE values commonly
returned by SCPackedToAscii and explains each one in the context of this

Type Argument Use Description

HDBC hdbc Input ODBC connection handle.

PTR cbpacked Input Pointer to the packed decimal data.

LONG cbprecision Input Packed decimal data’s precision value.

LONG cbscale Input Packed decimal data’s scale value.

INT pcbrc Output Returned code.

CHAR pcbascii Output Converted ASCII data buffer.
4-24 Shadow Programming Guide December 1999

Programming IMS Applications
function. The return code associated with each SQLSTATE value is
SQL_ERROR, unless noted otherwise.

Example VB Code
 Dim rc As Integer
 Dim len1 As Long
 Dim sgar1 As String * 1015
 Dim sgar2 As String * 4
 Dim packed_data As String * 12
 Dim buffer_size, packed_precision, packed_scale As Long
len1 = 64
packed_precision = 8
packed_scale = 0
buffer_size = 12
rc = SCCToDLIPascal(hdbc, 4, "GN ", 3, sgar, "STOKSTAT ", "", "",
"", "", "", "", "", "", "", "", "", "", "", "", 60, -1015, 10, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
’assign the packed decimal data at offset 65 to sgar2
sgar2 = Mid(sgar, 65, 4)
’convert data stored in sgar from Ebcdic to Ascii and store in
sgar1
rc = SCEbcdicToAscii(hdbc, sgar, sgar1, len1)
’convert packed data in sgar2 to Ascii and store in packed_data
rc = SCPackedToAscii(hdbc, packed_data, buffer_size, sgar2,
packed_precision, packed_scale)

SQLSTATE Error Description

01000 General warning Driver-specific informational message. (Function returns
SQL_SUCCESS_WITH_INFO.)

08003 Connection not open Connection specified by the hdbc argument was not open. Connection
processes must be completed successfully (and connection must be open) for
driver to perform this function.

08S01 Communication link failure Communication link between driver and data source to which driver was
connected, failed before function completed processing.

S1000 General error Error occurred for which there was no specific SQLSTATE and for which no
implementation-specific SQLSTATE was defined. Error message returned
by SQLError in argument szErrorMsg describes error and its cause.

S1009 Invalid argument value Parameter count cpar was less than one.
Parameter count cpar exceeded maximum value. Maximum value is 18.
IMS Function was null.
One of the rgbValue arguments was null.
One of the argument length values was not set.
For “PCB “ IMS Function code, parameter count cpar was not 3.
For either “GPCB” or “PPCB” IMS function code values, cpar argument
was not 4.

IMS function code rgbIMSFunction did not contain a valid IMS function
code string.

PCB length value passed was invalid.
An invalid PCB address was detected.
December 1999 Shadow Programming Guide 4-25

Shadow IMS Direct
SCAsciiToPacked

IMS Direct

SCAsciiToPacked converts an ASCII string to packed decimal data. This function
can be called by any other routine. It returns standard ODBC retcode.

Syntax
RETODBC SQL_API SCAsciiToPacked(hdbc, rgbAscii, rgbPacked,
cbValue, cbPrecision, cbScale)

Arguments

The SCAsciiToPacked function accepts the following arguments:

C Example

Given an ASCII string of "100.02", and assuming the precision and the scale for
the defined packed decimal field is also 5,2:

char * ascii_string = "100.02";
char packed_buffer[3]; /* packed decimal data will takes up 3
bytes */

 rc = SCAsciiToPacked(hdbc, ascii_string, packed_buffer,
sizeof(packed_buffer), 5, 2);

Notes:
The ASCII string passed by the caller is assumed to be properly
null-terminated.

The size for the packed decimal buffer should be large enough to
store all the numeric nibbles, specified by the precision argument,
and the sign nibble at the end.

The converted packed decimal might lose significant digits if the
precision of the ASCII string is higher.

Type Argument Use Description

HDBC hdbc Input Connection block pointer

PTR rgbAscii Input ASCII string

PTR rgbPacked Output Packed decimal data

SDWORD cbValue Input Packed decimal buffer length

SDWORD cbPrecision Input Packed decimal’s precision

SDWORD cbScale Input Packed decimal’s scale
4-26 Shadow Programming Guide December 1999

Sample IMS Batch Message Program Code

1

2

3

4

Sample IMS Batch Message Program Code
The following sample program uses an IMS BMP to access segments from an
IMS database. This program can be used interoperably in the Windows/OS/2/
UNIX environments.

In the Windows environment, this program is designed to run as a QuickWin
application. In the OS/2 and UNIX environments, this program will write to
standard output and standard error. Explanatory notes corresponding to the
numbers in boxes are located immediately following the program.

/**/
/*--*/
/* Include all of the standard header files */
/*--+----1----+----2----+----3----+----4----+----5----+----6----+----7*/
#include <stdio.h> /* standard I/O library */
#include <stdlib.h> /* standard functions */
#include <assert.h> /* assert macro support */
#include <string.h> /* string functions */
#include <time.h> /* time functions and definitions */
#include <sys/types.h> /* more time functions and defs */
#include <sys/timeb.h> /* more time functions and defs */
/*--*/
/* A few defines so that the ODBC header files will work with UNIX */
/*--+----1----+----2----+----3----+----4----+----5----+----6----+----7*/
#ifndef MSDOS /* not MS-DOS environment? */
#define FAR /* FAR is not needed for UNIX */
#define far /* far is not needed for UNIX */
#define __stdcall /* __stdcall is not needed for UNIX */
#define __cdecl /* __cdecl is not needed for UNIX */
#define EXPORT /* EXPORT is not needed for UNIX */
#define CALLBACK /* CALLBACK is not needed for UNIX */
#define HWND int /* HWND must be treated as integer */
#define _timeb timeb /* fix struct _timeb declaration */
#define _ftime ftime /* fix _ftime function name */
#endif /* end MS-DOS environment check */
/*--*/
/* Include the ODBC header files */
/*--+----1----+----2----+----3----+----4----+----5----+----6----+----7*/
#ifdef MSDOS /* MS-DOS environment? */
#define __STDC__ 1 /* define the ANSI C constant */
#include <windows.h> /* standard Windows header file */
#include <sql.h> /* Core ODBC header file */
#include <sqlext.h> /* Extended ODBC header file */
#define RETODBC RETCODE /* fix ODBC return code typedef */
#else /* else, not MS-DOS environment */
#include <x_sql.h> /* Core ODBC header file */
#include <x_sqlext.h> /* Extended ODBC header file */

Note:
 In some cases, cross-platform portability is obtained using
preprocessor statements.
December 1999 Shadow Programming Guide 4-27

Shadow IMS Direct

6

7

88
#endif /* end MS-DOS environment check */
#include <scpghd.h> /* standard product header files */
/*--*/
/* Start the sample program */
/*--+----1----+----2----+----3----+----4----+----5----+----6----+----7*/
#ifdef __STDC__ /* check for ANSI C */
int __cdecl main(int argc , char *argv[]) /* ANSI function prototype */
#else /* else, K&R C */
int __cdecl main(argc, argv) /* non-ANSI function prototype */
int argc; /* number of arguments */
char *argv[]; /* argument pointer vector */
#endif /* end of ANSI versus K&R c */
 { /* start routine processing */
/*--*/
/* Declare a few variables needed below */
/*--+----1----+----2----+----3----+----4----+----5----+----6----+----7*/
 HENV henv; /* environment block */
 HDBC hdbc; /* connection block */
 imst imar; /* imst data area */
 int alev; /* environment allocated flag */
 int alcn; /* connection allocated flag */
 int cnex; /* connection executed flag */
 int firc; /* final return code value */
 int acrc; /* ’AC’ return code value */
 int gbrc; /* ’GB’ return code value */
 int rc; /* general purpose return code */
 int i; /* count of DL/I calls */
 typedef unsigned char u_char; /* define an unsigned char type */
/*--*/
/* Define a few local values */
/*--+----1----+----2----+----3----+----4----+----5----+----6----+----7*/
#define STATUS_OK 0x0000 /* IMS status code of zeros */
#define STATUS_AC 0x4143 /* ASCII IMS status code AC */
#define STATUS_GB 0x4742 /* ASCII IMS status code GB */
/*--*/
/* Data areas for SCCToDLI */
/*--+----1----+----2----+----3----+----4----+----5----+----6----+----7*/
 static char dumy[8] = "DUMMYPSB"; /* dummy PSB name string */
 static char ssaunsol[10] = "SM40UMSR "; /* set segment search arg */
 typedef struct{PCB_STRUCT(24)} PCB_24_TYPE; /* PCB type */
/*--*/
/* Segment structure */
/*--+----1----+----2----+----3----+----4----+----5----+----6----+----7*/
 struct /* start the structure */
 { /* begin segment definition */
 char type[2]; /* type */
 char terminal[5]; /* terminal */
 char message[25]; /* message */
 } unsol_root; /* end segment definition */
/*--*/
/* I/O output structure */
/*--+----1----+----2----+----3----+----4----+----5----+----6----+----7*/
#if (1 == 2) /* bypass the following struct */
 struct /* start the structure */

5

9
9

4-28 Shadow Programming Guide December 1999

Sample IMS Batch Message Program Code
 { /* begin I/O area definition */
 short ll; /* length field */
 short zz; /* other data area */
 char msg[80]; /* message */
 } io_area; /* end I/O area definition */
#endif /* struct not needed for now */
/*--*/
/* Other local defines */
/*--+----1----+----2----+----3----+----4----+----5----+----6----+----7*/
 IO_PCB_TYPE far *io_pcb; /* define I/O PCB */
 PCB_24_TYPE far *tbl_pcb; /* define DB PCB */
/*--*/
/* A few length fields */
/*--+----1----+----2----+----3----+----4----+----5----+----6----+----7*/
 long szpc24 = sizeof(PCB_24_TYPE); /* size of PCB */
 long szioar = sizeof(unsol_root); /* size of a segment */
 long szssar = sizeof(ssaunsol); /* size of the SSA */
/*--*/
/* Initialize a few local variables */
/*--+----1----+----2----+----3----+----4----+----5----+----6----+----7*/
 alev = alcn = cnex = 0; /* clear the flags */
 gbrc = STATUS_GB; /* set the status variable */
 acrc = STATUS_AC; /* set the status variable */
/*--*/
/* Initialize a few local fields */
/*--+----1----+----2----+----3----+----4----+----5----+----6----+----7*/
 firc = 0; /* assume a zero return code */
/*--*/
/* Issue program start message */
/*--+----1----+----2----+----3----+----4----+----5----+----6----+----7*/
 printf("\nProgram Starts\n\n"); /* start message */
 i = 0; /* clear count of DL/I calls */
/*--*/
/* Allocate the environment block */
/*--+----1----+----2----+----3----+----4----+----5----+----6----+----7*/
 rc = SQLAllocEnv(&henv); /* allocate the environment block */
 if (rc != SQL_SUCCESS && /* operation did not succeed? */
 rc != SQL_SUCCESS_WITH_INFO) /* nor success with info? */
 goto exlb; /* yes - exit to the caller */
 alev = 1; /* show environment allocated */
/*--*/
/* Allocate the connection block */
/*--+----1----+----2----+----3----+----4----+----5----+----6----+----7*/
 rc = SQLAllocConnect(henv, &hdbc); /* allocate connection block */
 if (rc != SQL_SUCCESS && /* operation did not succeed? */
 rc != SQL_SUCCESS_WITH_INFO) /* nor success with info? */
 goto exlb; /* yes - exit to the caller */
 alcn = 1; /* show connection block allocated */
/*--*/
/* Connect to the data source */
/*--+----1----+----2----+----3----+----4----+----5----+----6----+----7*/
 rc = SQLDriverConnect(hdbc, /* pass the connection block */
 (HWND) NULL, /* no window handle */
 (u_char far *) /* cast the connection str */

1010

11
11

12
December 1999 Shadow Programming Guide 4-29

Shadow IMS Direct

155
 "UID=ai38pds;PWD=zrc003;" /* usid */
 "PORT=1250;HOST=202.0.12.6;" /* TCP/IP */
 "DSN=Tuld;" /* Data source name */
 "APPL=BMP;" /* application type string */
 "BMPA=BMP,SM400004,SM400004,SM563011;",
 SQL_NTS, /* string is null-terminated */
 NULL, 0, NULL, SQL_DRIVER_NOPROMPT);
 if (rc != SQL_SUCCESS && /* operation did not succeed? */
 rc != SQL_SUCCESS_WITH_INFO) /* nor success with info? */
 goto exlb; /* yes - exit to the caller */
 cnex = 1; /* show connection complete */
/*--*/
/* Get the IMS PCB list */
/*--+----1----+----2----+----3----+----4----+----5----+----6----+----7*/
 rc = SCCToDLI(hdbc, /* pass the connection block */
 (SDWORD) 3, /* number of parameters */
 "PCB ", /* IMS function code */
 dumy, /* dumy PSB string area */
 &imar, /* IMS status area address */
 (SDWORD) sizeof(dumy), /* dummy PSB area size*/
 (SDWORD) sizeof(imar)); /* IMS status area size*/
 firc = (rc) ? rc : firc; /* reset the return code */
 if (firc < 0) /* some type of serious error? */
 goto exlb; /* yes - exit with an error code */
/*--*/
/* I/O PCB */
/*--+----1----+----2----+----3----+----4----+----5----+----6----+----7*/
 io_pcb = (IO_PCB_TYPE far *) imar.impcar[0]; /* define I/O PCB */
/*--*/
/* Database PCB */
/*--+----1----+----2----+----3----+----4----+----5----+----6----+----7*/
 tbl_pcb = (PCB_24_TYPE far *) imar.impcar[1]; /* define DB PCB */
/*--*/
/* Attempt to retrieve the first segment. Note that the */
/* PCB can be passed either using the PCB address or using */
/* the PCB number. The call below passes an actual PCB address. */
/* The following call uses the __cdecl entry point. The call */
/* below uses the pascal entry point. Both entry points may be */
/* used from a C program. The pascal entry point is intended */
/* for Visual Basic programs and other desktop productivity */
/* tools. */
/*--+----1----+----2----+----3----+----4----+----5----+----6----+----7*/
 rc = SCCToDLI(hdbc, /* pass the connection block */
 (SDWORD) 4, /* number of parameters */
 "GN ", /* IMS function code */
 tbl_pcb, /* DB PCB */
 &unsol_root, /* segment work area */
 ssaunsol, /* segment search argument */
 (SDWORD) szpc24, /* size of DB PCB */
 (SDWORD) szioar, /* size of I/O area */
 (SDWORD) szssar); /* size of SSA */
 firc = (rc) ? rc : firc; /* reset the return code */
 if (firc < 0) /* some type of serious error? */
 goto exlb; /* yes - exit with an error code */

1313

1414

1

1616
4-30 Shadow Programming Guide December 1999

Sample IMS Batch Message Program Code

177

188
/*--*/
/* Check for a special return code value */
/*--+----1----+----2----+----3----+----4----+----5----+----6----+----7*/
 if (acrc == rc) /* ’AC’ return code? */
 goto exlb; /* yes - exit with an error code */
/*--*/
/* Print the data returned */
/*--+----1----+----2----+----3----+----4----+----5----+----6----+----7*/
 if (rc == STATUS_OK) /* first operation worked? */
 { /* yes - display the data */
 printf("unsol_root.type = %.2s\n",unsol_root.type);
 printf("unsol_root.terminal = %.5s\n",unsol_root.terminal);
 printf("unsol_root.message = %.25s\n",unsol_root.message);
 } /* end of first operation check */
/*--*/
/* Attempt to retrieve the remaining segments */
/*--+----1----+----2----+----3----+----4----+----5----+----6----+----7*/
 while ((rc == STATUS_OK) && (i < 4)) /* while return code zero */
 { /* fetch each remaining segment */
/*--*/
/* The pascal function can be used instead of the standard */
/* function. However, dummy values must be supplied for all */
/* of the unused addresses and lengths. Note that the PCB */
/* is passed as a PCB number rather than a PCB address. */
/* This approach is supported for both the SCCToDLI and */
/* the SCCToDLIPascal entry points. */
/*--+----1----+----2----+----3----+----4----+----5----+----6----+----7*/
 rc = SCCToDLIPascal(hdbc, /* pass the connection block */
 (SDWORD) 4, /* number of parameters */
 "GN ", /* IMS function code */
 (SDWORD) 2, /* DB PCB */
 &unsol_root, /* segment work area */
 ssaunsol, /* segment search argument */
 (char far *) NULL, (char far *) NULL, /* dummy */
 (char far *) NULL, (char far *) NULL, /* dummy */
 (char far *) NULL, (char far *) NULL, /* dummy */
 (char far *) NULL, (char far *) NULL, /* dummy */
 (char far *) NULL, (char far *) NULL, /* dummy */
 (char far *) NULL, (char far *) NULL, /* dummy */
 (char far *) NULL, (char far *) NULL, /* dummy */
 (SDWORD) szpc24, /* size of the DB PCB */
 (SDWORD) szioar, /* size of the I/O area */
 (SDWORD) szssar, /* size of the SSA */
 (SDWORD) NULL, (SDWORD) NULL, /* dummy values */
 (SDWORD) NULL, (SDWORD) NULL, /* dummy values */
 (SDWORD) NULL, (SDWORD) NULL, /* dummy values */
 (SDWORD) NULL, (SDWORD) NULL, /* dummy values */
 (SDWORD) NULL, (SDWORD) NULL, /* dummy values */
 (SDWORD) NULL, (SDWORD) NULL, /* dummy values */
 (SDWORD) NULL, (SDWORD) NULL); /* dummy values */
 firc = (rc) ? rc : firc; /* reset the return code */
 if (firc < 0) /* some type of serious error? */
 goto exlb; /* yes - exit with an error code */
 printf("unsol_root.type = %.2s\n",unsol_root.type); /* printf */

1

1

December 1999 Shadow Programming Guide 4-31

Shadow IMS Direct

199
 printf("unsol_root.terminal = %.5s\n",unsol_root.terminal);
 printf("unsol_root.message = %.25s\n",unsol_root.message);
 i++; /* increment DL/I call counter */
 } /* end of fetch segment loop */
/*--*/
/* If the status is not blank or "GB" then something is wrong */
/*--+----1----+----2----+----3----+----4----+----5----+----6----+----7*/
 if (rc != STATUS_OK && rc != STATUS_GB) /* any type of error? */
 { /* yes - report the error */
 printf("Error Detected\n\n"); /* error heading */
 printf("ctdli rc = %d/0x%04x\n",rc,rc); /* display the rc */
 printf("ctdli status = ’%c%c’\n", /* display IMS status code */
 tbl_pcb -> dbpc_stcd[0], /* first byte of the status */
 tbl_pcb -> dbpc_stcd[1]); /* second byte of the status */
 printf("ctdli seg = %s\n", /* display the segment name */
 tbl_pcb -> dbpc_sgna); /* segment name area */
 printf("ctdli kfb = %s\n", /* display the key */
 tbl_pcb -> dbpc_kyar); /* display the key area */
 firc = 8; /* exit with an error code */
 } /* end of error reporting */
/*--*/
/* Standard exit label */
/*--+----1----+----2----+----3----+----4----+----5----+----6----+----7*/
 exlb: /* standard exit label */
 printf("\nProgram Ends\n\n"); /* terminate message */
/*--*/
/* Release all resources and return to the caller */
/*--+----1----+----2----+----3----+----4----+----5----+----6----+----7*/
 if (cnex) /* connection executed? */
 SQLDisconnect(hdbc); /* yes - disconnect from host */
 if (alcn) /* connection allocated? */
 SQLFreeConnect(hdbc); /* yes - free the connection block */
 if (alev) /* environment allocated? */
 SQLFreeEnv(henv); /* yes - free the environment block */
/*--*/
/* Return a value to the caller */
/*--+----1----+----2----+----3----+----4----+----5----+----6----+----7*/
 return(firc); /* exit with a zero return code */
 } /* end routine processing */

1. This program uses several standard C library functions. These header files
declare the entry points to the standard C library. The standard C library can
be used interoperably between the Windows, OS/2, and UNIX environments.

2. The #defines in this section allow the ODBC header files to be used in the OS/
2 and UNIX environments. These #defines are not needed (nor are they used)
in the Windows environment.

3. The standard ODBC header files used in the Windows environment are
included here. These header files can only be used in the Windows
environment.

1

4-32 Shadow Programming Guide December 1999

Sample IMS Batch Message Program Code

he

this

MS
n
SA
tion

been

 user

 by
ld,

rs are
 C

e
rea
4. The modified header files for OS/2 and UNIX are included here. These
ODBC header files are slightly modified versions of the standard Windows
ODBC header files.

5. The scpgd.h header file is the only Neon Systems-specific header file. This
header file contains all the declarations and definitions needed for the Shadow
IMS Direct and Shadow RPC Direct extensions to the ODBC specification.
This header file must be included by all Shadow IMS/RPC Direct
applications.

6. These statements define the environment block and the connection block
handles used in this application. All calls to the ODBC API, including the
Neon Systems extensions to the ODBC API, require that either an
environment block or connection block handle be passed.

7. These defines are provided to help a programmer check the results from a
DL/I call. DL/I calls will return either an ODBC return code or an IMS two
byte status code stored in the return code itself. Each DL/I return code should
be checked to see if it contains either SQL_SUCCESS, an ODBC error code
(such as SQL_ERROR), or an IMS two byte status code.* Note that
STATUSOK, and SQL_SUCCESS are both defined to the same value: zero.

8. The PSB name string should always be set to the value “DUMMYPSB”. T
“DUMMYPSB” name string is not used in IMS BMP applications at this
time; however, it may be used in IMS BMP applications in the future, and
value is strongly recommended for upward compatibility.

The segment search argument is used to identify specific records in the I
database. This value is unique to the current sample IMS BMP applicatio
and would, of course, be different in any user application. Note that the S
string ends with a blank. This is the same SSA string termination conven
used on the host.

The PCB type defined here is a database PCB. Note that 24 bytes have
provided for the key feedback area. The size of the key feedback area is
entirely application-specific, and must be set to the correct value for each
application.

9. The unsolicited root structure maps a segment in the IMS database used
this application. This structure is specific to this sample program and wou
of course, need to be different in any Shadow IMS Direct user application
program.

10. The pointers to the I/O PCB and DB PCB are defined here. These pointe
set so that the I/O PCB and DB PCB can be manipulated using standard
language programming constructs. The lengths of each of the data areas
passed to and from the Shadow IMS Direct interface functions must be
known. The C language statements in this section determine and store th
length of each of these data areas. Note that the requirements for data a

* For more information, about IMS status codes, see the IBM Manual, IMS Messages and Codes (SC26-4290).
December 1999 Shadow Programming Guide 4-33

Shadow IMS Direct

 DB

ining

tely

he
he

st
. The
t
 The
pe
art of
t

een

of
ow

The

tion to
all is

DL/I
rs to
ludes
lengths is a significant difference between the Shadow IMS Direct DL/I
interface function and the standard C language DL/I interface function
CTDLI on the host. Note that if these lengths are converted to negative
values, then all automatic data conversions will be turned off. In other words,
data areas passed to and from the Shadow IMS Direct interface functions will
not automatically be converted from ASCII to EBCDIC before they are sent
to the host or from EBCDIC to ASCII when they are returned from the host.
Automatic ASCII/EBCDIC conversion must be turned off if any data areas
being passed to and from the IMS interface function contain binary fields
such as integers.

Automatic data type conversion can even be turned off for PCBs passed to the
IMS function. However, it’s seldom necessary to disable conversion for
PCBs. The conversion routines are aware of the internal structure of both
and I/O PCBs and will automatically convert each field (including binary
fields) correctly.

11. The environment block is allocated here. It is used as a handle for mainta
the list of connection blocks below. A Shadow IMS Direct application can
actually establish any number of connections to the host. All of the
connections can actually be connections to different hosts running comple
different types of code for each different connection.

12. The connection block includes all of the connection-specific information. T
connection block must be successfully allocated before a connection to t
host can be attempted.

13. The SQLDriverConnect function is used to establish a connection to the ho
and to initiate the BMP running inside the Shadow Server address space
connection string includes all the information needed to establish the hos
connection and to initiate the BMP in the Shadow Server address space.
application type is specified as BMP. This value is required for all BMP ty
connections to the host. The BMP parameter string is also specified as p
the overall connection string. The BMP parameter string includes the hos
PSB name and the LTERM name. When this function call returns to the
application program, either a successful connection to the host will have b
established, or the connection attempt will have failed. If a successful
connection has been established, a BMP will now be waiting for requests
from the client.

14. SCCToDLI obtains the IMS PCB list from the DL/I interface routine. An
IMS PCB list contains the actual number of PCBs available and a vector
pointers to the individual PCBs. This call is executed entirely by the Shad
IMS Direct driver and does not require any communication with the host.
first operand to this call is the connection handle. Of course, only a
connection handle that has been successfully used to establish a connec
the host can be used to obtain the PCB list. The second operand to this c
a parameter count. This value (3) is passed as a four-byte integer to the
interface routine. The DL/I interface routine uses the number of paramete
analyze and check the rest of the parameter list. The parameter count inc
4-34 Shadow Programming Guide December 1999

Sample IMS Batch Message Program Code

L/I

PCB

client

the
s
ck is
d

IMS
es are
 from
rence

h

n
lue is
e
 off.

 from
dress

 of
B

ent
re
wn.

 AC

try
entry

he
the IMS function code string, the PSB string and the IMS status area address,
but does not include the two length values at the end of the parameter list.

The next argument to this function is the IMS function code, “PCB.” The
IMS function code string is used to specify what type of processing the D
interface routine should perform. In this case, the “PCB“ function code is
used to request the PCB list. The “PCB“ function code is used on the
mainframe to schedule a PSB in the CICS environment and to obtain the
list. This is a significant difference between the mainframe and client
implementation of the DL/I interface. However, in the future, the ”PCB“
function code may be supported as a means of scheduling a PSB in the
environment as well (but only for multi-threaded IMS operations).

The next argument to the SCCToDLI function code is the “DUMMYPSB”
string. The dummy PSB string is not actually used by this call. However,
literal “PSB” should be passed for compatibility with future releases of thi
product. The fifth operand is the IMS status area address. This control blo
filled in by this call to the IMS interface routine. This control block is define
in the scpghd.h header file.

The last two operands are the lengths of the dummy PSB string and the
status area. These lengths must be correctly specified. These length valu
used to determine how much data is transmitted to the host and returned
the host. The requirement that these lengths be specified is another diffe
between the Shadow IMS Direct implementation of the SCCToDLI function
and the mainframe implementation of the CTDLI function. Also, the lengt
arguments are not included in the overall parameter count. In addition, no
length value is specified for the IMS function code string. The IMS functio
code string is always four bytes long and, as a consequence, no length va
needed. The length values can be switched to negative values. If negativ
values are passed to this function then all argument conversion is turned

15. These statements extract the addresses of the I/O PCB and the DB PCB
the PCB list and store the PCB addresses in local variables. The PCB ad
values are used below in the SCCToDLI calls.

16. This call actually fetches a segment from an IMS database. The number
parameters is four, including the IMS function code, the address of the D
PCB, the address of the segment work area, and the address of the segm
search argument (SSA). As mentioned above, only three length values a
needed because the length of the IMS function code string is always kno

17. This statement checks to see if the DL/I call set a status code of AC. If the
status code was returned, this program automatically terminates.

18. This call to the SCCToDLIPascal function is actually identical to the
SCCToDLI function call above. The main difference is that the Pascal en
point has been used in this case. A C program can, of course, call either
point, as needed. In general, it is easier for a C program to call the
SCCToDLI entry point because dummy values are not needed for all of t
missing arguments. Another minor difference between this call to SCCToDLI
December 1999 Shadow Programming Guide 4-35

Shadow IMS Direct
and the earlier call is that the PCB has been selected by number rather than by
address. It is always possible to specify which PCB should be used for a given
call by specifying the PCB number as a four-byte integer. The PCB number is
two in this case because PCBs are numbered from one, not zero. The PCB can
be specified by number rather than by address for both the SCCToDLIPascal
and SCCToDLI calls. The code in this section checks for any kind of
unexpected error and uses the pointer to the PCB to extract fields from the
PCB that are used to describe the error.

19. The calls in this section are used to break the connection with the host and
release all of the resources that were obtained for connection to the host. The
disconnect call will terminate the BMP running inside the Shadow Server
address space. The two free calls release the connection block and the
environment block, respectively.
4-36 Shadow Programming Guide December 1999

uest
d is

n is

ides
-
ut
CHAPTER 5:
Transaction Server for IMS

This chapter covers programming information for SHADOW_IMS, a generic RPC that allows you to
invoke an existing transaction. Information includes examples showing use of SHADOW_IMS.

This chapter applies to Shadow Direct and Shadow OS/390 Web Server.

Introduction
SHADOW_IMS can be invoked from any ODBC-compliant application on the
client workstation as a pass-through query.

The SHADOW_IMS RPC is invoked using the following ODBC CALL
statement:

CALL SHADOW_IMS(’IME’,’TRANSACTION PROGRAM NAME’,’IMS-PARTNER-LU
NAME ’,’SECURITY-TYPE’,’TP PARAMETERS’,’COLUMN NAME’,’LOCAL LU
NAME’,’MODE NAME’,’SYMDEST’,’USERID’,’PASSWORD’,’PROFILE’,’SEND-
TYPE’,’MESSAGE-LENGTH’)

Parameter Definition

’IME’ A keyword describing the interface.

’TRANSACTION
PROGRAM NAME’

Name of IMS transaction to be executed.

’IMS-PARTNER-
LUNAME’

The name of the IMS Partner LU as defined in SYS1.PARMLIB(APPCPMxx).

’SECURITY-TYPE’ Defines the type of security in use:

• NONE specifies to omit access security information on this allocation request.

• SAME specifies to use the userid and security profile (if present) from the allocation req
that initiated the local program. The password (if present) is not used; instead, the useri
indicated as being already verified. If the allocation request that initiated execution of the
local program contained no access security information, then access security informatio
omitted on this allocation request.

• PROGRAM specifies to use the access security information that the local program prov
on the call. The local program provides the information by means of the USERID, PASS
WORD, and PROFILE parameters. These values are passed exactly as specified, witho
folding to uppercase.

’TP PARAMETERS’ Parameters for Transaction Program.
December 1999 Shadow Programming Guide 5-1

Transaction Server for IMS

cal
r's
e is

x).

ave

r

ice to
e
rn

ME

 is
, a

and

te

e

NER
’COLUMN NAME’

or

’MAP NAME’

Column name or map name used for returned data.

For the MAP keyword, the syntax is: ‘MAP(NAME(PARTREXX) FIELDS(*))’

NAME: This entry should correspond to the name assigned to the map during extraction.

FIELDS: There are two ways to return data from all columns that are enabled in the map
definition:

• Use an asterisk after FIELDS.
• Omit FIELDS altogether.

To exclude some columns, enter the names of the enabled columns you do want returned in
parentheses after FIELDS.

For more information about the Data Mapping facility, refer to the Shadow Server User’s Guide.

’LOCAL LU NAME’ Optional. Name of local LU where caller's allocate request originates. The ability to specify lo
LU name allows caller to associate its outbound conversations with particular LUs. The calle
address space must have access to the named LU. Otherwise, a parameter_error return cod
returned.

This is the new local LU Name specified in SYS1.PARMLIB(APPCPMxx) This parameter is
optional. The default is to use the APPC Base LU, as defined in SYS1.PARMLIB(APPCPMx

Note: It is recommended that a separate Local LU be defined for each Shadow Server you h
running using IMS/APPC. Application developers should be informed of which LU should be
used with which copy of the Shadow Server. The APPC base LU will work in most cases, howeve
using a separate Local LU tends to be more reliable.

’MODE NAME’ Optional. Specifies the mode name designating the network properties for the session to be
allocated for the conversation. The network properties include, for example, the class of serv
be used. The mode name value of 'SNASVCMG' is reserved for use by APPC/MVS. If a mod
name of 'SNASVCMG' is specified on the Allocate service, the request is rejected with a retu
code of parameter_error.

If you specify a symbolic destination name in the SYMDEST name parameter, set MODE NA
to blanks to obtain the MODE NAME from the side information.

If the partner LU is the same or on the same system as the LOCAL LU NAME, MODE NAME
ignored. If the partner LU is on a different system, and you do not specify a SYMDEST name
blank MODE NAME defaults to any mode in effect for the local and partner LUs, or causes a
return code of parameter_error.

’SYMDEST’ Optional. Specifies a symbolic name representing the partner LU, the PARTNER TP NAME,
the MODE NAME for the session on which the conversation is to be carried. The symbolic
destination name must match that of an entry in the side information data set. The appropria
entry in the side information is retrieved and used to initialize the characteristics for the
conversation.

If you specify a SYMDEST name, the PARTNER LU NAME, MODE NAME, and TP NAME ar
obtained from the side information. If you also specify values for the PARTNER LU NAME,
MODE NAME, or TP NAME parameters on the Allocate service, these values override any
obtained from the side information.

The SYMDEST name in this field can be from 1 to 8 characters long, with characters from
character set 01134. If the SYMDEST name is shorter than eight characters, it must be left-
justified in the variable field, and padded on the right with blanks. To not specify a SYMDEST
name, set the SYMDEST name parameter value to 8 blanks and provide values for the PART
LU NAME, MODE NAME, and TP NAME parameters.

Parameter Definition
5-2 Shadow Programming Guide December 1999

Introduction
’USERID’ Optional. Specifies the userid. The partner LU uses this value and the password to verify the
identity of the end user that initiated the allocation request. The partner LU may use this value for
auditing and accounting purposes, and, together with the security profile (if present), to determine
which partner programs the local program can access.

When the partner LU is on MVS with RACF protection, the userid must be 1-8 alphanumeric
characters.

This parameter is significant only when the Security_type parameter contains a value of Pgm.
Otherwise, this parameter has no meaning and is ignored.

’PASSWORD’ Optional. Specifies the password. The partner LU uses this value and the userid to verify the
identity of the end user that made the allocation request. When the partner LU is on MVS with
RACF protection, the password must be 1-8 alphanumeric characters padded with blanks.

This parameter is significant only when the Security_type parameter contains a value of Pgm.
Otherwise, this parameter has no meaning and is ignored.

’PROFILE’ Optional. Specifies additional security information that may be used to determine what partner
programs the local program may access, and which resources the local program may access. When
the partner LU is on MVS with RACF protection, APPC/MVS treats the profile name as a RACF
group name for verifying access to partner programs. The profile name must be 1-8 alphanumeric
characters.

This parameter is significant only when the Security_type parameter contains a value of Pgm.
Otherwise, this parameter has no meaning and is ignored.

’SEND-TYPE’ Optional. SEND-TYPE specifies what, if any, information is to be sent to the partner program in
addition to the data supplied. SEND-TYPE also lets you combine operations (for example,
Send_and_confirm) and save extra calls to APPC.

Default value is 1. Valid values for this parameter are:

• 0 Buffer_data

Specifies that no additional information is to be sent to the partner program, and the data may
be buffered until a sufficient quantity is accumulated.

• 1 Send_and_flush

Specifies that no additional information is to be sent to the partner program. However, the
supplied data is sent immediately rather than buffered. This is functionally equivalent to a
Send_data call with the Send_type parameter set to Buffer_data followed by a Flush call.

• 2 Send_and_confirm

Specifies that the supplied data is to be sent to the partner program immediately, along with a
request for confirmation. This is functionally equivalent to a Send_data call with the
Send_type parameter set to Buffer_data followed by a Confirm call.

• 3 Send_and_prepare_to_receive

Specifies that the supplied data is to be sent to the partner program immediately, along with
send control of the conversation. This is functionally equivalent to a Send_data call with the
Send_type parameter set to Buffer_data followed by a Prepare_to_receive call with the
prepare_to_receive_type set to sync_level and the locks parameter set to short.

• 4 Send_and_deallocate

Specifies that the supplied data is to be sent to the partner program immediately, along with a
deallocation notification. This is functionally equivalent to a Send_data call with the
Send_type parameter set to Buffer_data followed by a Deallocate call with the
deallocate_type set to sync_level.

’MESSAGE
LENGTH’

Optional. Specifies the length of the messages that are written to or read from the message queue.
Default value is 32k.

Parameter Definition
December 1999 Shadow Programming Guide 5-3

Transaction Server for IMS
Examples of Using Shadow_IMS

COBOL
See sample program in hlq.SAMP(SDCOIM for Shadow Direct or SWCOIM for
Shadow OS/390 Web Server) for DBCTL.

See sample program in hlq.SAMP(SDCOIMAP for Shadow Direct or
SWCOIMAP for Shadow OS/390 Web Server) for Transaction Server for IMS.

Visual Basic 3.0
This sample code uses the IMS IVP sample database DI2IPART and the IMS
sample transactions:

Set myDB = OpenDatabase(“”, False, False,
“ODBC;DSN=SHADOW_DIRECT”)

Part numbers:

AN960C10 7438995P002
3003806* 7618032P101*
3007228 922399-001
3013412 82125-869
652799

The transaction PART inquires into the part number database for information
from the part master and standard information segments of a specific part number.
The input format is transaction code, part number entered as follows:

MySQL = “CALL
SHADOW_IMS(“”IMS””,””PART””,””IMSLU62””,””NONE””,””AN960C10””,””A
PPC-IMS-DATA””)”

The transaction DSPALLI displays all inventory, cycle count, and back-order
information for a specific part. The input format is transaction code, part number
entered as follows:

MySQL = “CALL
SHADOW_IMS(“”IMS””,””DSPALLI””,””IMSLU62””,””NONE””,””AN960C10””,
””APPC-IMS-DATA””)”
5-4 Shadow Programming Guide December 1999

Examples of Using Shadow_IMS
To display inventory information for key 28009126 and part number
an960c10, the input format is transaction code, part number, inventory-
location-key entered as follows:

MySQL = “CALL
SHADOW_IMS(“”IMS””,””DSPINV””,””IMSLU62””,””NONE””,””AN960C10,280
09126””,””APPC-IMS-DATA””)”

Set myset = myDB.CreateDynaset(MySQL, 64)
myset.MoveFirst
txtoutput.Text = myset(“APPC-IMS-DATA”)
I=1
myset.MoveLast
myset.MovFirst
Do Until myset.EOF

N= myset(“APPC-IMS-DATA”) & I
IstData.AddItem N
myset.MoveNext
I = I + 1

Loop
myset.MoveFirst
End Sub

PowerBuilder 4.0
The following PowerBuilder script invokes the sample IMS IVP PART
transaction:

//
//Call SHADOW_IMS
//
LONG ll_Row, ll_NewRow
String ls_PartID,PARM1,PARM2,PARM3,PARM4,PARM5,PARM6
int li_Count
transaction ShadowDirect
//
//Create the ShadowDirect transaction object
//
ShadowDirect = Create Transaction
//
//Assign values to the ShadowDirect transaction
//

ShadowDirect.DBMS = "ODBC"
ShadowDirect.database = ""
ShadowDirect.userid = ""
ShadowDirect.dbpass = ""
ShadowDirect.logid = ""
ShadowDirect.logpass = ""
ShadowDirect.servername = "NONE"
ShadowDirect.dbparm =
"ConnectString='DSN=SHADOW_DIRECT;PWD=xxxxxxx'"
December 1999 Shadow Programming Guide 5-5

Transaction Server for IMS
// Connect to the ShadowDirect ODBC transaction object
CONNECT USING ShadowDirect ;
/* Sheet opening - reflect sheet count in title */
li_Count = w_genapp_frame.wf_getsheetcount ()
this.Title = "Sheet:" + string (li_Count)
/* Modify menu text for platform */
w_genapp_frame.wf_setmenutext (menuid)

//
//Declare the RPC with a parameter
//
 PARM1="IMS"
 PARM2="PART"
 PARM3="IMSLU62"
 PARM4="NONE"
 PARM5="AN960C10"
 PARM6="APPC-IMS-DATA"
Declare GetIMSData Procedure for SHADOW_IMS
:parm1,:parm2,:parm3,:parm4,:parm5,:parm6
using ShadowDirect;

//
//Call the RPC
//
Execute GetIMSData;
//
//Process the result set
//

CHOOSE CASE ShadowDirect.SQLCode
CASE 0

DO WHILE ShadowDirect.SQLCode = 0
FETCH GetIMSData INTO :ls_PartID;
IF

END CHOOSE

//
//Close the procedure
//
//Commit using ShadowDirect;

Close GetIMSData;
5-6 Shadow Programming Guide December 1999

Examples of Using Shadow_IMS
/*EXECSQL
The following /*EXECSQL script invokes the sample IMS PARTS
transaction for part number 3007228 and returns the results:

/*WWW /NEON/IMSEXEC1

* SAMPLE APPLICATION WHICH ILLUSTRATEST THE USE OF AN EXECSQL *
* PROCESS SECTION. THE AUTOFORMAT KEYWORD CALLS FOR THE *
* ROW DATA TO BE FORMATTED INTO AN HTML TABLE. *

*

/*EXECSQL MAXROWS(100) -
 SUBSYS(NONE) PLAN(NONE) -
 AUTOFORMAT(TITLE(’SAMPLE IMS QUERY USING /*EXECSQL’) -
 BODY(’BGCOLOR="#FFCC33"’) -
)
CALL SHADOW_IMS(’IMS’,’PART’,’IMSLU62’,’SAME’,’3007228’,’APPC-
DATA’)

Note:
This script applies to Shadow OS/390 Web Server only.
December 1999 Shadow Programming Guide 5-7

Transaction Server for IMS
5-8 Shadow Programming Guide December 1999

CHAPTER 6:
Transaction Server for CICS

This chapter covers programming information for SHADOW_CICS, a generic RPC that allows you to
invoke an existing transaction as long as the transaction does not send back a prompt requiring a
response.

This chapter applies to Shadow Direct and Shadow OS/390 Web Server.

Introduction
SHADOW_CICS can be invoked from any ODBC-compliant application on the
client workstation as a pass-through query (please see the Visual Basic and
Powerbuilder samples).

You can invoke the RPC with the following ODBC CALL statement.

CALL
SHADOW_CICS(‘NNNN’,‘CCCC’,‘TTTT’,‘PPPPPPPP’,1,2,3,4,5,6,‘DATA’)

Parameter Description

‘NNNN’ Connection-type as defined in the SD exec, “EXCI”.

‘CCCC’ Connection-name as defined in the SD exec.

‘TTTT’ Tran-ID as defined in CICS. For EXCI, this is the Tran-ID that is associated with the DFHMIRS
program.

‘PPPPPPPP’ Program name as defined in CICS.

‘1’ First parameter expected by program.

‘2’ Second parameter expected by program.

‘3’ Third parameter expected by program.

‘4’ Fourth parameter expected by program.

‘5’ Optional. Length of commarea. If not present, default is 32k.

‘6’ Indicates if recursive execution of transaction is required.
Possible values are

• Y for yes
• N for no.

Default value is N.
December 1999 Shadow Programming Guide 6-1

Transaction Server for CICS

Table 6–1. Shadow_CICS ODBC Call Parameters

Example of EXCI demo transaction:

CALLSHADOW_CICS(’EXCI’,’EXCS’,’EXCI’,’DFH$AXCS’,2,’FILEA ’,
’ 1’,’’,100,’’,’DATA’)

Examples of Using Shadow for CICS

COBOL
See sample program in hlq.SAMP (SDCOCIEC for Shadow Direct or SWCOCIEC
for Shadow OS/390 Web Server).

Visual Basic 3.0
This sample code uses the CICS IVP sample VSAM file FILEA and the sample
CICS transaction EXCI:

Set myDB = OpenDatabase("", False, False,
"ODBC;DSN=SHADOW_DIRECT")

The transaction EXCI executes an external CICS interface program named
DFH$AXCS that browses the sample VSAM file FILEA. The input format is:

mySQL = "CALL +
SHADOW_CICS(""EXCI"",""EXCS"",""EXCI"",""DFH$AXCS"",2,""FILEA "",
+
" " 1"","""","""",""AI38GW"",""CICS-
DATA"")"

‘DATA’
or
‘MAP’

Column name or map name to be used for returned data.
For MAP keyword, syntax is: ‘MAP(NAME(EXCI) FIELDS(*))’
NAME: This entry should correspond to name assigned to map during extraction.
FIELDS: There are two ways to return data from all columns that are enabled in the map
definition:

• Use an asterisk after FIELDS
• Omit FIELDS altogether

To exclude some columns, enter the names of the enabled columns you do want returned in
parentheses after FIELDS.

For more information about the Data Mapping facility, refer to the Shadow Server User’s Guide.

‘NNNN’ Connection-type as defined in the SD exec, “EXCI”.

Note:
In the above statement FILEA is followed by three spaces (for a total of
eight characters) and “1” is preceded by five spaces (for a total of six
characters).

Parameter Description
6-2 Shadow Programming Guide December 1999

Examples of Using Shadow for CICS
To call an RPC program that executes the same sample EXCI transaction, use the
following format:

’mySQL = "CALL SDCOCIEC"

Set myset = myDB.CreateDynaset(mySQL, 64)
myset.MoveFirst

To display the first row of output from the SHADOW_CICS call in a text box, use
the following example (the data is returned in a single column with multiple rows
from call shadow_cics):

txtOutput.Text = myset("CICS-DATA")

To display the first of row output from the call rpc SDCOCIEC in a text box, use
the following example (the rpc returns the data in seven columns with multiple
rows):

’txtOutput.Text = (myset("Number") & " " & myset("Name") & " " +
& myset("Address") & " " & myset("Phone"))

’txtOutput.Text = txtOutput.Text & (" " & myset("date") & " " +
& myset("amount") & " " & myset("comment"))

I = 1
myset.MoveLast
myset.MoveFirst

To display the remaining data from the call:

Do Until myset.EOF
 ’ Uncomment next line for use with CALL RPC SDCOCIEC
 ’N = myset("Number") & " " & myset("name") & " " +
 & myset("address") & " " & myset("phone")
 ’Uncomment next line for use with SHADOW_CICS
 N = Left$(myset("CICS-DATA"), 80) & I
 lstData.AddItem N
 myset.MoveNext
 I = I + 1
Loop
myset.MoveFirst
End Sub

+ Indicates a continuation where code should all be on the same line
December 1999 Shadow Programming Guide 6-3

Transaction Server for CICS
PowerBuilder 4.0
The following PowerBuilder script is used to invoke the sample SHADOW_CICS
transaction:

//
//Call SHADOW_CICS
//
LONG ll_Row, ll_NewRow
String PARM1,PARM2,PARM3,PARM4,PARM6,PARM7,PARM8,PARM10,PARM11
string ls_PartID
int li_Count,PARM5,PARM9
transaction ShadowDirect
//
//Create the ShadowDirect transaction object
//
ShadowDirect = Create Transaction
//
//Assign values to the ShadowDirect transaction
//
ShadowDirect.DBMS = "ODBC"
ShadowDirect.database = ""
ShadowDirect.userid = ""
ShadowDirect.dbpass = ""
ShadowDirect.logid = ""
ShadowDirect.logpass = ""
ShadowDirect.servername = "NONE"
ShadowDirect.dbparm = "ConnectString=’DSN=P39016"

// Connect to the ShadowDirect ODBC transaction object
CONNECT USING ShadowDirect ;
/* Sheet opening - reflect sheet count in title */
li_Count = w_genapp_frame.wf_getsheetcount ()
this.Title = "Sheet:" + string (li_Count)
/* Modify menu text for platform */
w_genapp_frame.wf_setmenutext (menuid)
//
//Declare the RPC with a parameter
//
//call shadow_cics(’EXCI’,’EXCS’,’EXCI’,’DFH$AXCS’,2,’FILEA
’,’ 1’,’’,120,’’,’EXCI-DATA’)
 PARM1="EXCI"
 PARM2="EXCS"
 PARM3="EXCI"
 PARM4="DFH$AXCS"
 PARM5=2
 PARM6="FILEA "
 PARM7=" 1"
 PARM8=""
 PARM9=120
 PARM10=""
 PARM11="EXCI-DATA"
6-4 Shadow Programming Guide December 1999

Examples of Using Shadow for CICS
Declare GetCICSData Procedure for SHADOW_CICS
:parm1,:parm2,:parm3,:parm4,:parm5,:parm6,:parm7,:parm8,:parm9,:p
arm10,:parm11
using ShadowDirect;
//
//Call the RPC
//
Execute GetCICSData;
//
//Process the result set
//
CHOOSE CASE ShadowDirect.SQLCode
CASE 0
DO WHILE ShadowDirect.SQLCode = 0
FETCH GetCICSData INTO :ls_PartID;
IF ShadowDirect.SQLCode = 0 THEN
ll_NewRow = Dw_1.InsertRow(0)
ll_Row = DW_1.ScrollToRow(ll_NewRow)
DW_1.SetItem(ll_NewRow,"part_id" , ls_PartID)
END IF
LOOP
CASE ELSE
END CHOOSE
//
//Close the procedure
//
//Commit using ShadowDirect;
Close GetCICSData;

/*EXECSQL
The following /*EXECSQL script is used to invoke the sample SHADOW_CICS
transaction:

/*WWW /NEON/CICEXEC1

* Sample application which illustratest the use of *
* an EXECSQL* process section. *
* *

/*EXECSQL MAXROWS(100) -
 outputformat(ddname(SAMPDATA) MEMBER(SQLEXEC3) -

 CONTENTTYPE(text/html) -
)
call shadow_cics(’EXCI’,’EWSS’,’EXCI’,’DFH$AXCS’,2,’FILEA ’,’
1’,-
’’,120,’’,’MAP(NAME(EXCIMAP) FIELDS(*))’)

Note:
This script applies to Shadow OS/390 Web Server only.
December 1999 Shadow Programming Guide 6-5

Transaction Server for CICS
6-6 Shadow Programming Guide December 1999

CHAPTER 7:
Host Application API Function Calls

This chapter describes all Host Application Program Interface (API) functions, and applies to Shadow
Direct and Shadow Web Server.

API Description DIRECT WEB SEF WEB/RX

ODBC CALL RPC APIs

To bind columns for
result set:

SQLBINDCOL
or SDCPBC

To describe passed
parameter:

SQLDESCRIBEPARAM
or SDCPDP

To access number of
parameters:

SQLNUMPARAMS
or SDCPNP

To reset parameters: SQLRESETPARAM
or SDCPRP

To return status to
client:

SQLRETURNSTATUS
or SDCPRS

To return row to result
set:

SQLTHROW
or SDCPTH

IMS/APPC APIs

To connect to APPC
for IMS:

SQLAPPCCONNECT
 or SDCPAC

SWSAPPCCONNECT
or SWCPAC

SDBAPCON SWSAPCON

To disconnect from
APPC for IMS:

SQLAPPCDISCONNECT
or SDCPAD

SWSAPPCDISCONNECT
or SWCPAD

SDBAPDIS SWSAPDIS

To receive and wait
from APPC for IMS:

SQLAPPCRECEIVE
or SDCPAR

SWSAPPCRECEIVE
or SWCPAR

SDBAPRCV SWSAPRCV

To perform a send to
APPC for IMS:

SQLAPPCSEND
or SDCPAS

SWSAPPCSEND
or SWCPAS

SDBAPSND SWSAPSND

CICS APIs

To establish EXCI
connect:

SQLEXCICONNECT
or SDCPEC

SWSEXCICONNECT
or SWCPEC

SDBEXCON SWSEXCON

To perform DPL
request using EXCI:

SQLEXCIDPLREQ
or SDCPED

SWSEXCIDPLREQ
or SWCPED

SDBEXDPL SWSEXDPL

To perform EXCI
initusr:

SQLEXCIINITUSR
or SDCPEI

SWSEXCIINITUSR
or SWCPEI

SDBEXINI SWSEXINI

To perform EXCI
disconnect:

SQLEXCIDISCONN
or SDCPEL

SWSEXCIDISCONN
or SWCPEL

SDBEXDIS SWSEXDIS
December 1999 Shadow Programming Guide 7-1

Host Application API Function Calls
API Description DIRECT WEB SEF WEB/RX

Web Server Specific APIs

To transmit data to Web Server
clients:

SWCPSN SWSSEND

To buffer outbound HTTP
response headers:

SWCPRE SWSRESP

To transmit data directly to web
client:

SWCPFI SWSFILE

To provide new URL value: SWCPSO SWSSET

To provide a means to issue an
MVS write to operator:

SWCPWT SWSWTO

RPC Direct APIs

To access current execution
environment information:

sdcpif

To add text message to trace
browser log:

sdcpmg

To read buffer of data from
client:

sdcprd

To send buffer of data to client: sdcpwr

General APIs

To get error information: SQLERROR
or SDCPSE

SWSERROR
or SWCPSE

SDBERROR SWSERROR

To return information to ODBC
CALL RPC:

SQLGETINFO
or SDCPGI

SWSINFO
or SWCPGI

SDBINFO SWSINFO

To write message to trace
browser:

SQLTRACEMSG
or SDCPTM

SWSTRACEMSG
or SWCPTM

SDBTRACE SWSTRACE

To dynamically allocate a file: SDBALLOC
or SDCPAL

SWSALLOC
or SWCPAL

SDBALLOC SWSALLOC

To de-allocate datasets: SDBFREE
or SDCPFR

SWSFREE
or SWCPFR

SDBFREE SWSFREE

To fetch or set transaction run-
time variable values:

SDBVALUE
or SDCPVL

SWSVALUE
or SWCPVL

SDBVALUE SWSVALUE

To save and restore transaction-
oriented data :

SQLTOKEN
or SDCPTK

SWSTOKEN
or SWCPTK

SDBTOKEN SWSTOKEN

To concatenate multiple
DDNames under a single
DDName.

SDBCONCT
or SDCPCC

SWSCONCT
or SWCPCC.

SDBCONCT SWSCONCT
7-2 Shadow Programming Guide December 1999

API Description DIRECT WEB SEF WEB/RX

Web Server REXX and SEF only APIs

To clear REXX external data queue: SWSClearQueue
or SWCPQL

SWSCLEDQ

To perform security authorization
processing:

SDBECURE SWSECURE

To serialize usage of resources: SWSENQ

“PARSE PULL” operation in Shadow/
REXX:

SWSGetQueue
or SWCPQG

To set or display SWS product
parameter values:

SDBPARM SWSPARM

Equivalent to Shadow/REXX “Queue”
(not “QUEUED()”):

SWSPutQueue
or SWCPQP

Partly equivalent to Shadow/REXX
built-in function “QUEUED()”:

SWSQueryQueue
or SWCPQQ

To create and write customized SMF
records:

SDBSMF SWSSMF

To transmit out-bound data to web
server clients:

SWSXMIT
December 1999 Shadow Programming Guide 7-3

Host Application API Function Calls
The High-Level Language (HLL) Interface
The Shadow Web Server’s High-Level Language (HLL) interface is implemented
using a number of small glue routines. There is a separate glue routine for each of
the Web Server’s Application Program Interfaces (APIs). Each glue routine is
actually an alias pointing to a small routine within the SWCPBC, SWCPAC or
SWCPIC load modules.

Compiling and Linking HLL Application Programs

When high-level language programs are linkage edited, the product’s load library
must be available to the linkage editor. Calls from a high-level language program’s
object module are resolved by including the NEON-supplied glue routines in the
final load module built by the linkage editor.

The Shadow Web Server’s load library must be included in the SYSLIB dataset
concatenation whenever user-written web transaction programs are linkage edited.

Each glue routine receives control via standard MVS linkage conventions, and
carries out the work of locating web server internals and then executing the
requested function. When the glue routines are entered, the calling HLL programs
may have been operating in any of the modes:

n AMODE(31) or AMODE(24)
n RMODE(24) or RMODE(ANY)

The glue routines handle the details of switching to the Server’s normal
AMODE(31), RMODE(ANY) operational mode. (We strongly recommend that,
if possible, all routines be compiled and linked as AMODE(31), RMODE(ANY).)

NEON-Supplied Source Copy Members
In order to successfully invoke a Web Server API routine, each caller must pro-
vide one or more parameters in the form expected by the server. Three NEON-
supplied sample library members, one for each of the supported languages, con-
tain manifest constants and other data structures which you will need to invoke the
server’s API routines.

Samples for C, COBOL, and PL/I are available in the SAMP dataset.

Layout of the HLL Reference Pages
Each of the HLL API interface is documented separately. Each reference page is
laid out in substantially the same format.

n Each HLL reference page contains a leading section which briefly explains
the use of the API interface.

n This is followed by the Arguments Section which defines each of the
parameters which can be passed to the function. For some Web Server
functions, this section can be further broken down into sub-sections (one for
each of the major sub-functions of the interface).
7-4 Shadow Programming Guide December 1999

The High-Level Language (HLL) Interface
n The Arguments Section describes parameter values using the terminology
given below. The argument type, for each supported language is also shown.
(Note that for C/370, the NEON-supplied header file contains typedef
statements which define the values shown.)

n Additional details showing how to create and use arguments of the proper
type, are illustrated in the examples for each supported language.

n After the arguments’ section, the return code values are explained.

n Finally, there is an example for each of the supported languages; C, COBOL,
and PL/I.

Call by Reference

Some compilers employ a call by value mechanism. When subroutines are
invoked using a call by value mechanism, some parameter values are passed
directly to the called program using the 1st-level parameter list area, or a general
purpose registers. Values are frequently returned directly within a general purpose
register.

All Shadow Web Server API interface routines expect to be invoked using a call
by reference mechanism, implemented with the standard MVS parameter list for-
mat.

Upon entry to any Web Server API routine, general purpose register 1 must point
to a parameter list composed of 1 to n fullwords. Bit zero of the last fullword
within the parameter list must be set to one.

Each fullword of the parameter list contains an address value referring to the main
storage location containing the actual function argument.

The method for ensuring that call by reference conventions are used for subrou-
tine calls varies by language.

n For C/370 each sub-routine prototype contains the specification:
#pragma linkage(name,os)

n For COBOL this is automatic.

n For PL/I, each API routine is declared as:
DCL NAME ENTRY EXTERNAL OPTIONS(RETCODE, INTER, ASM);

Note:
All manifest constants shown outside of the COBOL language
examples are given with underbar characters (e.g.
SWS_SUCCESS). The corresponding COBOL constant
definitions use the hyphen character wherever underbars are
shown (e.g. SWS-SUCCESS).
December 1999 Shadow Programming Guide 7-5

Host Application API Function Calls
Terminology Used in the Reference Pages

 The following terminology is used within the HLL API Reference page:

Address

A main-storage address, specified by the low-order 31-bits of a four-byte (32-bit)
fullword. In the various high-level languages, the term ’address’ is generally
equivalent to ’pointer’.

Buffer Area

An arbitrary number of contiguously located bytes in main storage. The size of the
buffer area can be a pre-defined value, as specified for the individual API inter-
face. Most buffer areas, however, are user-created and variable in length. Either
the length of the entire buffer, or the length of the data value contained within the
buffer, is specified as an argument to the API function.

Flag-Word

As pertains to the Web Server APIs, a four-byte signed or un-signed integer,
stored within a fullword. The storage format, in most cases, is identical to un-
signed integers, except that the fullword is not processed as an integer value.
Instead, each individual bit position specifies a parameter option value.

Usually manifest constants, defined within the header files, are used to specify the
value of flag-word arguments. These manifest constants can often be added or
logically OR-ed together to form the four-byte flag word.

Fullword

A four-byte storage area, generally aligned on a four-byte boundary. A fullword,
can contain either a storage address or a signed or un-signed binary integer.

Manifest Constant

A value defined within a NEON-supplied header file and used (possibly added or
OR-ed with other constants) as a function call argument.

Depending on the high-level language, manifest constants can be compiler pre-
processor symbols (C and PL/I) or actual program constant data areas (COBOL
and PL/I). Manifest constants can be formed as Flag-word values or as signed or
un-signed integers.

Null-terminated String

Within a buffer area, null terminated strings can often be used to indicate the
actual length of the data value. The end of the value (and by derivation the value
length) is delimited by a one-byte binary zero (X’00’). The value begins in the first
position of the buffer area (if non-zero), and continues up-to, but not including,
the delimiting binary zero at the end. A zero-length null-terminated string is rec-
ognized when the first byte of the buffer is a binary zero.
7-6 Shadow Programming Guide December 1999

The High-Level Language (HLL) Interface
Signed Integer

As pertains to the Web Server APIs, a four-byte, signed binary integer, stored
within a fullword.

Unsigned Integer

As pertains to the Web Server APIs, a four-byte, un-signed binary integer, stored
within a fullword.
December 1999 Shadow Programming Guide 7-7

Host Application API Function Calls
ODBC CALL Host APIs
This section covers the following ODBC CALL Host APIs:

The standard ODBC Host APIs (SQLDescribeParam and SQLResetParam) sup-
port long parameters without any new or additional programming.

n The two-byte length prefix for variable strings will never contain a value
greater than 32767, nor can it ever be set to a value greater than 32767. This
does not mean that the variable length strings are restricted to a length of
32767 bytes. They can be used to set lengths greater than 32767 (the two-byte
length prefix will contain 32767, if the actual length is greater than 32767)
and it will report the actual length even if it is greater than 32767 (the two-
byte length prefix will contain 32767, if the actual length is greater than
32767).

n The actual length can never be greater than the precision for any parameter,
long or otherwise.

n Long parameters must be used with parameter markers. Long literals are not
supported.

n Long parameters can only be used with NEON stored procedures. They are
not supported using IBM stored procedures.

n Long parameters can not be used with MDI stored procedures.

API Description DIRECT WEB SEF WEB/RX

ODBC CALL RPC APIs

To bind columns for result set: SQLBINDCOL
or SDCPBC

To describe passed parameter: SQLDESCRIBEPARAM
or SDCPDP

To access number of
parameters:

SQLNUMPARAMS
or SDCPNP

To reset parameters: SQLRESETPARAM
or SDCPRP

To return status to client: SQLRETURNSTATUS
or SDCPRS

To return row to result set: SQLTHROW
or SDCPTH
7-8 Shadow Programming Guide December 1999

ODBC CALL Host APIs
SQLBINDCOL (SDCPBC) Function
SQLBINDCOL performs a bind column on behalf of an ODBC CALL RPC. This
call is used to bind a column to return sets back to the client. The caller must pro-
vide information, which is used to build an SQLDA describing the result set.

Syntax

The general form for invocation of SQLBINDCOL is:

CALL ’SDCPBC’ USING STATEMENT-HANDLE
 SQL-COLUMN-NUMBER
 SQL-C-DEFAULT
 SQL-SMALLINT
 SQL-PRECISION
 SQL-SCALE
 SQL-NO-NULLS
 ID-VALUE
 SQL-COLUMN-LEN
 SQL-COLUMN-NAME
 SQL-COLUMN-NAME-LEN

CALL Arguments

The SQLBINDCOL function can be called by any ODBC CALL RPC and accepts
the following arguments:

Arg
HLL Argument Type

I/O Description of Argument
C COBOL PL/I

1 LONG PIC
S9(5)
COMP

FIXED
BIN(31)

INPUT Statement handle. Since only one host RPC can
execute at a time for each host session, this value is
ignored and must be zero.

2 LONG PIC
S9(5)
COMP

FIXED
BIN(31)

INPUT Column number of the result data. Columns are
numbered from the left, starting with 1.

3 LONG PIC
S9(5)
COMP

FIXED
BIN(31)

INPUT C data type of column data. Value must be SQL-C-
default at this time. This means that C type must
match SQL type.

4 LONG PIC
S9(5)
COMP

FIXED
BIN(31)

INPUT SQL data type of column data. All DB2 SQL data
types are supported except for graphic (DBCS) data.

5 LONG PIC
S9(5)
COMP

FIXED
BIN(31)

INPUT Precision of column. This value is primarily used for
decimal and character string data.

6 LONG PIC
S9(5)
COMP

FIXED
BIN(31)

INPUT Scale of column. This value is primarily used for
decimal data.
December 1999 Shadow Programming Guide 7-9

Host Application API Function Calls

Return Values

SQLBINDCOL always sets a signed numeric return code value. Possible values
are:

7 LONG PIC
S9(5)
COMP

FIXED
BIN(31)

INPUT Indicates if column can have null values. Possible
values are SQL-NO-NULLS and SQL-NULLABLE.

8 LONG PIC
S9(5)
COMP

FIXED
BIN(31)

INPUT Pointer to storage for data. Actual data must be at this
location when SQLTHROW function is called to
send a row.

9 LONG PIC
S9(5)
COMP

FIXED
BIN(31)

INPUT Pointer to a fullword which serves as a null indicator
for subsequent SQLTHROW call. Before
SQLTHROW function is called to send a row, this
fullword should be set to “-1” if the data for the
column is NULL. Otherwise, it should be set to “0”.
Notice that NULL data is only applicable for DB2. If
you write rpc that accesses non-DB2 data, simply
initialize this fullword to “0”.

10 CHAR* PIC
(X)X

CHAR(X) INPUT Pointer to storage containing column name. Column
name must be a valid DB2 column name.

11 LONG PIC
S9(5)
COMP

FIXED
BIN(31)

INPUT Length of column name string. This must be a valid
DB2 column name length.

Return Value Description

SQL_SUCCESS The operation succeeded. The specified operation was performed.

SQL_SUCCESS_WITH_INFO The operation succeeded, but a warning was issued. Call
SQLERROR to get warning message.

SQL_NO_DATA_FOUND Error condition. No data returned.

SQL_ERROR A parameter validation error was found. The error will be logged to
the wrap-around trace, and is available using the SQLERROR
function.

SQL_INVALID_HANDLE The connection handle argument is invalid. No error information can
be returned using SQLERROR.

SQL_STILL_EXECUTING Error condition. Another function is still executing.

SQL_NEED_DATA Error Condition. The application needs to send parameter data
values.

Arg
HLL Argument Type

I/O Description of Argument
C COBOL PL/I
7-10 Shadow Programming Guide December 1999

ODBC CALL Host APIs
Diagnostics

When SQLBINDCOL returns SQL_ERROR or SQL_SUCCESS_WITH_INFO,
an associated SQLSTATE value can be obtained by calling SQLERROR. The fol-
lowing table lists the SQLSTATE values commonly returned by SQLBINDCOL
and explains each one in the context of this function. The return code associated
with each SQLSTATE value is SQL_ERROR, unless noted otherwise.

PL/I Example
%INCLUDE SPCPHD

DCL ST PTR; /* STATEMENT HANDLE */
DCL ID FIXED BIN(15); /* ID VALUE */
DCL CBID FIXED BIN(31); /* LENGTH OF THE ID */
DCL FB00 FIXED BIN(31) INIT(0); /* LITERAL VALUE */
DCL FB01 FIXED BIN(31) INIT(1); /* LITERAL VALUE */

CALL SQLBINDCOL(ST, /* PASS THE STATEMENT HANDLE */
FB01, /* COLUMN NUMBER */
SQL_C_DEFAULT, /* REQUIRED C DATA TYPE */
SQL_SMALLINT, /* USE A TWO-BYTE INTEGER */
FB00, /* PRECISION DOESN’T MATTER */
FB00, /* SCALE DOESN’T MATTER */
SQL_NO_NULLS, /* DATA IS NEVER NULL */
ID, /* ID FIELD ADDRESS */
CBID, /* ID LENGTH ADDRESS */
’ID’, /* COLUMN NAME STRING */
FB02); /* COLUMN NAME LENGTH */

RC = PLIRETV(); /* GET THE RETURN CODE */

SQLSTATE Error Description

SS1000 General error Invalid parameter list detected.

S1002 Invalid column number Column number is zero.

S1002 Invalid column number Column number exceeds maximum value.

S1010 Function sequence error Result set has already been started.
December 1999 Shadow Programming Guide 7-11

Host Application API Function Calls
C Example
SDWORD cbpanm; /* length of the parameter number*/

RC=SQLBINDCOL(&st, /* pass the statement handle */
 1, /* column number */
 SQL_C_DEFAULT, /* required C data type */
 SQL_SMALLINT, /* use a two-byte integer */
 0, /* precision doesn’t matter */
 0, /* scale doesn’t matter */
 SQL_NO_NULLS, /* data is never NULL */
 &panm, /* parameter number address */
 &cbpanm, /* parameter number length address*/
 “Number”, /* column name string */
 SQL_NTS); /* string is null-terminated */
 if (rc != SQL_SUCCESS && /* not successful execution? */
 rc != SQL_SUCCESS_WITH_INFO)/* not success with info? */

COBOL Example
77 SQL-COLUMN-NUMBER PIC S9(5) COMP VALUE 1.
77 SQL-C-DEFAULT PIC S9(5) COMP VALUE IS 99.
77 SQL-SMALLINT PIC S9(5) COMP VALUE IS 5.
77 SQL-PRECISION PIC S9(5) COMP VALUE 0.
77 SQL-SCALE PIC S9(5) COMP VALUE 0.
77 SQL-NO- NULLS PIC S9(5) COMP VALUE IS 0.
77 SQL-COLUMN- LEN PIC S9(5) COMP VALUE 1.
77 COLUMN-NULL-INDICATOR PIC S9(5) COMP VALUE 0.
77 SQL-COLUMN-NAME PIC X(10) VALUE 'ID'.
77 SQL-COLUMN-NAME-LEN PIC S9(5) COMP VALUE 2.

CALL 'SDCPBC' USING STATEMENT-HANDLE
SQL-COLUMN-NUMBER
SQL-C-DEFAULT
SQL-SMALLINT
SQL-PRECISION
SQL-SCALE
SQL-NO-NULLS
ID-VALUE
COLUMN-NULL-INDICATOR
SQL-COLUMN-NAME
SQL-COLUMN-NAME-LEN.
7-12 Shadow Programming Guide December 1999

ODBC CALL Host APIs
SQLDESCRIBEPARAM (SDCPDP) Function
SQLDESCRIBEPARAM is used to obtain information about a parameter passed
from the client to the host.

Syntax

The general form for invocation of SQLDESCRIBEPARAM is:

CALL ’SDCPDP’ USING STATEMENT-HANDLE
 SQL-PARAM-NUMBER
 SQL-DATA-TYPE
 SQL-PRECISION
 SQL-SCALE
 SQL-NULLABLE-TYPE
 SQL-PARAM-TYPE
 SQL-PARAM-ADDRESS

SQL-PARAM-LENGTH

CALL Arguments

The SQLDESCRIBEPARAM function can be called by any ODBC CALL RPC
and accepts the following arguments:

Note:
The client can pass parameters to the host using both parameter
markers (?) and parameter literals. Both types of client parameters
are treated the same way on the host.

Arg
HLL Argument Type

I/O Description of Argument
C COBOL PL/I

1 LONG PIC
S9(5)
COMP

FIXED
BIN(31)

INPUT Statement handle. Since only one host RPC can
execute at a time for each host session, this value is
ignored and must be zero.

2 LONG PIC
S9(5)
COMP

FIXED
BIN(31)

INPUT Parameter number. All parameters including literals
are numbered from the left starting at 1.00

3 LONG PIC
S9(5)
COMP

FIXED
BIN(31)

OUTPUT SQL data type of parameter data. All DB2 SQL data
types are supported except for graphic (DBCS) data.

4 LONG PIC
S9(5)
COMP

FIXED
BIN(31)

OUTPUT Precision of parameter. This value is primarily used
for decimal and character string data.

5 LONG PIC
S9(5)
COMP

FIXED
BIN(31)

OUTPUT Scale of parameter. This value is primarily used for
decimal data.

6 LONG PICS9(5)
COMP

FIXED
BIN(31)

OUTPUT Indicates whether or not parameter allows null
values.
December 1999 Shadow Programming Guide 7-13

Host Application API Function Calls
Return Values

SQLDESCRIBEPARAM always sets a signed numeric return code value. Possi-
ble values are:

Diagnostics

When SQLDESCRIBEPARAM returns SQL_ERROR or
SQL_SUCCESS_WITH_INFO, an associated SQLSTATE value can be obtained
by calling SQLERROR. The following table lists the SQLSTATE values com-
monly returned by SQLDESCRibeparam and explains each one in the context of

7 LONG PIC
S9(5)
COMP

FIXED
BIN(31)

OUTPUT Indicates input/output type of parameter. Parameters
can be used to send data to host (input), receive data
from host (output), or both (input/output).

8 LONG PIC
S9(5)
COMP

FIXED
BIN(31)

OUTPUT Pointer to storage for parameter. Parameter can be
accessed and updated at this storage location.

9 LONG PIC
S9(5)
COMP

FIXED
BIN(31)

OUTPUT Actual length of column. Length will be same as
precision except for variable length fields (character
and binary). For variable length fields, length will be
current length. For all types, this field can contain
SQL-NULL-DATA.

Return Value Description

SQL_SUCCESS The operation succeeded. The specified operation was performed.

SQL_SUCCESS_WITH_INFO The operation partially succeeded. This return code value is set
when the returned error message text has been truncated.

SQL_NO_DATA_FOUND Indicates that the DDNAME, DSNAME or PDS member name is
not valid because the dataset or member does not exist, or because
the dataset is being held exclusively by some other address space.

SQL_ERROR Indicates that the DDNAME, DSNAME or PDS member name is
not valid because the dataset or member does not exist, or because
the dataset is being held exclusively by some other address space.

SQL_INVALID_HANDLE The connection handle argument is invalid. No error information can
be returned using SQLERROR.

SQL_STILL_EXECUTING Error condition. Another function is still executing.

SQL_NEED_DATA Error Condition. The application needs to send parameter data
values.

Arg
HLL Argument Type

I/O Description of Argument
C COBOL PL/I
7-14 Shadow Programming Guide December 1999

ODBC CALL Host APIs
this function. The return code associated with each SQLSTATE value is
SQL_ERROR, unless noted otherwise.

PL/I Example
DCL FB01 FIXED BIN(31) INIT(1);/* LITERAL VALUE */
DCL SQDATY FIXED BIN(31); /* SQL_DATA_TYPE */
DCL SQPRSN FIXED BIN(31); /* SQL_PRECISION */
DCL SQNUTY FIXED BIN(31); /* SQL_NULLABLE_TYPE */
DCL SQSCAL FIXED BIN(31); /* SQL_SCALE */
DCL SQPATY FIXED BIN(31); /* SQL_PARAM_TYPE */
DCL SQPAAD PTR; /* SQL_PARAM_ADDRESS */
DCL SQPALN FIXED BIN(31); /* SQL_PARAM_LENGTH */

CALL SQLDESCRIBEPARAM(ST, /* PASS THE STATEMENT HANDLE */
 FB01, /* PARAMETER NUMBER */
 SQDATY, /* REQUIRED C DATA TYPE */
 SQPRSN, /* USE A TWO-BYTE INTEGER */
 SQSCAL,
 SQNUTY,
 SQPATY,
 SQPAAD,
 SQPALN);
RC = PLIRETV(); /* GET THE RETURN CODE */

SQLSTATE Error Description

SS1000 General error Invalid parameter list detected.

S1000 General error No room in buffer for column description.

S1004S1002 SQL data type out of range SQL data type is invalid.

S1009 Invalid argument value Column name address not set.

S1009 Invalid argument value Column data length address not set.

S1009 Invalid argument value Column data address is not set.

S1090 Invalid string or buffer length Column name length is invalid.

S1090 Invalid string or buffer length Column name length is not valid.

S1094 Invalid scale value Decimal scale value is invalid.

S1099 Nullable type out of range Nullable status value is invalid.

S1104S1002 Invalid precision value Decimal precision value is invalid.

S1104S1002 Invalid precision value String or binary precision value is invalid.

S1C00S Driver not capable Data type is not SQL_C_DEFAULT.
December 1999 Shadow Programming Guide 7-15

Host Application API Function Calls
C Example
SDWORD pasq; /* parameter SQL type */
UDWORD papr; /* parameter precision */
SDWORD pasc; /* parameter scale */
SDWORD panl; /* parameter nullable status */
SDWORD paty; /* parameter type value */
PTR paad; /* parameter address */
SDWORD paln; /* parameter length */

rc = SQLDescribeParam(&st, /* pass the statement handle */
 i+1, /* parameter number */
 &pasq, /* address of the SQL type field */
 &papr, /* address of the precision field*/
 &pasc, /* address of the scale field */
 &panl, /* address of the nullable status*/
 &paty, /* address of the parameter type */
 &paad, /* address of the parameter */
 &paln); /* address of parameter length */
 if (rc != SQL_SUCCESS && /* not successful execution? */
 rc != SQL_SUCCESS_WITH_INFO) /* not success with info? */

COBOL Example
77 STATEMENT-HANDLE USAGE IS POINTER.
77 SQL-PARAM-NUMBER PIC S9(5) COMP VALUE 1.
77 SQL-DATA-TYPE PIC S9(5) COMP VALUE 0.
77 SQL-PRECISION PIC S9(5) COMP VALUE 0.
77 SQL-SCALE PIC S9(5) COMP VALUE 0.
77 SQL-NULLABLE-TYPE PIC S9(5) COMP VALUE 0.
77 SQL-PARAM-TYPE PIC S9(5) COMP VALUE 0.
77 SQL-PARAM-ADDRESS USAGE IS POINTER.
77 SQL-PARAM-LENGTH PIC S9(5) COMP VALUE 0.

CALL ’SDCPDP’ USING STATEMENT-HANDLE
SQL-PARAM-NUMBER
SQL-DATA-TYPE
SQL-PRECISION
SQL-SCALE
SQL-NULLABLE-TYPE
SQL-PARAM-TYPE
SQL-PARAM-ADDRESS
SQL-PARAM-LENGTH
7-16 Shadow Programming Guide December 1999

ODBC CALL Host APIs
SQLNUMPARAMS (SDCPNP) Function
SQLNUMPARAMS is used to obtain the number of parameters passed from the
client to the host. This value will be zero or greater.

Syntax

The general form for invocation of SQLNUMPARAMS is:

CALL ’SDCPNP’ USING STATEMENT-HANDLE SQL-PARAM-COUNT

CALL Arguments

The SQLNUMPARAMS function can be called by any ODBC CALL RPC and
accepts the following arguments:

Return Values

SQLNUMPARAMS always sets a signed numeric return code value. Possible val-
ues are:

Note:
The client can pass parameters to the host using both parameter
markers (?) and parameter literals. Both types of client parameters
are treated the same way on the host.

Arg
HLL Argument Type

I/O Description of Argument
C COBOL PL/I

1 LONG PIC
S9(5)
COMP

FIXED
BIN(31)

INPUT Statement handle. Since only one host RPC can
execute at a time for each host session, this value is
ignored and must be zero.

2 LONG PIC
S9(5)
COMP

FIXED
BIN(31)

OUTPUT Number of RPC parameters passed to host from
client. This argument is a pointer to a signed four-
byte integer.

Return Value Description

SQL_SUCCESS The operation succeeded. The specified operation was performed.

SQL_SUCCESS_WITH_INFO The operation partially succeeded. This return code
value is set when the returned error message text has
been truncated.

SQL_NO_DATA_FOUND Indicates that the DDNAME, DSNAME or PDS
member name is not valid because the dataset or
member does not exist, or because the dataset is being
held exclusively by some other address space.
December 1999 Shadow Programming Guide 7-17

Host Application API Function Calls
Diagnostics

When SQLNUMPARAMS returns SQL_ERROR or
SQL_SUCCESS_WITH_INFO, an associated SQLSTATE value can be obtained
by calling SQLERROR. The following table lists the SQLSTATE values com-
monly returned by SQLNUMPARAMS and explains each one in the context of
this function. The return code associated with each SQLSTATE value is
SQL_ERROR, unless noted otherwise.

PLl/I Example
DCL ST PTR; /* STATEMENT HANDLE */
DCL SQPACN FIXED BIN(31); /* SQL_PARAMATER_COUNT */

CALL SQLNUMPARAMS(ST, /* PASS THE STATEMENT HANDLE */
 SQPACN); /* PARAMETER COUNT */
 RC = PLIRETV(); /* GET THE RETURN CODE */

C Example
rc = SQLNumParams(&st, &pacn); /* get the number of parameters*/
 if (rc != SQL_SUCCESS && /* not successful execution? */
 rc != SQL_SUCCESS_WITH_INFO) /* not success with info? */

COBOL Example
77 STATEMENT-HANDLE USAGE IS POINTER.
77 SQL-PARAM-COUNT PIC S9(5) COMP VALUE 0.

CALL ’SDCPNP’ USING STATEMENT-HANDLE SQL-PARAM-COUNT.

SQL_ERROR A parameter validation error was found. The error will
be logged to the wrap-around trace, and is available
using the SQLERROR function.

SQL_INVALID_HANDLE The connection handle argument is invalid. No error information can
be returned using SQLERROR.

SQL_STILL_EXECUTING Error condition. Another function is still executing.

SQL_NEED_DATA Error Condition. The application needs to send parameter data
values.

SQLSTATE Error Description

SS1000 General error Invalid parameter list detected.

S1009S Invalid argument value Parameter count address not set.

Return Value Description
7-18 Shadow Programming Guide December 1999

ODBC CALL Host APIs
SQLRESETPARAM (SDCPRP) Function
SQLRESETPARAM is used to reset the length of a parameter passed from the cli-
ent to the host.

In practice, this routine is really only used to change null parameters to non-null
parameters and vice versa.

Syntax

The general form for invocation of SQLRESETPARAM is:

RETCODE SQLRESETPARAM (hstmt, rgbMsgText, cbMsgText, fOption)

CALL Arguments

The SQLRESETPARAM function can be called by any ODBC CALL RPC and
accepts the following arguments:

Note:
The client can pass parameters to the host using both parameter
markers (?) and parameter literals. This routine can only be used
with parameter markers.

Arg
HLL Argument Type

I/O Description of Argument
C COBOL PL/I

1 LONG PIC
S9(5)
COMP

FIXED
BIN(31)

INPUT Statement handle. Since only one host RPC can
execute at a time for each host session, this value is
ignored and must be zero.

2 LONG PIC
S9(5)
COMP

FIXED
BIN(31)

INPUT Parameter number. All parameters including literals
are numbered from the left starting at 1.

3 LONG PIC
S9(5)
COMP

FIXED
BIN(31)

INPUT New parameter length value. Parameter becomes null
if new value is SQL-NULL-DATA. Parameter
becomes NON-NULL if new value is not SQL-
NULL-DATA.
December 1999 Shadow Programming Guide 7-19

Host Application API Function Calls
Return Values

SQLRESETPARAM always sets a signed numeric return code value. Possible
values are:

Diagnostics

When SQLRESETPARAM returns SQL_ERROR or
SQL_SUCCESS_WITH_INFO, an associated SQLSTATE value can be obtained
by calling SQLERROR. The following table lists the SQLSTATE values com-
monly returned by SQLRESETPARAM and explains each one in the context of
this function. The return code associated with each SQLSTATE value is
SQL_ERROR, unless noted otherwise.

Return Value Description

*SQL_SUCCESS

*

The operation succeeded. The specified operation was performed.

SQL_SUCCESS_WITH_INFO The operation partially succeeded. This return code
value is set when the returned error message text has
been truncated.

SQL_NO_DATA_FOUND Indicates that the DDNAME, DSNAME or PDS
member name is not valid because the dataset or
member does not exist, or because the dataset is being
held exclusively by some other address space.

SQL_ERROR A parameter validation error was found. The error will
be logged to the wrap-around trace, and is available
using the SQLERROR function.

SQL_INVALID_HANDLE The connection handle argument is invalid. No error information can
be returned using SQLERROR.

SQL_STILL_EXECUTING Error condition. Another function is still executing.

SQL_NEED_DATA Error Condition. The application needs to send parameter data
values.

SQLSTATE Error Description

SS1000 General error Invalid parameter list detected.

S1000 General error Trace message construction failed.

S1000 General error Invalid option value detected.

S1009S Invalid argument value Message area address not set.

S1009 Invalid argument value Trace message insertion failed.

S1090S1002 Invalid string or buffer length Message area length is invalid.

S1090 Invalid string or buffer length Message text length is not valid.
7-20 Shadow Programming Guide December 1999

ODBC CALL Host APIs

the

nd
SQLRETURNSTATUS (SDCPRS) Function
SQLRETURNSTATUS is used to return status information to the client from an
ODBC CALL RPC. The status data determines the return code from the SQLEX-
ECDIRECT, SQLPREPARE, or SQLEXECUTE function that started the RPC.
The client application can retrieve the status data (message and native code) by
calling SQLERROR.

The actual return code returned to the ODBC application will be SQL-SUCCESS-
WITH-INFO if this routine provides a positive return code and SQL-ERROR if
this routine provides a negative return code. The return code provided by this rou-
tine is returned to the client application as the native error code (see the SQLER-
ROR function description in the ODBC programmer’s reference manual, not
SQLERROR function description here).

Syntax

The general form for invocation of SQLRETURNSTATUS is:

CALL ’SDCPAS’ CONNECTION-HANDLE MESSAGE LENGTH ERROR-CODE

CALL Arguments

The SQLRETURNSTATUS function can be called by any ODBC CALL RPC a
accepts the following arguments:

Arg
HLL Argument Type

I/O Description of Argument
C COBOL PL/I

1 LONG PIC
S9(5)
COMP

FIXED
BIN(31)

INPUT Statement handle. Since only one host RPC can
execute at a time for each host session, this value is
ignored and must be zero.

2 CHAR* PICX(X) CHAR(X) INPUT Address of message text to be returned. Text must be
set before function is called.

3 LONG PIC
S9(5)
COMP

FIXED
BIN(31)

OUTPUT Length of message text to be returned. Value can be
an actual length or can be specified as SQL-NTS if
the message text is NULL-TERMINATED.

4 LONG PIC
S9(5)
COMP

FIXED
BIN(31)

OUTPUT Native error code. If value is negative, client return
code will be SQL-ERROR. If value is positive, client
return code will be SQL-SUCCESS-WITH-INFO.
This field must not be zero.
December 1999 Shadow Programming Guide 7-21

Host Application API Function Calls
Return Values

SQLRETURNSTATUS always sets a signed numeric return code value. Possible
values are:

Diagnostics

When SQLRETURNSTATUS returns SQL_ERROR or
SQL_SUCCESS_WITH_INFO, an associated SQLSTATE value can be obtained
by calling SQLERROR. The following table lists the SQLSTATE values com-
monly returned by SQLReturnStatus and explains each one in the context of this
function. The return code associated with each SQLSTATE value is
SQL_ERROR, unless noted otherwise.

Return Value Description

SQL_SUCCESS The operation succeeded. The specified operation was performed.

SQL_SUCCESS_WITH_INFO The operation partially succeeded. This return code
value is set when the returned error message text has
been truncated.

SQL_NO_DATA_FOUND Indicates that the DDNAME, DSNAME or PDS
member name is not valid because the dataset or
member does not exist, or because the dataset is being
held exclusively by some other address space.

SQL_ERROR A parameter validation error was found. The error will
be logged to the wrap-around trace, and is available
using the SQLERROR function.

SQL_INVALID_HANDLE The connection handle argument is invalid. No error information can
be returned using SQLERROR.

SQL_STILL_EXECUTING Error condition. Another function is still executing.

SQL_NEED_DATA Error Condition. The application needs to send parameter data
values.

SQLSTATE Error Description

SS1000 General error Invalid parameter list detected.

S1000 General error Invalid native error code detected.

S1009S Invalid argument value Message area address not set.

S1090S1002 Invalid string or buffer length Message area length is invalid.

S1090 Invalid argument value Message text length is not valid.
7-22 Shadow Programming Guide December 1999

ODBC CALL Host APIs
PL/I Example
DCL CN PTR; /* CONNECTION HANDLE */
DCL TRMG CHAR(256); /* TRACE MESSAGE AREA */
DCL NAER FIXED BIN(31); /* NATIVE ERROR CODE AREA */

CALL SQLRETURNSTATUS(CN, /* GET SOME INFORMATION */
 TRMG, /* TRACE MESSAGE AREA */

 SQL_NTS, /* STRING IS NULL-TERMINATED */
 NAER); /* PASS THE NATIVE ERROR CODE */

RC = PLIRETV(); /* GET THE RETURN CODE */

C Example
SDWORD naer; /* native error code area */

rc = SQLReturnStatus(&cn, /* get some information */
trmg, /* trace message area */
SQL_NTS, /* string is null-terminated */
naer); /* pass the native error code */

COBOL Example
77 CONNECTION-HANDLE USAGE IS POINTER.
77 TRACE-MESSAGE-AREA PIC X(256) VALUE IS SPACES.
77 SQL-NTS PIC S9(5) COMP VALUE IS -3.
77 NATIVE-ERROR-CODE-AREA PIC S9(5) COMP VALUE 0.
December 1999 Shadow Programming Guide 7-23

Host Application API Function Calls
SQLTHROW (SDCPTH) Function
SQLTHROW is used to send a row from the host ODBC call RPC back to the cli-
ent.

SQLTHROW is called for each row in the result set. When populating the result
set, SQLTHROW is called with a parameter of SQL-THROW-ROW. Once the
result set is populated and you wish to send the result to the client, SQLTHROW
is called once again with a parameter of SQL-THROW-DONE.

Syntax

The general form for invocation of SQLTRHOW is:

CALL ’SDCPTH’ STATEMENT-HANDLE MESSAGE LENGTH THROW-OPTION

CALL Arguments

The SQLTHROW function can be called by any ODBC CALL RPC and accepts
the following arguments:

Return Values

SQLTHROW always sets a signed numeric return code value. Possible values are:

Note:
One or more columns must be bound before this routine is called.

Arg
HLL Argument Type

I/O Description of Argument
C COBOL PL/I

1 LONG PIC
S9(5)
COMP

FIXED
BIN(31)

INPUT Statement handle. Since only one host RPC can
execute at a time for each host session, this value is
ignored and must be zero.

2 LONG PIC
S9(5)
COMP

FIXED
BIN(31)

INPUT Top of operation needed. This value is used to
indicate that row is being provided or that result set is
complete.

Return Value Description

SQL_SUCCESS The operation succeeded. The specified operation was performed.

SQL_SUCCESS_WITH_INFO The operation partially succeeded. This return code
value is set when the returned error message text has
been truncated.

SQL_NO_DATA_FOUND Indicates that the DDNAME, DSNAME or PDS
member name is not valid because the dataset or
member does not exist, or because the dataset is being
held exclusively by some other address space.
7-24 Shadow Programming Guide December 1999

ODBC CALL Host APIs
Diagnostics

When SQLTHROW returns SQL_ERROR or SQL_SUCCESS_WITH_INFO, an
associated SQLSTATE value can be obtained by calling SQLERROR. The fol-
lowing table lists the SQLSTATE values commonly returned by SQLThrow and
explains each one in the context of this function. The return code associated with
each SQLSTATE value is SQL_ERROR, unless noted otherwise.

SQL_ERROR A parameter validation error was found. The error will
be logged to the wrap-around trace, and is available
using the SQLERROR function.

SQL_INVALID_HANDLE The connection handle argument is invalid. No error information can
be returned using SQLERROR.

SQL_STILL_EXECUTING Error condition. Another function is still executing.

SQL_NEED_DATA Error Condition. The application needs to send parameter data
values.

SQLSTATE Error Description

SS1000 General error Invalid parameter list detected.

S1000S General error Invalid option value detected.

S1000 General error Null data specified for a non-null column.

S1000 General error Maximum row count limit has been reached.

S1001 Memory allocation failure Buffer space allocation failed.

S1010S1002 Function sequence error Result set has already been completed.

24000 Invalid cursor state No columns have been bound so far.

Return Value Description
December 1999 Shadow Programming Guide 7-25

Host Application API Function Calls
PL/I Example
DCL ST PTR; /* STATEMENT HANDLE */

CALL SQLTHROW(ST, /* PASS THE STATEMENT HANDLE*/
 SQL_THROW_ROW); /* OPTION VALUE */
RC = PLIRETV(); /* GET THE RETURN CODE */

C Example
rc = SQLThrow(&st, /* pass the statement handle*/
 SQL_THROW_ROW); /* option value */
 if (rc != SQL_SUCCESS && /* not successful execution?*/
 rc != SQL_SUCCESS_WITH_INFO) /* not success with info? */

COBOL Sample
77 STATEMENT-HANDLE USAGE IS POINTER.
77 SQL-THROW-DONE PIC S9(5) COMP VALUE IS 2.

CALL ’SDCPTH’ USING STATEMENT-HANDLE SQL-THROW-DONE.
7-26 Shadow Programming Guide December 1999

IMS/APPC APIs
IMS/APPC APIs

If you want to write an RPC to invoke a transaction, a sample is provided in the
NEON.SV040100.SAMP dataset, member SDCOIMAP. This sample is a ODBC
CALL RPC and is executed in the same fashion as the SHADOW_IMS RPC.
(Please see the Shadow Direct User’s Guide regarding ODBC CALL RPCs.)

A sample Visual Basic 4.0 program that demonstrates the use of the IMS Transac-
tion Server for ODBC is shipped on the CD-ROM in the Shadowcd/samples/vb4/
imsappc directory. This sample demonstrates the use of the Parts application that
is shipped with IMS. It also allows for other transactions to be executed. Depend-
ing on your site, the calls to SHADOW_IMS may need to be modified.

The following API call functions, implemented by Shadow OS/390 Web Server
and ShadowDirect Server, include those for APPC connections between Transac-
tion Server for IMS and IMS, V4.1 and above, as well as APPC connections via
REXX-language interfaces.

This section covers the following IMS/APPC APIs:

Note:
In order to use these APIs, you need the IMS Transaction Server.

API Description DIRECT WEB SEF WEB/RX

IMS/APPC APIs

To connect to APPC
for IMS:

SQLAPPCCONNECT
 or SDCPAC

SWSAPPCCONNECT
or SWCPAC

SDBAPCON SWSAPCON

To disconnect from
APPC for IMS:

SQLAPPCDISCONNECT
or SDCPAD

SWSAPPCDISCONNECT or
SWCPAD

SDBAPDIS SWSAPDIS

To receive and wait
from APPC for IMS:

SQLAPPCRECEIVE
or SDCPAR

SWSAPPCRECEIVE
or SWCPAR

SDBAPRCV SWSAPRCV

To perform a send to
APPC for IMS:

SQLAPPCSEND
or SDCPAS

SWSAPPCSEND
or SWCPAS

SDBAPSND SWSAPSND
December 1999 Shadow Programming Guide 7-27

Host Application API Function Calls
High-Level Language Interface
SQLAPPCCONNECT (SDCPAC) or
SWSAPPCCONNECT (SWCPAC) Function

This API function call:

n Connects to IMS.
n Sends a transaction for IMS to execute and receive data from the transaction.

Syntax

The general form for invocation of SDCPAC/SWCPAC is:

set sql-appc-type-ims to true.
set atb-security-none to true.
CALL ’SDCPAC/SWCPAC’ USING STATEMENT-HANDLE
 SQL-APPC-TYPE
 TP-NAME
 TP-NAME-LENGTH
 PARTNER-LU-NAME
 ATB-SECURITY
 CONVERSATION-ID
 SEND-LENGTH
 SEND-BUFFER
 REQUESTED-LENGTH
 RECEIVE-BUFFER
 ATB-RETCODE

LOCAL LUNAME
 MODE NAME
 SYMBOLIC DESTINATION NAME
 USERID
 PASSWORD
 PROFILE

ATB-DATA-RECVD
ATB-SEND-TYPE
ATB-SYNC-LEVEL

 CONVERSATION TYPE

CALL Arguments

The SQLAPPCCONNECT/SWSAPPCONNECT (SWCPAC/SDCPAC) function
arguments are described in the following table. All parameters are required.

Can be used in Shadow/REXX.

Can be used from other REXX interpreters.

HLL entry point name is SDCPAC/SWCPAC.
7-28 Shadow Programming Guide December 1999

IMS/APPC APIs

-

r
Arg
HLL Argument Type

I/O Description of Argument
C COBOL PL/I

1 LONG PIC
S9(9)
COMP

FIXED
BIN(31)

INPUT Statement Handle. Currently ignored however, it
must contain zeros.

2 LONG PIC
S9(9)
COMP

FIXED
BIN(31)

INPUT IMS Call type:

• SWS-APPC-TYPE-IMS for non-conversa-
tional IMS transactions.

• SWS-APPC-TYPE-IMSCONV for conversa-
tional IMS transactions.

3 CHAR* PIC
X(64)

CHAR(64) INPUT IMS Transaction Name. A field containing the name
of an IMS Transaction Code.

4 LONG PIC
S9(9)
COMP

FIXED
BIN(31)

INPUT IMS Transaction Name length.

5 CHAR* PIC
X(17)

CHAR(17) INPUT Partner LU Name. The APPC LU Name of the IMS
System.

6 LONG PIC
S9(9)
COMP

FIXED
BIN(31)

INPUT Security Type:

• CM_SECURITY_NONE to omit access secu-
rity information

• CM_SECURITY_SAME to use the UserID
and security profile of the user that initiated the
request.

• CM_SECURITY_PROGRAM to use the Use-
rID and security profile supplied by the pro-
gram.

7 CHAR* PIC
X(8)

CHAR(8) OUTPUT Conversation ID of the APPC Call.

8 LONG PIC
S9(5)
COMP

FIXED
BIN(31)

INPUT Length of data to be sent.

9 CHAR* PIC
X(2-32704)

CHAR
(2-32704)

INPUT Input buffer. The input buffer is comprised of a 2-
byte prefix containing the binary length of the buffer
data followed by the IMS Message Input Descriptor
(MID) data.

10 LONG PIC
S9(9)
COMP

FIXED
BIN(31)

OUTPUT Output buffer length.

11 CHAR* PIC
X(2-32704)

CHAR
(2-32704)

OUTPUT Output buffer. The output buffer is comprised of a 2
byte prefix containing the binary length of the buffer
data followed by the IMS Message Output Descripto
(MOD) data.

12 LONG PIC
S9(9)
COMP

FIXED
BIN(31)

OUTPUT Return Code.
December 1999 Shadow Programming Guide 7-29

Host Application API Function Calls
13 CHAR* PIC X(8) CHAR(8) INPUT Local LU Name. Specifies the name of a local LU
from which the caller’s allocate request is to
originate. This is provides the ability to associate a
transaction request with a particular LU name.

Note: Optional parameter. If used, it requires the use
of Mode Name, Symbolic Partner LU Name, User
ID, Password and Security Profile be coded.

14 CHAR* PIC X(8) CHAR(8) INPUT Mode Name. Specifies the Mode name designating
the network properties for the local LU Name.

Note: Optional parameter. If used, it requires the use
of Local LU Name, Symbolic Partner LU Name,
User ID, Password and Security Profile be coded.

15 CHAR* PIC X(8) CHAR(8) INPUT Symbolic Name. Specifies the symbolic name
representing the IMS APPC LU Name, Mode Name,
Transaction Name. The symbolic destination name
must match that of an entry in the side information
dataset. If you specify any pass any of the parameters
(Local LU Name, Mode Name or Transaction
Name), these will override the information retrieved
and used to initialize the characteristics of the
conversation.

Note: Optional parameter. If used, it requires the use
of Local LU Name, Mode Name, User ID, Password
and Security Profile.

16 CHAR* PIC X(10) CHAR(10) INPUT User ID. The Partner LU uses this value and the
Password to validate the identity of the end-user that
initiated the request.

Note: Optional parameter. If used, it requires the use
of Local LU Name, Mode Name, Symbolic Partner
LU Name, Password and Security Profile.

17 CHAR* PIC X(10) CHAR(10) INPUT Password. The Partner LU uses this value and the
User ID to validate the identity of the end-user that
initiated the request.

Note: Optional parameter. If used, it requires the use
of Local LU Name, Mode Name, Symbolic Partner
LU Name, User ID and Security Profile.

18 CHAR* PIC X(10) CHAR(10) INPUT Security Profile. Specifies additional security
information that can be used to determine what
partner programs the local program can access.

Note: Optional parameter. If used, it requires the use
of Local LU Name, Mode Name, Symbolic Partner
LU Name, User ID and Password.

Arg
HLL Argument Type

I/O Description of Argument
C COBOL PL/I
7-30 Shadow Programming Guide December 1999

IMS/APPC APIs

g

e

19 LONG PIC
S9(9)
COMP

FIXED
BIN(31)

OUTPUT Data Type Received. Specifies the action taken to
receive the output data.

• CM_NO_DATA_RECEIVED specifies that no
additional data is to be sent to the Partner LU,
and the data can be buffered until a sufficient
quantity is accumulated.

• CM_DATA_RECEIVED specifies that no
additional data is to be sent to the Partner LU,
and the data is to be sent immediately.

• CM_COMPLETE_DATA_RECIEVED spec-
ifies that the data is to be sent immediately alon
with a request for confirmation.

• CM_INCOMPLETE_DATA_RECEIVED
specifies that the data is to be sent immediately
along with send control of the conversation.

Note: Optional parameter. If used, it requires that
placeholders be specified for Local LU Name, Mode
Name, Symbolic Partner LU Name, User ID,
Password and Security Profile.

20 LONG PIC
S9(9)
COMP

FIXED
BIN(31)

INPUT Data Type Sent. Specifies the action to take once th
APPC Conversation is established.

• CM_BUFFER_DATA specifies that no addi-
tional data is to be sent to the Partner LU, and
the data can be buffered until a sufficient quan-
tity is accumulated.

• CM_SEND_AND_FLUSH specifies that no
additional data is to be sent to the Partner LU,
and the data is to be sent immediately.

• CM_SEND_AND_CONFIRM specifies that
the data is to be sent immediately along with a
request for confirmation.

• CM_SEND_PREP_TO_RECEIVE specifies
that the data is to be sent immediately along
with send control of the conversation.

• CM_SEND_AND_DEALLOCATE specifies
that the data is to be sent immediately along
with a deallocation notification.

Note: Optional parameter. If used, it requires that
placeholders be specified for Local LU Name, Mode
Name, Symbolic Partner LU Name, User ID,
Password and Security Profile.

Arg
HLL Argument Type

I/O Description of Argument
C COBOL PL/I
December 1999 Shadow Programming Guide 7-31

Host Application API Function Calls

Return Values

SQLAPPCCONNECT/SWSAPPCCONNECT always sets a signed numeric
return code value. Possible values are:

21 LONG PIC
S9(9)
COMP

FIXED
BIN(31)

INPUT Synchronization Level. Specifies whether or not
confirmation processing will be performed on this
conversation.

• CM_NONE— no confirmation processing is
required for this conversation.

• CM_CONFIRM — confirmation processing is
required for this conversation.

Note: Optional parameter. If used, it requires that
placeholders be specified for Local LU Name, Mode
Name, Symbolic Partner LU Name, User ID,
Password, Security Profile and Data Type Sent.

22 LONG PIC S9(9)
COMP

FIXED
BIN (31)

INPUT Conversation Type.

Return Value Description

SWS_SUCCESS,
SQL_SUCCESS

The operation succeeded. The specified operation was performed.

SWS_ERROR,
SQL_ERROR

A parameter validation or runtime error was encountered. Error
information is available using the SWSERROR/SQLERROR
function.

SWS_ENVIRONMENT_ERROR The request could not be processed because of a runtime
environmental error, for example, you invoked the API service
outside of a web transaction procedure, or from outside the Server's
address space. The Server may provide diagnostic information in the
wrap-around trace.

Any other value The operation failed. By using the SQLERROR/SWSERROR
interface, you can obtain the error message pertinent to the error.

Arg
HLL Argument Type

I/O Description of Argument
C COBOL PL/I
7-32 Shadow Programming Guide December 1999

IMS/APPC APIs
PL/I Example
 %INCLUDE SPCPHD
 %INCLUDE ATBCMPLI
 %INCLUDE ATBPBPLI
 .
 .
 .
 DCL STMTHDL FIXED BIN(31); /* Statement Handle */
 DCL RC FIXED BIN(31); /* RETURN CODE */
 DCL SENDLEN FIXED BIN(31); /* SEND LENGTH */
 DCL RECVLEN FIXED BIN(31); /* RECEIVE LENGTH */
 DCL SENDBUF CHAR(82); /* SEND BUFFER */
 DCL RECVBUF CHAR(82); /* RECEIVED BUFFER */
 DCL LOCAL_LUNAME CHAR(8) INIT(’ ’); /* LOCAL LUNAME */
 DCL MODE_NAME CHAR(8) INIT(’ ’); /* MODE NAME */
 DCL SYMBOLIC_
 DESTINATION_NAME CHAR(8) INIT (’ ’); /* SYMBOLIC NAME */
 DCL USERID CHAR(10) INIT(’ ’); /* USERID */
 DCL PASSWORD CHAR(10) INIT(’ ’); /* PASSWORD */
 DCL PROFILE CHAR(10) INIT(’ ’); /* SECURITY PROFILE */
 DCL CONVERSATION_TYPE CHAR(10) INIT(’ ’);/* CONVERSATION TYPE*/
 DCL ATB_DATA_RECVD FIXED BIN(31); /* RECEIVE DATA TYPE*/
 DCL ATB_SEND_TYPE FIXED BIN(31); /* SEND DATA TYPE */
 DCL ATB_SYNC_LEVEL FIXED BIN(31); /* SYNC LEVEL */

 CALL SWSAPPCCONNECT(STMTHDL, /* STATEMENT HANDLE */
 SWS_APPC_TYPE_IMS,
 TP_NAME,
 TP_NAME_LENGTH,
 PARTNER_LU_NAME,
 ATB_SECURITY_NONE,
 CONVERSATION_ID,
 SENDLEN,
 SENDBUF,
 RECVLEN,
 RECVBUF,
 RC,
 LOCAL_LUNAME,
 MODE_NAME,
 SYMBOLIC_DESTINATION_NAME,
 USERID,
 PASSWORD,
 PROFILE,
 RECVTYPE,
 SENDTYPE,
 SYNCTYPE
 CONVERSATION_TYPE,
 CM_SEND_AND_FLUSH,
 CM_NONE.
 RC = PLIRETV(); /* GET RETURN CODE */
 IF RC ^= SWS_SUCCESS THEN /* EXIT PROGRAM IF BAD RC */
 EXIT;
December 1999 Shadow Programming Guide 7-33

Host Application API Function Calls
C Example
 #include "sccphd.h" /* Neon headers */
 #include "atbcmc.h" /* CPI Communications */
 #include "atbpbc.h" /* LU6.2 */
 .
 long RC; /* return code */
 long stmtHDL; /* statement handle */
 long recvtype; /* data type received */
 long sendtype; /* data type sent */
 long synctype; /* syncronization level */
 long sendlen; /* input buffer length */
 long recvlen; /* output buffer length */
 long tp_name_length; /* tp name length */
 char sendbuf[82] /* input buffer area */
 char recvbuf[82] /* output buffer */
 char tp_name[64] /* tp name */
 char local_luname[8]= ’ ’ /* local luname */
 char mode_name[8] = ’ ’ /* mode name */
 char symbolic_
 destination_ name[8]= ’ ’ /* symbolic name */
 char userid[10] = ’ ’ /* user id */
 char password[10] = ’ ’ /* password */
 char profile[10] = ’ ’ /* security profile */
 char conversation_type[10] /* conversation type */
 char conversation_id[8] /* conversation id */
 char partner_lu_name[17] /* partner lu name */

 CALL SWSAPPCCONNECT(stmtHDL, /* statement handle */
 SWS_APPC_TYPE_IMS
 tp_namE
 tp_name_length
 partner_lu_name
 ATB_SECURITY_NONE
 conversation_id
 sendlen
 sendbuf
 recvlen
 recvbuf
 RC
 local_luname
 mode_name
 symbolic_destination_name
 userid
 password
 profile
 recvtype
 sendtype
 synctype
 connection_type
 CM_SEND_AND_FLUSH
 CM_NONE.
 if (rc ^= SWS_SUCCESS)
 return rc;
7-34 Shadow Programming Guide December 1999

IMS/APPC APIs
COBOL Example
 COPY SBCPHD. Neon Copybook
 COPY ATBCMCOB. CPI COMMUNICATIONS COPYBOOK
 COPY ATBPBCOB. LU6.2 COPYBOOK
 .
 77 STATEMENT-HANDLE USAGE IS POINTER.
 77 LOCAL-LUNAME PIC X(8) VALUE IS SPACES.
 77 MODE-NAME PIC X(8) VALUE IS SPACES.
 77 SYMBOLIC-DESTINATION-NAME PIC X(8) VALUE IS SPACES.
 77 USERID PIC X(10) VALUE IS SPACES.
 77 PASSWORD PIC X(10) VALUE IS SPACES.
 77 PROFILE PIC X(10) VALUE IS SPACES.
 77 CONVERSATION-TYPE PIC X(10) VALUE IS SPACES.
 01 SEND-BUFFER.
 05 SEND-BUFFER-LENGTH PIC 9(4) COMP-4.
 05 SEND-BUFFER-CONTENTS PIC X(100) VALUE IS SPACES.
 05 SEND-EXTRA-AREA PIC X(10) COMP-4.
 05 SEND-DATA-TYPE PIC 9(9) COMP-4.
 05 SEND-LEVEL-SYNC PIC 9(9) COMP-4.
 01 RECEIVE-BUFFER.
 05 RECEIVE-BUFFER-LENGTH PIC 9(4) COMP-4.
 05 RECEOVE-BUFFER-CONTENTS PIC X(100) VALUE IS SPACES.
 05 RECEIVE-EXTRA-AREA PIC X(10).
 05 RECEIVE-DATA-TYPE PIC 9(9) COMP-4.

 .
 SET CM-NONE TO TRUE.
 SET ATB-SECURITY-NONE TO TRUE.
 SET SWS-APPC-TYPE-IMS TO TRUE.
 MOVE ’PART’ TO TP-NAME.
 MOVE 4 TO TP-NAME-LENGTH.
 MOVE ’P390.P392AIMS’ TO PARTNER-LU-NAME.
 CALL ’SDCPAC’ USING STATEMENT-HANDLE
 SWS-APPC-TYPE
 TP-NAME
 TP-NAME-LENGTH
 PARTNER-LU-NAME
 ATB-SECURITY
 CONVERSATION-ID
 SEND-LENGTH
 SEND-BUFFER
 REQUESTED-LENGTH
 RECEIVE-BUFFER
 ATB-RETCODE
 LOCAL-LUNAME
 MODE-NAME
 SYMBOLIC-DESTINATION-NAME
 USERID
 PASSWORD
 PROFILE
 ATB-DATA-RECVD
December 1999 Shadow Programming Guide 7-35

Host Application API Function Calls
 ATB-SEND-TYPE
 ATB-SYNC-LEVEL.
 CONVERSATION-TYPE
 MOVE RETURN-CODE TO WS-SWSAPI-RETURN-CODE.
 IF NOT SWS-SUCCESS
 GOBACK.
7-36 Shadow Programming Guide December 1999

IMS/APPC APIs
SDBAPCON/SWSAPCON Function

The REXX-language SDBAPCON/ SWSAPCON built-in function can be used
for APPC connections between Shadow OS/390 Web Server and Shadow Direct
for IMS and IMS v4.1 and above. A call to this function

n Connects to IMS.
n Sends a transaction for IMS to execute and receive the data from the executed

transaction.

 The data received is in the format of the Message Output Descriptor (MOD) used
by the application program that processed the transaction.

Upon return from the call, the following REXX variables are populated with data:

Syntax

The general form for a REXX-language invocation of SDBAPCON/SWSAPCON
is:

Can be used in Shadow/REXX.

Can be used from other REXX interpreter.

High-level language interface.

REXX Variable Description

APPC.STMTHDL The statement handle for the interface call.

APPC.CONVID The Conversation ID for the IMS APPC conversation.

APPC.OUTBUFF.0 The length of the data contained within the APPC.OUTBUFF.1
REXX variable.

APPC.OUTBUFF.1 The returned Message Output Descriptor data. The output message
contains the MOD data as well as a two byte length prefix. This
variable contains the data, including any supplied trailing blanks.

APPC.RETCODE The APPC Interface return code.

APPC.DATATYPE The returned datatype.
December 1999 Shadow Programming Guide 7-37

Host Application API Function Calls

on
ead,
iti-
urity

,
id,
peci-

tion.
rc = SDBAPCON/SWSAPCON(“Connection Type”, ,
 “Transaction Name”, ,
 “Transaction Name Length”, ,
 “Partner LU Name”, ,
 “Security Type”, ,
 “Transaction Data”, ,
 “Local LU Name”, ,
 “Mode Name”, ,
 “Symbolic Partner LU Name”, ,
 “Userid”, ,
 “Password”, ,
 “Security Profile”, ,
 “Data Type Sent”, ,
 “Message Length Sent”, ,
 “Synchronization Level”

Valid Arguments

Connection Type Specifies the type of IMS transaction to execute:

• IMS for IMS Non-conversational transaction.
• IMS CONV for IMS Conversational transaction.

Note: Required parameter.

Transaction Name Specifies the IMS Transaction Code

Note: Required parameter.

Transaction Name Length Specifies the length of the IMS Transaction Code

Note: Required parameter.

Partner LU Name Specifies the APPC LU Name for the IMS system

Note: Required parameter.

Security Type Specifies the type of security in use.

• NONE specifies that no access security information is to be passed on the APPC
Allocation request.

• SAME specifies to use the userid and security profile (if present) from the allocati
request that initiated the local program. The password (if present) is not used; inst
the userid is indicated as “already been validated”. If the allocation request that in
ated the local program contained no access security information, then access sec
information is omitted on this allocation request.

• PROGRAM specifies to use the security information, provided by the local program
on the API call. The local program provides the information by means of the User
Password and Security Profile parameters. These values are passed exactly as s
fied (without folding the characters to upper case).

Note: Required parameter.

Transaction Data Specifies any data required by the application program in order to process the transac
This would be data in the format of the Message Input Descriptor (without the LLZZ
prefix).

Note: Required parameter.
7-38 Shadow Programming Guide December 1999

IMS/APPC APIs

ata

he

for

rol

a-

U
file.

n.

U
nd
Local LU Name Specifies the name of a local LU from which the caller’s allocate request is to originate.
This is provides the ability to associate a transaction request with a particular LU name.

Note: Optional parameter. If used, it requires the use of Mode Name, Symbolic Partner LU
Name, User ID, Password and Security Profile be coded.

Mode Name Specifies the Mode name designating the network properties for the local LU Name.

Note: Optional parameter. If used, it requires the use of Local LU Name, Symbolic Partner
LU Name, User ID, Password and Security Profile be coded.

Symbolic Partner LU Name Specifies the symbolic name representing the IMS APPC LU Name, Mode Name,
Transaction Name. The symbolic destination name must match that of an entry in the side
information dataset. If you specify any pass any of the parameters (Local LU Name, Mode
Name or Transaction Name), these will override the information retrieved and used to
initialize the characteristics of the conversation.

Note: Optional parameter. If used, it requires the use of Local LU Name, Mode Name,
User ID, Password and Security Profile.

User ID The Partner LU uses this value and the Password to validate the identity of the end-user
that initiated the request.

Note: Optional parameter. If used, it requires the use of Local LU Name, Mode Name,
Symbolic Partner LU Name, Password and Security Profile.

Password The Partner LU uses this value and the User ID to validate the identity of the end-user that
initiated the request.

Note: Optional parameter. If used, it requires the use of Local LU Name, Mode Name,
Symbolic Partner LU Name, User ID and Security Profile.

Security Profile Specifies additional security information that can be used to determine what partner
programs the local program can access.

Note: Optional parameter. If used, it requires the use of Local LU Name, Mode Name,
Symbolic Partner LU Name, User ID and Password.

Data Type Sent Specifies the action to take once the APPC Conversation is established.

• BUFFER specifies that no additional data is to be sent to the Partner LU, and the d
can be buffered until a sufficient quantity is accumulated.

• SENDFLSH specifies that no additional data is to be sent to the Partner LU, and t
data is to be sent immediately.

• SENDCONF specifies that the data is to be sent immediately along with a request
confirmation.

• SENDPREP specifies that the data is to be sent immediately along with send cont
of the conversation.

• SENDDEAL specifies that the data is to be sent immediately along with a dealloc
tion notification.

Note: Optional parameter. If used, it requires that placeholders be specified for Local L
Name, Mode Name, Symbolic Partner LU Name, User ID, Password and Security Pro

Synchronization Level Specifies whether or not confirmation processing will be performed on this conversatio

• NONE — no confirmation processing is required for this conversation.

• CONFIRM — confirmation processing is required for this conversation.

Note: Optional parameter. If used, it requires that placeholders be specified for Local L
Name, Mode Name, Symbolic Partner LU Name, User ID, Password, Security Profile a
Data Type Sent.
December 1999 Shadow Programming Guide 7-39

Host Application API Function Calls
SDBAPCON/SWSAPCON Examples
/*--*/
/* initialize some system values */
/*--*/

 address SWSSEND
 imsappc = ’P390.P392AIMS’
 imstran = ’NEONDISP’
 parms = ’’

 /*--*/
 /* execute the ims transaction */
 /*--*/

 rc = sdbapcon/swsapcon
(’ims’,imstran,length(imstran),imsappc,’NONE’
,parms)

 /*--*/
 /* parse the output into usable variables */
 /*--*/

 pars.msg = substr(APPC.OUTBUFF.1,1,79)
 pars.page = substr(APPC.OUTBUFF.1,80,2)
 pars.index = substr(APPC.OUTBUFF.1,82,2)
 pars.scroll = substr(APPC.OUTBUFF.1,84,150)

 pars.area = substr(APPC.OUTBUFF.1,234,380)
 pars.len = 380
 pars.data = ’’
 do i = 1 to 10
 pars.part.i = substr(pars.area,4,15)
 pars.desc.i = substr(pars.area,19,20)
 pars.len = pars.len - 38
 pars.area = substr(pars.area,39,pars.len)
 pars.data = pars.data||’ ’||pars.part.i||pars.desc.i
 end
7-40 Shadow Programming Guide December 1999

IMS/APPC APIs
High-Level Language Interface
SQLAPPCDISCONNECT (SDCPAD) or
SWSAPPCDISCONNECT (SWCPAD) Function

This call disconnects from IMS.

Syntax

The general form for invocation of SDCPAD/SWCPAD is

CALL ’SDCPAD/SWCPAD’ USING STATEMENT-HANDLE
SQL-APPC-TYPE
CONVERSATION-ID
ATB-RETCODE

CALL Arguments

The SQLAPPCDISCONNECT/SWSAPPCDISCONNECT (SDCPAC/SWS-
PAC) function arguments are described in the table which follows. All parameters
are required.

Can be used in Shadow/REXX.

Can be used from other REXX interpreters.

HLL entry point name is SDCPAD/SWCPAD.

Arg
HLL Argument Type

I/O Description of Argument
C COBOL PL/I

1 LONG PIC S9(9)
COMP

FIXED
BIN(31)

INPUT Statement Handle. Currently ignored however, it
must contain zeros.

2 LONG PIC S9(9)
COMP

FIXED
BIN(31)

INPUT IMS Call type:

• SWS-APPC-TYPE-IMS for non-conversa-
tional IMS transactions.

• SWS-APPC-TYPE-IMSCONV for conversa-
tional IMS transactions.

3 CHAR* PIC X(8) CHAR(8) OUTPUT Conversation ID of the APPC Call.

4 LONG PIC S9(9)
COMP

FIXED
BIN(31)

OUTPUT Return Code.
December 1999 Shadow Programming Guide 7-41

Host Application API Function Calls
Return Values

SWSAPPCDISCONNECT always sets a signed numeric return code value. Possi-
ble values are:

PL/I Example
%INCLUDE SPCPHD
%INCLUDE ATBCMPLI
%INCLUDE ATBPBPLI
 .
 .
 .
 DCL STMTHDL FIXED BIN(31); /* Statement Handle */
 DCL RC FIXED BIN(31); /* RETURN CODE */
 DCL SENDLEN FIXED BIN(31); /* SEND LENGTH */
 DCL RECVLEN FIXED BIN(31); /* RECEIVE LENGTH */
 DCL SENDBUF CHAR(82) /* SEND BUFFER */
 DCL RECVBUF CHAR(82) /* RECEIVED BUFFER */
 DCL (FILL_1 initial(’ ’)
 FILL_2 initial(’ ’)
 FILL_3 initial(’ ’)) char(8);
 DCL (FILL_4 initial(’ ’)
 FILL_5 initial(’ ’)
 FILL_6 initial(’ ’)) char(10);

CALL SWSAPPCDISCONNECT(STMTHDL, /* STATEMENT HANDLE */
 SWS_APPC_TYPE_IMS,
 CONVERSATION_ID,
 RC.
RC = PLIRETV(); /* GET RETURN CODE */
 IF RC ^= SWS_SUCCESS THEN /* EXIT PROGRAM IF BAD RC */
 EXIT;

Return Value Description

SWS_SUCCESS,
SQL_SUCCESS

The operation succeeded. The specified operation was performed.

SWS_ERROR,
SQL_ERROR

A parameter validation or runtime error was encountered. Error
information is available using the SWSERROR/SQLERROR
function.

SWS_ENVIRONMENT_ERROR The request could not be processed because of a runtime
environmental error, for example, you invoked the API service
outside of a web transaction procedure, or from outside the Server’s
address space. The Server may provide diagnostic information in the
wrap-around trace.

Any other value The operation failed. By using the SQLERROR/SWSERROR
interface, you can obtain the error message pertinent to the error.
7-42 Shadow Programming Guide December 1999

IMS/APPC APIs
C Example
include "sccphd.h" /* Neon headers */
include "atbcmc.h" /* CPI Communications */
include "atbpbc.h" /* LU6.2 */

.
 .
 .
 long RC; /* return code */
 long stmtHDL; /* statement handle */
 long recvtype; /* data received type */
 long sendlen; /* input buffer length */
 long recvlen; /* output buffer length */
 long tp_name_length; /* tp name length */
 char sendbuf[82] /* input buffer area */
 char recvbuf[82] /* output buffer */
 char tp_name[64] /* tp name */
 char fill_1[] = ’ ’ /* eight byte filler field */
 char fill_2[] = ’ ’ /* eight byte filler field */
 char fill_3[] = ’ ’ /* eight byte filler field */
 char fill_4[] = ’ ’ /* ten byte filler field */
 char fill_5[] = ’ ’ /* ten byte filler field */
 char fill_6[] = ’ ’ /* ten byte filler field */
 char conversation_id[8] /* conversation id */
 char partner_lu_name[17] /* partner lu name */

 CALL SWSAPPCDISCONNECT(stmtHDL, /* statement handle */
 SWS_APPC_TYPE_IMS
 conversation_id
 RC.
 if (rc ^= SWS_SUCCESS)
 return rc;
December 1999 Shadow Programming Guide 7-43

Host Application API Function Calls
COBOL Example
COPY SBCPHD. Neon Copybook
COPY ATBCMCOB. CPI COMMUNICATIONS COPYBOOK
COPY ATBPBCOB. LU6.2 COPYBOOK
 .
 .
 .
 .
 77 STATEMENT-HANDLE USAGE IS POINTER.
 77 FILLER-PARMLIST-01 PIC X(8) VALUE IS SPACES.
 77 FILLER-PARMLIST-02 PIC X(8) VALUE IS SPACES.
 77 FILLER-PARMLIST-03 PIC X(8) VALUE IS SPACES.
 77 FILLER-PARMLIST-04 PIC X(10) VALUE IS SPACES.
 77 FILLER-PARMLIST-05 PIC X(10) VALUE IS SPACES.
 77 FILLER-PARMLIST-06 PIC X(10) VALUE IS SPACES.
 01 SEND-BUFFER.
 05 SEND-BUFFER-LENGTH PIC 9(4) COMP-4.
 05 SEND-BUFFER-CONTENTS PIC X(100) VALUE IS SPACES.
 05 SEND-EXTRA-AREA PIC X(10).
 01 RECEIVE-BUFFER.
 05 RECEIVE-BUFFER-LENGTH PIC 9(4) COMP-4.
 05 RECEIVE-BUFFER-CONTENTS PIC X(80).
 05 RECEIVE-EXTRA-AREA PIC X(10).
 .
 .
 .
 SET CM-NONE TO TRUE.
 SET ATB-SECURITY-NONE TO TRUE.
 SET SWS-APPC-TYPE-IMS TO TRUE.
 MOVE ’PART’ TO TP-NAME.
 MOVE 4 TO TP-NAME-LENGTH.
 MOVE ’P390.P392AIMS’ TO PARTNER-LU-NAME.
 CALL ’SDCPAD’ USING STATEMENT-HANDLE
 SWS-APPC-TYPE
 CONVERSATION-ID
 ATB-RETCODE.

 MOVE RETURN-CODE TO WS-SWSAPI-RETURN-CODE.
 IF NOT SWS-SUCCESS
 GOBACK.
7-44 Shadow Programming Guide December 1999

IMS/APPC APIs
SDBAPDIS/SWSAPDIS Function

The REXX-language SDBAPDIS/SWSAPDIS built-in function can be used to
drop APPC connections between the Shadow OS/390 Web Server for IMS and
IMS v4.1 and above. A call to this function disconnects IMS.

Upon return from the call, the following REXX variables are used:

Syntax

The general form for a REXX-language invocation of SDBAPDIS/SWSAPDIS
is:

rc = SDBAPDIS/SWSAPDIS(“Connection Type”)

SDBAPDIS/SWSAPDIS Example
/*---*/
/* disconnect the ims transaction */
/*---*/

rc = sdbapdis/swsapdis('ims')
 end

or

/*---*/
/* disconnect the ims transaction */
/*---*/

rc = sdbapdis/swsapdis('imsconv')
 end

Can be used in Shadow/REXX.

Can be used from other REXX interpreters.

High-level language interface available.

REXX Variable Description

APPC.STMTHDL The statement handle for the interface call.

APPC.RETCODE The APPC Interface return code.
December 1999 Shadow Programming Guide 7-45

Host Application API Function Calls
High-Level Language Interface
SQLAPPCRECEIVE (SDCPAR) or
SWSAPPCRECEIVE (SWCPAR) Function

 Use this call to do a receive and wait from APPC for IMS information.

Syntax

The general form for invocation of SDCPAR/SWCPAR is

CALL ’SDCPAR/SWCPAR’ USING STATEMENT-HANDLE
SQL-APPC-TYPE
CONVERSATION-ID
REQUESTED-LENGTH
RECEIVE-BUFFER
ATB-RETCODE
PARTNER-LU-NAME

 ATB-DATA-RECVD
 TPNAME-FOR-TESTIMS
 TPNAME-LENGTH-FOR-TESTIMS
 CONVERSATION-TYPE

CALL Arguments

The SQLAPPCRECEIVE/SWSAPPCRECEIVE (SWCPAR/SDCPAR) function
arguments are described in the table which follows. All parameters are required.

Can be used in Shadow/REXX.

Can be used from other REXX interpreters.

HLL entry point name is SDCPAR/SWCPAR.

Arg
HLL Argument Type

I/O Description of Argument
C COBOL PL/I

1 LONG PIC S9(9)
COMP

FIXED
BIN(31)

INPUT Statement Handle. Currently ignored however, it
must contain zeros.

2 LONG PIC S9(9)
COMP

FIXED
BIN(31)

INPUT IMS Call type:

• SWS-APPC-TYPE-IMS for non-conversa-
tional IMS transactions.

• SWS-APPC-TYPE-IMSCONV for conversa-
tional IMS transactions.

3 CHAR* PIC
X(8)

CHAR(8) OUTPUT Conversation ID of the APPC Call.
7-46 Shadow Programming Guide December 1999

IMS/APPC APIs

g

Return Values

SQLAPPCRECEIVE/SWSAPPCRECEIVE always sets a signed numeric return
code value. Possible values are:

4 LONG PIC S9(9)
COMP

FIXED
BIN(31)

INPUT/
OUTPUT

Output buffer length.

5 CHAR* PIC
X(2-
32704)

CHAR
(2-32704)

OUTPUT Output buffer. The output buffer is comprised of a 2
byte prefix containing the binary length of the buffer
data followed by the IMS Message Output Descriptor
(MOD) data.

6 LONG PIC S9(9)
COMP

FIXED
BIN(31)

OUTPUT Return Code.

7 CHAR* PIC
X(17)

CHAR(17) INPUT Partner LU Name. The APPC LU Name of the IMS
System.

8 LONG PIC S9(9)
COMP

FIXED
BIN(31)

OUTPUT Data Type Received. Specifies the action taken to
receive the output data:

• CM_NO_DATA_RECEIVED specifies that no
additional data is to be sent to the Partner LU,
and the data can be buffered until a sufficient
quantity is accumulated.

• CM_DATA_RECEIVED specifies that no
additional data is to be sent to the Partner LU,
and the data is to be sent immediately.

• CM_COMPLETE_DATA_RECIEVED spec-
ifies that the data is to be sent immediately alon
with a request for confirmation.

• CM_INCOMPLETE_DATA_RECEIVED
specifies that the data is to be sent immediately
along with send control of the conversation.

Note: Optional parameter. If used, it requires that
placeholders be specified for Local LU Name, Mode
Name, Symbolic Partner LU Name, User ID,
Password and Security Profile.

9 CHAR* PIC
X(8)

CHAR(8) INPUT TPNAME for TESTIMS.

10 LONG PIC S9(9)
COMP

FIXED
BIN (31)

OUTPUT TPNAME length for TESTIMS.

11 LONG S9 (4)
COMP

FIXED
BIN (31)

INPUT Conversation type.

Return Value Description

SWS_SUCCESS,
SQL_SUCCESS

The operation succeeded. The specified operation was performed.

Arg
HLL Argument Type

I/O Description of Argument
C COBOL PL/I
December 1999 Shadow Programming Guide 7-47

Host Application API Function Calls
SWS_ERROR,
SQL_ERROR

A parameter validation or runtime error was encountered. Error
information is available using the SWSERROR/SQLERROR
function.

SWS_ENVIRONMENT_ERROR The request could not be processed because of a runtime
environmental error, for example, you invoked the API service
outside of a web transaction procedure, or from outside the Server’s
address space. The Server may provide diagnostic information in the
wrap-around trace.

Any other value The operation failed. By using the SQLERROR/SWSERROR
interface, you can obtain the error message pertinent to the error.

Return Value Description
7-48 Shadow Programming Guide December 1999

IMS/APPC APIs
 PL/I Example
%INCLUDE SPCPHD
%INCLUDE ATBCMPLI
%INCLUDE ATBPBPLI
 .
 .
 .
 .
 DCL STMTHDL FIXED BIN(31); /* Statement Handle */
 DCL RC FIXED BIN(31); /* RETURN CODE */
 DCL SENDLEN FIXED BIN(31); /* SEND LENGTH */
 DCL RECVLEN FIXED BIN(31); /* RECEIVE LENGTH */
 DCL SENDBUF CHAR(82) /* SEND BUFFER */
 DCL RECVBUF CHAR(82) /* RECEIVED BUFFER */
 DCL LOCAL_LUNAME CHAR(8) INIT(’ ’); /* LOCAL LUNAME */
 DCL MODE_NAME CHAR(8) INIT(’ ’); /* MODE NAME */
 DCL SYMBOLIC_
 DESTINATION_NAME CHAR(8) INIT (’ ’); /* SYMBOLIC NAME */
 DCL USERID CHAR(10) INIT(’ ’); /* USERID */
 DCL PASSWORD CHAR(10) INIT(’ ’); /* PASSWORD */
 DCL PROFILE CHAR(10) INIT(’ ’); /* SECURITY PROFILE */
 DCL TPNAME_FOR_TESTIMS
 DCL TPNAME_LENGTH_FOR_TESTIMS
 DCL CONVERSATION_TYPE CHAR(10) INIT(’ ’);/* CONVERSATION TYPE*/

 CALL SWSAPPCRECEIVE(STMTHDL, /* STATEMENT HANDLE */
 SWS_APPC_TYPE_IMS,
 PARTNER_LU_NAME,
 CONVERSATION_ID,
 RECVLEN,
 RECVBUF,
 RC,
 RECVTYPE,
 TPNAME_FOR_TESTIMS,
 TPNAME_LENGTH_FOR_TESTIMS,
 CONVERSATION_TYPE.

 RC = PLIRETV(); /* GET RETURN CODE */
 IF RC ^= SWS_SUCCESS THEN /* EXIT PROGRAM IF BAD RC */
 EXIT;
December 1999 Shadow Programming Guide 7-49

Host Application API Function Calls
C Example
 #include "sccphd.h" /* Neon headers */
 #include "atbcmc.h" /* CPI Communications */
 #include "atbpbc.h" /* LU6.2 */

 .
 .
 long RC; /* return code */
 long stmtHDL; /* statement handle */
 long recvtype; /* data received type */
 long sendlen; /* input buffer length */
 long recvlen; /* output buffer length */
 long tp_name_length; /* tp name length */
 char sendbuf[82] /* input buffer area */
 char recvbuf[82] /* output buffer */
 char tp_name[64] /* tp name */
 char local_luname[8]= ’ ’ /* local luname */
 char mode_name[8] = ’ ’ /* mode name */
 char symbolic_
 destination_ name[8]= ’ ’ /* symbolic name */
 char userid[10] = ’ ’ /* user id */
 char password[10] = ’ ’ /* password */
 char profile[10] = ’ ’ /* security profile */
 char tpname_for_testims /* ten byte filler field */
 char tpname_length_for_testims /* ten byte filler field */
 char conversation_type[10] /* ten byte filler field */
 char conversation_id[8] /* conversation id*/
 char partner_lu_name[17] /* partner lu name */

 CALL SWSAPPCRECEIVE(stmtHDL, /* statement handle */
 SWS_APPC_TYPE_IMS
 partner_lu_name
 conversation_id
 recvlen
 recvbuf
 tpname_for_testims
 tpname_length_for_testims
 conversation_type
 RC.

 if (rc ^= SWS_SUCCESS)
 return rc;
7-50 Shadow Programming Guide December 1999

IMS/APPC APIs
COBOL Example
COPY SBCPHD. Neon Copybook
 COPY ATBCMCOB. CPI COMMUNICATIONS COPYBOOK
 COPY ATBPBCOB. LU6.2 COPYBOOK
 .
 .
 .
 .
 77 STATEMENT-HANDLE USAGE IS POINTER.
 77 LOCAL-LUNAME PIC X(8) VALUE IS SPACES.
 77 MODE-NAME PIC X(8) VALUE IS SPACES.
 77 SYMBOLIC-DESTINATION-NAME PIC X(8) VALUE IS SPACES.
 77 USERID PIC X(10) VALUE IS SPACES.
 77 PASSWORD PIC X(10) VALUE IS SPACES.
 77 PROFILE PIC X(10) VALUE IS SPACES.
 77 TPNAME-FOR-TESTIMS PIC X(10) VALUE IS SPACES.

 77 TPNAME-LENGTH-FOR-TESTIMS PIC X(10) VALUE IS SPACES.
 77 CONVERSATION-TYPE PIC X(10) VALUE IS SPACES.
 01 SEND-BUFFER.
 05 SEND-BUFFER-LENGTH PIC 9(4) COMP-4.
 05 SEND-BUFFER-CONTENTS PIC X(100) VALUE IS SPACES.
 05 SEND-EXTRA-AREA PIC X(10).
 01 RECEIVE-BUFFER.
 05 RECEIVE-BUFFER-LENGTH PIC 9(4) COMP-4.
 05 RECEIVE-BUFFER-CONTENTS PIC X(80).
 05 RECEIVE-EXTRA-AREA PIC X(10).
 .
 .
 .
 SET CM-NONE TO TRUE.
 SET ATB-SECURITY-NONE TO TRUE.
 SET SWS-APPC-TYPE-IMS TO TRUE.
 MOVE ’PART’ TO TP-NAME.
 MOVE 4 TO TP-NAME-LENGTH.
 MOVE ’P390.P392AIMS’ TO PARTNER-LU-NAME.
 CALL ’SDCPAR’ USING STATEMENT-HANDLE
 SWS-APPC-TYPE
 PARTNER-LU-NAME
 CONVERSATION-ID
 REQUESTED-LENGTH
 RECEIVE-BUFFER
 ATB-RETCODE
 TPNAME-FOR-TESTIMS
 TPNAME-LENGTH-FOR-TESTIMS
 CONNECTION-TYPE.

 MOVE RETURN-CODE TO WS-SWSAPI-RETURN-CODE.
 IF NOT SWS-SUCCESS

 GOBACK.
December 1999 Shadow Programming Guide 7-51

Host Application API Function Calls
SDBAPRCV/ SWSAPRCV Function

The REXX-language SDBAPRCV/SWSAPRCV built-in function can be used to
continue receiving message output from an IMS transaction (i.e. multisegment
output messages). Once you receive a non-zero return code, the IMS conversation
is deallocated and the transaction is complete.

In the case of conversational IMS transactions, the non-zero return code will indi-
cate that their is no more data to receive.

Upon return from the call, the following REXX variables are populated with data:

Syntax

The general form for a REXX-language invocation of SDBAPRCV/SWSAPRCV
is:

rc = SDBAPRCV/SWSAPRCV(“Connection Type”, ,
 “Conversation ID”, ,
 “Partner LU Name”)

Can be used in Shadow/REXX.

Can be used from Other REXX interpreters.

HLL entry point name is SDCPAR/SWCPAR.

REXX Variable Description

APPC.STMTHDL The statement handle for the interface call.

APPC.CONVID The Conversation ID for the IMS APPC conversation.

APPC.OUTBUFF.0 The length of the data contained within the APPC.OUTBUFF.1
REXX variable.

APPC.OUTBUFF.1 The returned Message Output Descriptor data. The output message
contains the MOD data as well as a two byte length prefix. This
variable contains the data, including any supplied trailing blanks.

APPC.RETCODE The APPC Interface return code.

APPC.DATATYPE The returned datatype.
7-52 Shadow Programming Guide December 1999

IMS/APPC APIs
Valid Arguments

SDBAPRCV/SWSAPRCV Example
/*---*/
/* initialize some system values */
/*---*/

address SWSSEND
imsappc = ’P390.P392AIMS’
imstran = ’NEONDISP’
parms = ’’

/*---*/
/* Retrieve more data from the IMS transaction */
/*---*/

rc = SDBAPRCV/SWSAPRCV(’ims’,APPC.CONVID,imsappc)

/*---*/
/* parse the output into usable variables */
/*---*/

pars.msg = substr(APPC.OUTBUFF.1,1,79)
pars.page = substr(APPC.OUTBUFF.1,80,2)
pars.index = substr(APPC.OUTBUFF.1,82,2)
pars.scroll = substr(APPC.OUTBUFF.1,84,150)
pars.area = substr(APPC.OUTBUFF.1,234,380)
pars.len = 380
pars.data = ’’
do i = 1 to 10
 pars.part.i= substr(pars.area,4,15)
 pars.desc.i= substr(pars.area,19,20)
 pars.len = pars.len - 38
 pars.area = substr(pars.area,39,pars.len)
 pars.data = pars.data||’ ’||pars.part.i||pars.desc.i

end

Connection Type Specifies the type of IMS transaction to execute:

• IMS for IMS Non-conversational transaction.
• IMSCONV for IMS Conversational transaction.

Note: Required parameter.

Conversation ID Specifies the IMS Conversation ID.

Note: Required parameter.

Partner LU Name Specifies the APPC LU Name for the IMS system

Note: Optional parameter.
December 1999 Shadow Programming Guide 7-53

Host Application API Function Calls
High-Level Language Interface
SQLAPPCSEND (SDCPAS) or
SWSAPPCSEND (SWCPAS) Function

This call performs a send to APPC for IMS.

Syntax

The general form for invocation of SDCPAS/SWCPAS is

CALL ’SDCPAS’ USING STATEMENT-HANDLE
 SQL-APPC-TYPE
 CONVERSATION-ID
 SEND-LENGTH
 SEND-BUFFER
 PARTNER-LU-NAME
 ATB-SEND-TYPE
 ATB-RETCODE.

CALL Arguments

The SQLAPPCSEND/SWSAPPCSEND (SWCPAS/SDCPAS) function argu-
ments are described in the table which follows. All parameters are required.

Can be used in Shadow/REXX.

Can be used from Other REXX interpreters.

HLL entry point name is SDCPAS/SWCPAS.

Arg
HLL Argument Type

I/O Description of Argument
C COBOL PL/I

1 LONG PIC
S9(9)
COMP

FIXED
BIN(31)

INPUT Statement Handle. Currently ignored however, it
must contain zeros.

2 LONG PIC
S9(9)
COMP

FIXED
BIN(31)

INPUT IMS Call type:

• SWS-APPC-TYPE-IMS for non-conversa-
tional IMS transactions.

• SWS-APPC-TYPE-IMSCONV for conversa-
tional IMS transactions.

3 CHAR* PIC
X(8)

CHAR(8) OUTPUT Conversation ID of the APPC Call.
7-54 Shadow Programming Guide December 1999

IMS/APPC APIs

Return Values

SQLAPPCSEND/SWSAPPCSEND always sets a signed numeric return code
value. Possible values are:

4 LONG PIC
S9(9)
COMP

FIXED
BIN(31)

INPUT Length of the data to be sent.

5 LONG PIC
S9(9)
COMP

FIXED
BIN(31)

INPUT Input buffer. The input buffer is comprised of a 2 byte
prefix containing the binary length of the buffer data
followed by the IMS Message Input Descriptor
(MID) data.

6 CHAR* PIC
X(17)

CHAR(17) INPUT Partner LU Name. The APPC LU Name of the IMS
System.

7 LONG PIC
S9(9)
COMP

FIXED
BIN(31)

INPUT Data Type Sent. Specifies the action to take once the
APPC Conversation is established.

• CM_BUFFER_DATA specifies that no addi-
tional data is to be sent to the Partner LU, and
the data can be buffered until a sufficient quan-
tity is accumulated.

• CM_SEND_AND_FLUSH specifies that no
additional data is to be sent to the Partner LU,
and the data is to be sent immediately.

• CM_SEND_AND_CONFIRM specifies that
the data is to be sent immediately along with a
request for confirmation.

• CM_SEND_PREP_TO_RECEIVE specifies
that the data is to be sent immediately along
with send control of the conversation.

• CM_SEND_AND_DEALLOCATE specifies
that the data is to be sent immediately along
with a deallocation notification.

Note: Optional parameter. If used, it requires that
placeholders be specified for Local LU Name, Mode
Name, Symbolic Partner LU Name, User ID,
Password and Security Profile.

8 LONG PIC
S9(9)
COMP

FIXED
BIN(31)

INPUT/
OUTPUT

Return Code.

Return Value Description

SWS_SUCCESS,
SQL_SUCCESS

The operation succeeded. The specified operation was performed.

Arg
HLL Argument Type

I/O Description of Argument
C COBOL PL/I
December 1999 Shadow Programming Guide 7-55

Host Application API Function Calls
PL/I Example
%INCLUDE SPCPHD
 %INCLUDE ATBCMPLI
 %INCLUDE ATBPBPLI
 .
 .
 .
 .
 DCL STMTHDL FIXED BIN(31); /* Statement Handle */
 DCL RC FIXED BIN(31); /* RETURN CODE */
 DCL SENDLEN FIXED BIN(31); /* SEND LENGTH */
 DCL RECVLEN FIXED BIN(31); /* RECEIVE LENGTH */
 DCL SENDBUF CHAR(82) /* SEND BUFFER */
 DCL RECVBUF CHAR(82) /* RECEIVED BUFFER */
 DCL (FILL_1 initial(’ ’)
 FILL_2 initial(’ ’)
 FILL_3 initial(’ ’)) char(8);
 DCL (FILL_4 initial(’ ’)
 FILL_5 initial(’ ’)
 FILL_6 initial(’ ’)) char(10);

 CALL SWSAPPCSEND(STMTHDL, /* STATEMENT HANDLE */

SWS_APPC_TYPE_IMS,
PARTNER_LU_NAME,
CONVERSATION_ID,
SENDLEN,
SENDBUF,
RC,
RECVTYPE.

 RC = PLIRETV(); /* GET RETURN CODE */
 IF RC ^= SWS_SUCCESS THEN /* EXIT PROGRAM IF BAD RC */
 EXIT;

SWS_ERROR,
SQL_ERROR

A parameter validation or runtime error was encountered. Error
information is available using the SWSERROR/SQLERROR
function.

SWS_ENVIRONMENT_ERROR The request could not be processed because of a runtime
environmental error, for example, you invoked the API service
outside of a web transaction procedure, or from outside the Server’s
address space. The Server may provide diagnostic information in the
wrap-around trace.

Any other value The operation failed. By using the SQLERROR/SWSERROR
interface, you can obtain the error message pertinent to the error.

Return Value Description
7-56 Shadow Programming Guide December 1999

IMS/APPC APIs
C Example
#include "sccphd.h" /* Neon headers */
#include "atbcmc.h" /* CPI Communications */
#include "atbpbc.h" /* LU6.2 */

 .
 .
 long RC; /* return code */
 long stmtHDL; /* statement handle */
 long recvtype; /* data received type */
 long sendlen; /* input buffer length */
 long recvlen; /* output buffer length */
 long tp_name_length; /* tp name length */
 char sendbuf[82] /* input buffer area */
 char recvbuf[82] /* output buffer */
 char tp_name[64] /* tp name */
 char fill_1[] = ’ ’ /* eight byte filler field */
 char fill_2[] = ’ ’ /* eight byte filler field */
 char fill_3[] = ’ ’ /* eight byte filler field */
 char fill_4[] = ’ ’ /* ten byte filler field */
 char fill_5[] = ’ ’ /* ten byte filler field */
 char fill_6[] = ’ ’ /* ten byte filler field */
 char conversation_id[8] /* conversation id */
 char partner_lu_name[17] /* partner lu name */

 CALL SWSAPPCSEND(stmtHDL, /* statement handle */
 SWS_APPC_TYPE_IMS
 partner_lu_name
 conversation_id
 sendlen
 sendbuf
 RC
 sendtype.

 if (rc ^= SWS_SUCCESS)
 return rc;
December 1999 Shadow Programming Guide 7-57

Host Application API Function Calls
COBOL Example
COPY SBCPHD. Neon Copybook
 COPY ATBCMCOB. CPI COMMUNICATIONS COPYBOOK
 COPY ATBPBCOB. LU6.2 COPYBOOK
 .
 .
 .
 .
 77 STATEMENT-HANDLE USAGE IS POINTER.
 77 FILLER-PARMLIST-01 PIC X(8) VALUE IS SPACES.
 77 FILLER-PARMLIST-02 PIC X(8) VALUE IS SPACES.
 77 FILLER-PARMLIST-03 PIC X(8) VALUE IS SPACES.
 77 FILLER-PARMLIST-04 PIC X(10) VALUE IS SPACES.
 77 FILLER-PARMLIST-05 PIC X(10) VALUE IS SPACES.
 77 FILLER-PARMLIST-06 PIC X(10) VALUE IS SPACES.
 01 SEND-BUFFER.
 05 SEND-BUFFER-LENGTH PIC 9(4) COMP-4.
 05 SEND-BUFFER-CONTENTS PIC X(100) VALUE IS SPACES.
 05 SEND-EXTRA-AREA PIC X(10).
 01 RECEIVE-BUFFER.
 05 RECEIVE-BUFFER-LENGTH PIC 9(4) COMP-4.
 05 RECEIVE-BUFFER-CONTENTS PIC X(80).
 05 RECEIVE-EXTRA-AREA PIC X(10).
 .
 .
 .
 SET CM-NONE TO TRUE.
 SET ATB-SECURITY-NONE TO TRUE.
 SET SWS-APPC-TYPE-IMS TO TRUE.
 MOVE ’PART’ TO TP-NAME.
 MOVE 4 TO TP-NAME-LENGTH.
 MOVE ’P390.P392AIMS’ TO PARTNER-LU-NAME.
 CALL ’SDCPAS’ USING STATEMENT-HANDLE
 SWS-APPC-TYPE
 CONVERSATION-ID
 SEND-LENGTH
 SEND-BUFFER
 PARTNER-LU-NAME
 ATB-SEND-TYPE
 ATB-RETCODE.
MOVE RETURN-CODE TO WS-SWSAPI-RETURN-CODE.
 IF NOT SWS-SUCCESS
 GOBACK.
7-58 Shadow Programming Guide December 1999

IMS/APPC APIs
SDBAPSND/SWSAPSND Function

The REXX-language SDBAPSND/SWSAPSND built-in function can be used to
send data to an IMS transaction. This function requires that an active connection
already be established to IMS.

Upon return from the call, the following REXX variables are populated with data:

Syntax

The general form for a REXX-language invocation of SDBAPSND/SWSAPSND
is:

rc = SDBAPSND/SWSAPSND(“Connection Type”, ,
 “Conversation ID”, ,
 “Transaction Data”, ,
 “Partner LU Name”)

Can be used in Shadow/REXX.

Can be used from Other REXX interpreters.

HLL entry point name is SDCPAS/SWCPAS.

REXX Variable Description

APPC.STMTHDL The statement handle for the interface call.

APPC.CONVID The Conversation ID for the IMS APPC conversation.

APPC.OUTBUFF.0 The length of the data contained within the APPC.OUTBUFF.1
REXX variable.

APPC.OUTBUFF.1 The returned Message Output Descriptor data. The output message
contains the MOD data as well as a two byte length prefix. This
variable contains the data, including any supplied trailing blanks.

APPC.RETCODE The APPC Interface return code.

APPC.DATATYPE The returned datatype.
December 1999 Shadow Programming Guide 7-59

Host Application API Function Calls

ion.
fix).

on.

ner
Valid Arguments

SDBAPSND/SWSAPSND Example
/*-- */
/* initialize some system values */
/*-- */

address
SWSSEND imsappc = ’P390.P392AIMS’
imstran = ’NEONDISP’
parms = ’’

/*---*/
/* Send data into IMS */
/*---*/

rc = swsapsnd(’ims’,APPC.CONVID,parms,imsappc)

 Connection Type Specifies the type of IMS transaction to execute:

• IMS for IMS Non-conversational transaction.
• IMSCONV for IMS Conversational transaction.

Note: Required parameter.

Conversation ID Specifies the IMS Conversation ID.

Note: Required parameter.

Transaction Data Specifies any data required by the application program in order to process the transact
This would be data in the format of the Message Input Descriptor (without the LLZZ pre

Note: Required parameter.

Partner LU Name Specifies the APPC LU Name for the IMS system

Note: Optional parameter.

Synchronization Level Specifies whether or not confirmation processing will be performed on this conversati

• NONE — no confirmation processing is required for this conversation.
• CONFIRM — confirmation processing is required for this conversation.

Note: Optional parameter. If used, it requires that placeholders be specified for the Part
LU Name.
7-60 Shadow Programming Guide December 1999

CICS APIs
CICS APIs

Two copy members supplied by IBM must be included before using the EXCI
interface for CICS. The following tables represent the language, member names,
and libraries where these members can be found.

The following API call functions, implemented by Shadow Web Server and
Shadow Direct, include those for APPC connections between Transaction Server
for CICS and CICS, V4.1 and above, as well as APPC connections via REXX-
language interfaces.

Note:
In order to use these APIs, you need the CICS Transaction Server.

Copybook Name Language Library

DFHXCPLD Assembler CICS410 SDFHMAC

DFHXCPLH C CICS410.SDFHC370

DFHXCPLO COBOL CICS410.SDFHCOB

DFHXCPLL PL/I CICS410.SDFHPL1

Copybook Name Language Library

DFHXCRCD Assembler CICS410 SDFHMAC

DFHXCRCH C CICS410.SDFHC370

DFHXCRCO COBOL CICS410.SDFHCOB

DFHXCRCL PL/I CICS410.SDFHPL1

API Description DIRECT WEB SEF WEB/RX

CICS APIs

To establish EXCI
connect:

SQLEXCICONNECT
or SDCPEC

SWSEXCICONNECT
or SWCPEC

SDBEXCON SWSEXCON

To perform DPL
request using EXCI:

SQLEXCIDPLREQ
or SDCPED

SWSEXCIDPLREQ
or SWCPED

SDBEXDPL SWSEXDPL

To perform EXCI
initusr:

SQLEXCIINITUSR
or SDCPEI

SWSEXCIINITUSR
or SWCPEI

SDBEXINI SWSEXINI

To perform EXCI
disconnect:

SQLEXCIDISCONN
or SDCPEL

SWSEXCIDISCONN
or SWCPEL

SDBEXDIS SWSEXDIS
December 1999 Shadow Programming Guide 7-61

Host Application API Function Calls
High-Level Language Interface
SQLEXCICONNECT (SDCPEC) or
SWSEXCICONNECT (SWCPEC) Function

This call establishes an EXCI connect on behalf of an ODBC CALL RPC to a
CICS region. It can be called by any host ODBC call RPC, and returns standard
ODBC return codes.

In order to execute a CICS Transaction using this interface, you will need to exe-
cute the following API calls in the sequence listed below.

Syntax

The general form for invocation of SDCPEC/SWCPEC is:

CALL SQLEXCICONNECT USING STATEMENT-HANDLE
 SQL-CICS-TYPE
 CONNECTION-NAME
 EXCI-RETURN-CODE
 USER-TOKEN
 PIPE-TOKEN.

CALL Arguments

The SQLEXCICONNECT/SWSEXCICONNECT (SDCPEC/SWCPEC) function
arguments are described in the table which follows. All parameters are required.

Can be used in Shadow/REXX.

Can be used from other REXX interpreters.

HLL entry point name is SDCPEC/SWCPEC.

Service Name Service Description

SWSEXCIINITUSR To initialize the CICS EXCI connection.

SWSEXCICONNECT To connect to CICS through the EXCI interface.

SWSEXCIDPLREQ To issue a DPL request to CICS. This API can be called repetitively
in order to complete the processing required for the transaction.

SWSEXCIDISCONN To disconnect a CICS EXCI connection.
7-62 Shadow Programming Guide December 1999

CICS APIs

e
Return Values

SQLEXCICONNECT/SWSEXCICONNECT always sets a signed numeric return
code value. Possible values are:

Arg
HLL Argument Type

I/O Description of Argument
C COBOL PL/I

1 LONG PIC S9(5)
COMP

FIXED
BIN(31)

INPUT Statement Handle. Currently ignored however, it
must contain zeros.

2 LONG PIC S9(5)
COMP

FIXED
BIN(31)

INPUT CICS Connection Type. Must be set to SWS-CICS-
TYPE-EXCI or SWS-CICS-TYPE-NEON. The
“NEON” type is currently not supported.

3 CHAR* PIC
X(4)

CHAR(4) INPUT CICS Connection Name. A field containing the nam
of a Defined Connection. The Connection Name
must be defined (using the “DEFINE
CONNECTION” command) in the Shadow Web
Server startup exec (SWS_IN00).

4 exci_return_
code*

EXCI-
RETURN-
CODE

EXCI_
RETURN_
CODE

OUTPUT The CICS EXCI Return Code Copybook layout for
the output return code area.

5 LONG PIC S9(5)
COMP

FIXED
BIN(31)

INPUT User Token.

6 LONG PIC S9(5)
COMP

FIXED
BIN(31)

OUTPUT Pipe Token.

Return Value Description

SWS_SUCCESS,
SQL_SUCCESS

The operation succeeded. The specified operation was performed.

SWS_ERROR,
SQL_ERROR

A parameter validation or runtime error was encountered. Error
information is available using the SWSERROR/SQLERROR
function.

SWS_ENVIRONMENT_ERROR The request could not be processed because of a runtime
environmental error, for example, you invoked the API service
outside of a web transaction procedure, or from outside the Server's
address space. The Server may provide diagnostic information in the
wrap-around trace.

Any other value The operation failed. By using the SQLERROR/SWSERROR
interface, you can obtain the error message pertinent to the error.
December 1999 Shadow Programming Guide 7-63

Host Application API Function Calls
PL/I Example
%INCLUDE DFHXCPLL
%INCLUDE DFHXCRCL
%INCLUDE SPCPHD
 .
 .
DCL STMTHDL FIXED BIN(31); /* Statement Handle */
DCL USER_TOKEN FIXED BIN(31); /* User Token */
DCL PIPE_TOKEN FIXED BIN(31); /* User Token */
DCL CONNECTION_NAME CHAR(4); /* Connection Name */
DCL RC FIXED BIN(31); /* RETURN CODE */

CONNECTION_NAME = ’EWST’ /* SET name */

CALL SWSEXCICONNECT(STMTHDL /* STATEMENT HANDLE */
 SWS_CICS_TYPE_EXCI, /* connection type */
 CONNECTION_NAME, /* connection name */
 EXCI_RETURN_CODE, /* cics exci return area */
 USER_TOKEN, /* user token */
 PIPE_TOKEN /* pipe token */

RC = PLIRETV(); /* GET RETURN CODE */
IF RC ^= SWS_SUCCESS THEN /* EXIT PROGRAM IF BAD RC*/
 EXIT;
7-64 Shadow Programming Guide December 1999

CICS APIs
C Example

#include "dfhxcplh.h" /* CICS Return Area header */
#include "dfhxcrch.h" /* CICS Response Codes */
#include "sccphd.h" /* Neon headers */
exci_return_code exciRET; /* cics exci return area */
.
long RC; /* return code */
long stmtHDL; /* statement handle */
long userTOKEN; /* user token */
long pipeTOKEN; /* user token */
char connection_name[] = "EWST"; /* Connection Name */

CALL SWSEXCICONNECT(stmtHDL, /* statement handle */
 SWS_CICS_TYPE_EXCI, /* connection type */
 connection_name, /* connection name */
 exciRET, /* cics exci return area */
 userTOKEN, /* user token */
 pipeTOKEN /* pipe token */

if (rc ^= SWS_SUCCESS)
 return rc;

Note:
The Neon Header file must be included after the CICS EXCI
headers.
December 1999 Shadow Programming Guide 7-65

Host Application API Function Calls
COBOL Example
COPY DFHXCPLO. CICS EXCI Return Areas
COPY DFHXCRCO. CICS EXCI Response Codes
COPY SBCPHD. Neon Copybook
 .
 .
77 CONNECTION-NAME PIC X(4) VALUE IS ’EWST’.
77 STATEMENT-HANDLE USAGE IS POINTER.
77 USER-TOKEN PIC S9(5) COMP VALUE IS ZERO.
77 PIPE-TOKEN PIC S9(5) COMP VALUE IS ZERO.
 .
 .
 .
SET SWS-CICS-TYPE-EXCI TO TRUE.
CALL ’SDCPEC’ USING STATEMENT-HANDLE
 SWS-CICS-TYPE
 CONNECTION-NAME
 EXCI-RETURN-CODE
 USER-TOKEN
 PIPE-TOKEN.

MOVE RETURN-CODE TO WS-SWSAPI-RETURN-CODE.
IF NOT SWS-SUCCESS
 GOBACK.
7-66 Shadow Programming Guide December 1999

CICS APIs

t in

SDBEXCON/SWSEXCON Function

The REXX-language SDBEXCON/SWSEXCON built-in function is used to
establish a CICS EXCI connect on behalf of the user.

Upon return from the call, the following REXX variables are populated with data:

Syntax

The general form for a REXX-language invocation of SDBEXCON/SWSEXCON
is:

rc = swsexcon(Connection Type, ,
Connection Name, ,
User Token)

Valid Arguments

Can be used in Shadow/REXX.

Can be used from other REXX interpreters.

High-level Language Interface available.

REXX Variable Description

EXCI.STMTHDL The statement handle for the interface call.

EXCI.RETCODE The EXCI Return Code Area as mapped by the CICS Copybooks.

EXCI.PIPETOKN The Pipe Token required as input to subsequent API calls.

Connection Type Specifies the type of connection:

• EXCI — use CICS EXCI interface.
• NEON — currently not supported.

Note: Required parameter.

Connection Name Logical name of the connection as specified on the “DEFINE CONNECTION” statemen
the Shadow Initialization exec member (SWS_IN00)

Note: Required parameter.

User Token Token created as a result of the SWSEXINI API Call. Use the EXCI.USERTOKN REXX
variable name.

Note: Required parameter.
December 1999 Shadow Programming Guide 7-67

Host Application API Function Calls
SDBEXCON/SWSEXCON Examples
 contype = ’EXCI’ /* Connection Type */
 conname = ’EWST’ /* Connection Name from DEFINE */
 cicstran = ’EXCI’ /* CICS Transaction Code */
 cicspgm = ’DFH$AXCS’ /* CICS Program Name */
 address swssend

 /*--*/
 /* Initialize the user */
 /*--*/
 rc = swsexini(contype,conname)

 /*--*/
 /* Allocate a pipe */
 /*--*/
 rc = swsexcon(contype,conname,EXCI.USERTOKN)

 /*--*/
 /* Issue DPL Request */
 /*--*/
 parm = ’00000001’x||’FILEA 000001’
 rc = swsexdpl(contype,conname,cicstran,cicspgm, ,
 parm,EXCI.USERTOKN,EXCI.PIPETOKN)

 pgmrc = substr(EXCI.COMMAREA.1,1,4)
 pgmrc = c2x(pgmrc)

 parm = substr(EXCI.COMMAREA.1,5,14)
 parm = ’00000002’x||parm

 data = substr(EXCI.COMMAREA.1,19,80)

 /*--*/
 /* Disconnect the pipe */
 /*--*/
 rc =
swsexdis(contype,conname,EXCI.USERTOKN,EXCI.PIPETOKN)

7-68 Shadow Programming Guide December 1999

CICS APIs
High-Level Language Interface
SQLEXCIDPLREQ (SDCPED) or
SWSEXCIDPLREQ (SWCPED) Function

This function is used to disconnect a CICS EXCI Connection. In order to execute
a CICS Transaction using this interface, you will need to execute the following
API calls in the sequence listed below:

Syntax

The general form for invocation of SDCPED/SWCPED is:

CALL SQLEXCIDPLREQ USING STATEMENT-HANDLE
 SQL-CICS-TYPE
 CONNECTION-NAME
 TRANS-ID
 EXCI-RETURN-CODE
 PROGRAM-NAME
 CICS-BUFFER-COMMAREA
 CICS-BUFFER-COMMAREA-LENGTH
 CICS-BUFFER-INPUT-LENGTH
 UOWID
 USER-ID
 USER-TOKEN
 PIPE-TOKEN
 EXCI-DPL-RETAREA

Can be used in Shadow/REXX.

Can be used from other REXX interpreters.

HLL entry point name is SDCPED/SWCPED.

Service Name Service Description

SWSEXCIINITUSR To initialize the CICS EXCI connection.

SWSEXCICONNECT To connect to CICS through the EXCI interface.

SWSEXCIDPLREQ To issue a DPL request to CICS. This API can be called repetitively in order to
complete the processing required for the transaction.

SWSEXCIDISCONN To disconnect a CICS EXCI connection.
December 1999 Shadow Programming Guide 7-69

Host Application API Function Calls

e

CALL Arguments

The SQLEXCIDPLREQ/SWSEXCIDPLREQ (SDCPED/SWCPED) function
arguments are described in the table which follows. All parameters are required.

Arg
HLL Argument Type

I/O Description of Argument
C COBOL PL/I

1 LONG PIC S9(5)
COMP

FIXED
BIN(31)

INPUT Statement Handle. Currently ignored however, it
must contain zeros.

2 LONG PIC S9(5)
COMP

FIXED
BIN(31)

INPUT CICS Connection Type. Must be set to SWS-CICS-
TYPE-EXCI or SWS-CICS-TYPE-NEON. The
“NEON” type is currently not supported.

3 CHAR* PIC
X(4)

CHAR(4) INPUT CICS Connection Name. A field containing the nam
of a Defined Connection. The Connection Name
must be defined (using the “DEFINE
CONNECTION” command) in the Shadow Web
Server startup exec (SWS_IN00).

4 CHAR* PIC
X(4)

CHAR(4) INPUT CICS Transaction Name. The name of the mirror
transaction with which the target program is to run.

5 exci_return_
code*

EXCI-
RETURN-
CODE

EXCI_
RETURN_
CODE

OUTPUT The CICS EXCI Return Code Copybook layout for
the output return code area.

6 CHAR* PIC S9(5)
COMP

FIXED
BIN(31)

INPUT CICS Program Name. The program to run and
interact with the DPL request.

7 CHAR* PIC
X(1 - 32704)

CHAR
(1 - 32704)

INPUT/
OUTPUT

CICS COMMAREA.

8 LONG PIC
S9(5)
COMP

FIXED
BIN(31)

INPUT CICS COMMAREA Length. The total length of the
COMMAREA.

9 LONG PIC
S9(5)
COMP

FIXED
BIN(31)

INPUT Input data length. The total length of the data within
the COMMAREA.

10 CHAR* PIC
X(8)

CHAR(8) INPUT User ID. This is used as a work field and should be
spaces upon entry to the API call.

11 LONG PIC
S9(5)
COMP

FIXED
BIN(31)

INPUT User Token.

12 LONG PIC
S9(5)
COMP

FIXED
BIN(31)

INPUT Pipe Token.

13 exci-dpl-
retarea *

EXCI-DPL-
RETAREA

EXCI_DPL_
RETAREA

OUTPUT The CICS EXCI DPL Return area Copybook layout
for the output return area.
7-70 Shadow Programming Guide December 1999

CICS APIs
Return Values

SQLEXCIDPLREQ/SWSEXCIDPLREQ always sets a signed numeric return
code value. Possible values are:

Return Value Description

SWS_SUCCESS,
SQL_SUCCESS

The operation succeeded. The specified operation was performed.

SWS_ERROR,
SQL_ERROR

A parameter validation or runtime error was encountered. Error
information is available using the SWSERROR/SQLERROR
function.

SWS_ENVIRONMENT_ERROR The request could not be processed because of a runtime
environmental error, for example, you invoked the API service
outside of a web transaction procedure, or from outside the Server’s
address space. The Server may provide diagnostic information in the
wrap-around trace.

Any other value The operation failed. By using the SQLERROR/SWSERROR
interface, you can obtain the error message pertinent to the error.
December 1999 Shadow Programming Guide 7-71

Host Application API Function Calls
PL/I Example
%INCLUDE DFHXCPLL
%INCLUDE DFHXCRCL
%INCLUDE SPCPHD
 .
 .
 .
DCL STMTHDL FIXED BIN(31); /* Statement Handle */
DCL USER_TOKEN FIXED BIN(31); /* User Token */
DCL PIPE_TOKEN FIXED BIN(31); /* User Token */
DCL CONNECTION_NAME CHAR(4); /* Connection Name */
DCL RC FIXED BIN(31); /* RETURN CODE */

CONNECTION_NAME = ’EWST’ /* SET name */

CALL SWSEXCIDPLREQ(STMTHDL /* STATEMENT HANDLE */
 SWS_CICS_TYPE_EXCI, /* CONNECTION TYPE */
 CONNECTION_NAME, /* CONNECTION NAME */
 TRANS_ID, /* TRANSACTION ID */
 EXCI_RETURN_CODE, /* CICS EXCI RETURN AREA */
 PROGRAM_NAME, /* PROGRAM NAME */
 COMMAREA, /* COMMAREA */
 SIZEOF(COMMAREA), /* COMMAREA LENGTH */
 STRLEN(COMMAREA), /* COMMAREA LENGTH */
 NULL, /* UNIT OF WORK ID AREA */
 USER_ID, /* USER ID */
 USERTOKEN, /* USER TOKEN */
 PIPETOKEN, /* PIPE TOKEN */
 EXCI_DPL_RETAREA) /* DPL RETURN CODE AREA */

RC = PLIRETV(); /* GET RETURN CODE */
IF RC ^= SWS_SUCCESS THEN /* EXIT PROGRAM IF BAD RC */
 EXIT;
7-72 Shadow Programming Guide December 1999

CICS APIs
C Example

#include "dfhxcplh.h" /* CICS Return Area header */
#include "dfhxcrch.h" /* CICS Response Codes */
#include "sccphd.h" /* Neon headers */

exci_return_code exciRET; /* cics exci return area */
exci_dpl_retarea exciDPL; /* cics exci DPL return area*/
 .
 .
 .
 .
long RC; /* return code */
long stmtHDL; /* statement handle */
long userTOKEN; /* user token */
long pipeTOKEN; /* user token */
char commarea[32704]; /* Connection Name */
char connection_name[] = "EWST"; /* Connection Name */
char trans_id[] = "EXCI"; /* Transaction id */
char user_id[] = " "; /* userid */

CALL SWSEXCIDPLREQ(stmtHDL, /* statement handle */
 SWS_CICS_TYPE_EXCI, /* connection type */
 connection_name, /* connection name */
 trans_id, /* transaction id */
 exciRET, /* cics exci return area */
 program_name, /* program name */
 commarea, /* commarea */
 sizeof(commarea), /* commarea length */
 strlen(commarea), /* commarea length */
 NULL, /* unit of work id area */
 user_id, /* user id */
 userTOKEN, /* user token */
 pipeTOKEN, /* pipe token */
 exciDPL) /* DPL Return Code Area */

if (rc ^= SWS_SUCCESS)
 return rc;

Note:
The Neon Header file must be included after the CICS EXCI
headers.
December 1999 Shadow Programming Guide 7-73

Host Application API Function Calls
COBOL Example
COPY DFHXCPLO. CICS EXCI Return Areas
COPY DFHXCRCO. CICS EXCI Response Codes
COPY SBCPHD. Neon Copybook
 .
 .
77 CONNECTION-NAME PIC X(4) VALUE IS ’EWST’.
77 TRANS-ID PIC X(4) VALUE IS ’EXCI’.
77 PROGRAM-NAME PIC X(8) VALUE IS ’DFH$AXCS’.
77 FILL-8 PIC X(8) VALUE IS SPACES.
77 STATEMENT-HANDLE USAGE IS POINTER.
77 USER-TOKEN PIC S9(5) COMP VALUE IS ZERO.
77 PIPE-TOKEN PIC S9(5) COMP VALUE IS ZERO.
77 CICS-BUFFER-INPUT-LENGTH PIC S9(5) COMP VALUE IS ZERO.
77 CICS-BUFFER-COMMAREA-LENGTH PIC S9(5) COMP VALUE IS ZERO.
01 UOWID USAGE IS POINTER.
01 CICSBUFFER.
05 CICS-BUFFER-COMMAREA.
10 CICS-BUFFER-COMMAREA-RETURNCD PIC S9(5) COMP.
10 CICS-BUFFER-COMMAREA-FILENAME PIC X(8).
10 CICS-BUFFER-COMMAREA-RIDFIELD PIC X(6).
10 CICS-BUFFER-COMMAREA-RECORD PIC X(512).
 .
 .
SET SWS-CICS-TYPE-EXCI TO TRUE.
CALL ’SDCPED’ USING STATEMENT-HANDLE
 SWS-CICS-TYPE
 CONNECTION-NAME
 TRANS-ID
 EXCI-RETURN-CODE
 PROGRAM-NAME
 CICS-BUFFER-COMMAREA
 CICS-BUFFER-COMMAREA-LENGTH
 CICS-BUFFER-INPUT-LENGTH
 UOWID
 FILL-8
 USER-TOKEN
 PIPE-TOKEN
 EXCI-DPL-RETAREA.

MOVE RETURN-CODE TO WS-SWSAPI-RETURN-CODE.
IF NOT SWS-SUCCESS
 GOBACK.
7-74 Shadow Programming Guide December 1999

CICS APIs

t in
SDBEXDPL/SWSEXDPL Function

The REXX-language SDBEXDPL/SWSEXDPL built-in function is used to estab-
lish a CICS EXCI connect on behalf of the user.

Upon return from the call, the following REXX variables are populated with data:

Syntax

The general form for a REXX-language invocation of SDBEXDPL/SWSEXDPL
is:

rc = swsexdpl(Connection Type, ,
 Connection Name, ,
 CICS Transaction Name, ,
 CICS Program Name, ,
 CICS Transaction Input, ,
 User Token, ,
 Pipe Token)

Valid Arguments

Can be used in Shadow/REXX.

Can be used from other REXX interpreters.

High-level Language Interface available.

REXX Variable Description

EXCI.STMTHDL The statement handle for the interface call.

EXCI.RETCODE The EXCI Return Code Area as mapped by the CICS Copybooks.

EXCI.COMMAREA.1 The output COMMAREA from the CICS Transaction.

EXCI.DPLCODE The DPL Return Code Area as mapped by the CICS Copybooks.

Connection Type Specifies the type of connection:

• EXCI — use CICS EXCI interface.
• NEON — currently not supported.

Note: Required parameter.

Connection Name Logical name of the connection as specified on the “DEFINE CONNECTION” statemen
the Shadow Initialization exec member (SWS_IN00).

Note: Required parameter.

CICS Transaction Name The Trans-ID of the mirror transaction with which the target program is to run under.

Note: Required parameter.
December 1999 Shadow Programming Guide 7-75

Host Application API Function Calls
CICS Program Name The program to run and interact with via DPL requests.

Note: Required parameter.

CICS Transaction Input The input to the executing transaction passed through the COMMAREA. A COMMAREA
will of 32,704 bytes will be allocated, the transaction input will be copied into this area and
passed to the transaction.

Note: Required parameter.

User Token The token created as a result of the SWSEXINI API Call. Use the EXCI.USERTOKN
REXX variable name.

Note: Required parameter.

Pipe Token The token created as a result of the SWSEXCON API Call. Use the EXCI.PIPETOKN
REXX variable name.

Note: Required parameter.
7-76 Shadow Programming Guide December 1999

CICS APIs
SDBEXDPL/SWSEXDPL Examples
 contype = ’EXCI’ /* Connection Type */
 conname = ’EWST’ /* Connection Name from DEFINE */
 cicstran = ’EXCI’ /* CICS Transaction Code */
 cicspgm = ’DFH$AXCS’ /* CICS Program Name */
 address swssend

 /*--*/
 /* Initialize the user */
 /*--*/
 rc = swsexini(contype,conname)

 /*--*/
 /* Allocate a pipe */
 /*--*/
 rc = swsexcon(contype,conname,EXCI.USERTOKN)

 /*--*/
 /* Issue DPL Request */
 /*--*/
 parm = ’00000001’x||’FILEA 000001’
 rc = swsexdpl(contype,conname,cicstran,cicspgm, ,
 parm,EXCI.USERTOKN,EXCI.PIPETOKN)

 pgmrc = substr(EXCI.COMMAREA.1,1,4)
 pgmrc = c2x(pgmrc)

 parm = substr(EXCI.COMMAREA.1,5,14)
 parm = ’00000002’x||parm

 data = substr(EXCI.COMMAREA.1,19,80)

 /*--*/
 /* Disconnect the pipe */
 /*--*/
 rc =
swsexdis(contype,conname,EXCI.USERTOKN,EXCI.PIPETOKN)

December 1999 Shadow Programming Guide 7-77

Host Application API Function Calls
High-Level Language Interface
SQLEXCIINITUSR (SDCPEI) or
SWSEXCIINITUSR (SWCPEI) Function

This call is used to initialize a user for access to CICS using EXCI. Standard
ODBC return codes are returned. In order to execute a CICS Transaction using
this interface, you will need to execute the following API calls in the sequence
listed below.

Syntax

The general form for invocation of SDCPEI/SWCPEI is:

CALL SQLEXCIINITUSR USING STATEMENT-HANDLE
 SQL-CICS-TYPE
 CONNECTION-NAME
 EXCI-RETURN-CODE
 USER-TOKEN.

CALL Arguments

The SQLEXCIINITUSR/SWSEXCIINITUSR (SDCPEI/SWCPEI) function argu-
ments are described in the table which follows. All parameters are required.

Can be used in Shadow/REXX.

Can be used from other REXX interpreters.

HLL entry point name is SDCPEI/SWCPEI.

Service Name Service Description

SWSEXCIINITUSR To initialize the CICS EXCI connection .

SWSEXCICONNECT To connect to CICS through the EXCI interface.

SWSEXCIDPLREQ To issue a DPL request to CICS. This API can be called repetitively in order to
complete the processing required for the transaction.

SWSEXCIDISCONN To disconnect a CICS EXCI connection.

Arg
HLL Argument Type

I/O Description of Argument
C COBOL PL/I

1 LONG PIC
S9(5) COMP

FIXED
BIN(31)

INPUT Statement Handle. Currently ignored however, it
must contain zeros.
7-78 Shadow Programming Guide December 1999

CICS APIs

e
Return Values

SQLEXCIINITUSR/SWSEXCIINITUSR always sets a signed numeric return
code value. Possible values are:

2 LONG PIC
S9(5) COMP

FIXED
BIN(31)

INPUT CICS Connection Type. Must be set to SWS-CICS-
TYPE-EXCI or SWS-CICS-TYPE-NEON. The
“NEON” type is currently not supported.

3 CHAR* PIC
X(4)

CHAR(4) INPUT CICS Connection Name. A field containing the nam
of a Defined Connection. The Connection Name
must be defined (using the “DEFINE
CONNECTION” command) in the Shadow Web
Server startup exec (SWS_IN00).

4 exci_return_
code*

EXCI-
RETURN-
CODE

EXCI_
RETURN_
CODE

OUTPUT The CICS EXCI Return Code Copybook layout for
the output return code area.

5 LONG PIC S9(5)
COMP

FIXED
BIN(31)

OUTPUT User Token.

Return Value Description

SWS_SUCCESS,
SQL_SUCCESS

The operation succeeded. The specified operation was performed.

SWS_ERROR,
SQL_ERROR

A parameter validation or runtime error was encountered. Error
information is available using the SWSERROR/SQLERROR
function.

SWS_ENVIRONMENT_ERROR The request could not be processed because of a runtime
environmental error, for example, you invoked the API service
outside of a web transaction procedure, or from outside the Server's
address space. The Server may provide diagnostic information in the
wrap-around trace.

Any other value The operation failed. By using the SQLERROR/SWSERROR
interface, you can obtain the error message pertinent to the error.

Arg
HLL Argument Type

I/O Description of Argument
C COBOL PL/I
December 1999 Shadow Programming Guide 7-79

Host Application API Function Calls
PL/I Example
%INCLUDE DFHXCPLL
%INCLUDE DFHXCRCL
%INCLUDE SPCPHD
 .
 .
DCL STMTHDL FIXED BIN(31); /* Statement Handle */
DCL USER_TOKEN FIXED BIN(31); /* User Token */
DCL CONNECTION_NAME CHAR(4); /* Connection Name */
DCL RC FIXED BIN(31); /* RETURN CODE */

CONNECTION_NAME = ’EWST’ /* SET name */

CALL SWSEXCIINITUSR(STMTHDL, /* STATEMENT HANDLE */
 SWS_CICS_TYPE_EXCI, /* connection type */
 CONNECTION_NAME, /* connection name */
 EXCI_RETURN_CODE, /* cics exci return area */
 USER_TOKEN) /* user token */
RC = PLIRETV(); /* GET RETURN CODE */
IF RC ^= SWS_SUCCESS THEN /* EXIT PROGRAM IF BAD RC */
 EXIT;

C Example

#include "dfhxcplh.h" /* CICS Return Area header */
#include "dfhxcrch.h" /* CICS Response Codes */
#include "sccphd.h" /* Neon headers */

exci_return_code exciRET; /* cics exci return area */
 .
 .
 .
long RC; /* return code */
long stmtHDL; /* statement handle */
long userTOKEN; /* user token */
char connection_name[] = "EWST"; /* Connection Name */

CALL SWSEXCIINITUSR(stmtHDL, /* statement handle */
 SWS_CICS_TYPE_EXCI, /* connection type */
 connection_name, /* connection name */
 exciRET, /* cics exci return area */
 userTOKEN) /* user token */

if (rc ^= SWS_SUCCESS)
 return rc;

Note:
The Neon Header file must be included after the CICS EXCI
headers.
7-80 Shadow Programming Guide December 1999

CICS APIs
COBOL Example
 COPY DFHXCPLO. CICS EXCI Return Areas
 COPY DFHXCRCO. CICS EXCI Response Codes
 COPY SBCPHD. Neon Copybook
 .
 .
 77 CONNECTION-NAME PIC X(4) VALUE IS ’EWST’.
 77 STATEMENT-HANDLE USAGE IS POINTER.
 77 USER-TOKEN PIC S9(5) COMP VALUE IS ZERO.
 .
 .
 .
 SET SWS-CICS-TYPE-EXCI TO TRUE.
 CALL ’SDCPEI’ USING STATEMENT-HANDLE
 SWS-CICS-TYPE
 CONNECTION-NAME
 EXCI-RETURN-CODE
 USER-TOKEN.

 MOVE RETURN-CODE TO WS-SWSAPI-RETURN-CODE.
 IF NOT SWS-SUCCESS
 GOBACK.

December 1999 Shadow Programming Guide 7-81

Host Application API Function Calls

t in
SDBEXINI/SWSEXINI Function

The REXX-language SDBEXINI/SWSEXINI built-in function is used to initial-
ize a CICS EXCI interface between Shadow for CICS and CICS v4.1 and above.

Upon return from the call, the following REXX variables are populated with data:

Syntax

The general form for a REXX-language invocation of SDBEXINI/SWSEXINI is:

rc = swsexini(Connection Type, ,
 Connection Name)

Valid Arguments

Can be used in Shadow/REXX.

Can be used from other REXX interpreters.

High-level Language Interface available.

REXX Variable Description

EXCI.STMTHDL The statement handle for the interface call.

EXCI.RETCODE The EXCI Return Code Area as mapped by the CICS Copybooks.

EXCI.USERTOKN The User Token required as input to subsequent API calls.

Connection Type Specifies the type of connection:

• EXCI — use CICS EXCI interface.
• NEON — currently not supported.

Note: Required parameter.

Connection Name Logical name of the connection as specified on the “DEFINE CONNECTION” statemen
the Shadow Initialization exec member (SWS_IN00)

Note: Required parameter.
7-82 Shadow Programming Guide December 1999

CICS APIs
SDBEXINI/SWSEXINI Examples
 contype = ’EXCI’ /* Connection Type */
 conname = ’EWST’ /* Connection Name from DEFINE */
 cicstran = ’EXCI’ /* CICS Transaction Code */
 cicspgm = ’DFH$AXCS’ /* CICS Program Name */
 address swssend

 /*--*/
 /* Initialize the user */
 /*--*/
 rc = swsexini(contype,conname)

 /*--*/
 /* Allocate a pipe */
 /*--*/
 rc = swsexcon(contype,conname,EXCI.USERTOKN)

 /*--*/
 /* Issue DPL Request */
 /*--*/
 parm = ’00000001’x||’FILEA 000001’
 rc = swsexdpl(contype,conname,cicstran,cicspgm, ,
 parm,EXCI.USERTOKN,EXCI.PIPETOKN)

 pgmrc = substr(EXCI.COMMAREA.1,1,4)
 pgmrc = c2x(pgmrc)

 parm = substr(EXCI.COMMAREA.1,5,14)
 parm = ’00000002’x||parm

 data = substr(EXCI.COMMAREA.1,19,80)

 /*--*/
 /* Disconnect the pipe */
 /*--*/
 rc = swsexdis(contype,conname,EXCI.USERTOKN,EXCI.PIPETOKN)

December 1999 Shadow Programming Guide 7-83

Host Application API Function Calls

e
High-Level Language Interface
SQLEXCIDISCONN (SDCPEL) or
SWSEXCIDISCONN (SWCPEL) Function

SQLEXCIDISCONN/SWSEXCIDISCONN is the Web Server API function used
to disconnect a CICS EXCI Connection. In order to execute a CICS Transaction
using this interface, you will need to execute the following API calls in the
sequence listed below.

Call Arguments

The SQLEXCIDISCONN/SWSEXCIDISCONN (SDCPEL/SWCPEL) function
arguments are described in the table which follows. All parameters are required.

Can be used in Shadow/REXX.

Can be used from other REXX interpreters.

HLL entry point name is SDCPEL/SWCPEL.

Service Name Service Description

SWSEXCIINITUSR To initialize the CICS EXCI connection.

SWSEXCICONNECT To connect to CICS through the EXCI interface.

SWSEXCIDPLREQ To issue a DPL request to CICS. This API can be called repetitively in order to
complete the processing required for the transaction.

SWSEXCIDISCONN To disconnect a CICS EXCI connection.

Arg
HLL Argument Type

I/O Description of Argument
C COBOL PL/I

1 LONG PIC S9(5)
COMP

FIXED
BIN(31)

INPUT Statement Handle. Currently ignored however, it
must contain zeros.

2 LONG PIC S9(5)
COMP

FIXED
BIN(31)

INPUT CICS Connection Type. Must be set to SWS-CICS-
TYPE-EXCI or SWS-CICS-TYPE-NEON. The
“NEON” type is currently not supported.

3 CHAR* PIC X(4) CHAR(4) INPUT CICS Connection Name. A field containing the nam
of a Defined Connection. The Connection Name
must be defined (using the “DEFINE
CONNECTION” command) in the Shadow Web
Server startup exec (SWS_IN00).
7-84 Shadow Programming Guide December 1999

CICS APIs
Return Values

SQLEXCIDISCONN/SWSEXCIDISCONN always sets a signed numeric return
code value. Possible values are:

4 exci_return_
code*

EXCI-
RETURN-
CODE

EXCI_
RETURN_
CODE

OUTPUT The CICS EXCI Return. Code Copybook layout for
the output return code area.

5 LONG PIC S9(5)
COMP

FIXED
BIN(31)

INPUT User Token.

6 LONG PIC S9(5)
COMP

FIXED
BIN(31)

OUTPUT Pipe Token.

Return Value Description

SWS_SUCCESS,
SQL_SUCCESS

The operation succeeded. The specified operation was performed.

SWS_ERROR,
SQL_ERROR

A parameter validation or runtime error was encountered. Error
information is available using the SWSERROR/SQLERROR
function.

SWS_ENVIRONMENT_ERROR The request could not be processed because of a runtime
environmental error, for example, you invoked the API service
outside of a web transaction procedure, or from outside the Server’s
address space. The Server may provide diagnostic information in the
wrap-around trace.

Any other value The operation failed. By using the SQLERROR/SWSERROR
interface, you can obtain the error message pertinent to the error.

Arg
HLL Argument Type

I/O Description of Argument
C COBOL PL/I
December 1999 Shadow Programming Guide 7-85

Host Application API Function Calls
PL/I Example
%INCLUDE DFHXCPLL
%INCLUDE DFHXCRCL
%INCLUDE SPCPHD
 .
 .
DCL STMTHDL FIXED BIN(31); /* Statement Handle */
DCL USER_TOKEN FIXED BIN(31); /* User Token */
DCL PIPE_TOKEN FIXED BIN(31); /* User Token */
DCL CONNECTION_NAME CHAR(4); /* Connection Name */
DCL RC FIXED BIN(31); /* RETURN CODE */

CONNECTION_NAME = ’EWST’ /* SET name */

CALL SWSEXCIDISCONN(STMTHDL /* STATEMENT HANDLE */
 SWS_CICS_TYPE_EXCI /* connection type */
 CONNECTION_NAME /* connection name */
 EXCI_RETURN_CODE, /* cics exci return area */
 USER_TOKEN, /* user token */
 PIPE_TOKEN) /* pipe token */

RC = PLIRETV(); /* GET RETURN CODE */
IF RC ^= SWS_SUCCESS THEN /* EXIT PROGRAM IF BAD RC */
 EXIT;

7-86 Shadow Programming Guide December 1999

CICS APIs
C Example

#include "dfhxcplh.h" /* CICS Return Area header */
#include "dfhxcrch.h" /* CICS Response Codes */
#include "sccphd.h" /* Neon headers */

exci_return_code exciRET; /* cics exci return area */
 .
 .
long RC; /* return code */
long stmtHDL; /* statement handle */
long userTOKEN; /* user token */
long pipeTOKEN; /* user token */
char connection_name[] = "EWST"; /* Connection Name */

CALL SWSExciDisconn(stmtHDL, /* statement handle */
 SWS_CICS_TYPE_EXCI, /* connection type */
 connection_name, /* connection name */
 exciRET, /* cics exci return area */
 userTOKEN, /* user token */
 pipeTOKEN) /* pipe token */
if (rc ^= SWS_SUCCESS)
 return rc;

COBOL Example
 COPY DFHXCPLO. CICS EXCI Return Areas
 COPY DFHXCRCO. CICS EXCI Response Codes
 COPY SBCPHD. Neon Copybook
 .
77 CONNECTION-NAME PIC X(4) VALUE IS ’EWST’.
 77 STATEMENT-HANDLE USAGE IS POINTER.
 77 USER-TOKEN PIC S9(5) COMP VALUE IS ZERO.
 77 PIPE-TOKEN PIC S9(5) COMP VALUE IS ZERO.
 .
SET SWS-CICS-TYPE-EXCI TO TRUE.
 CALL ’SDCPEL’ USING STATEMENT-HANDLE
 SWS-CICS-TYPE
 CONNECTION-NAME
 EXCI-RETURN-CODE
 USER-TOKEN
 PIPE-TOKEN.

 MOVE RETURN-CODE TO WS-SWSAPI-RETURN-CODE.
 IF NOT SWS-SUCCESS
 GOBACK.

Note:
The Neon Header file must be included after the CICS EXCI
headers.
December 1999 Shadow Programming Guide 7-87

Host Application API Function Calls

t in
SDBEXDIS/SWSEXDIS Function

The REXX-language SDBEXDIS/SWSEXDIS built-in function is used to estab-
lish a CICS EXCI connect on behalf of the user.

Upon return from the call, the following REXX variables are populated with data:

Syntax

The general form for a REXX-language invocation of SDBEXDIS/SWSEXDIS
is:

rc = swsexdis(Connection Type, ,
 Connection Name, ,
 User Token, ,
 Pipe Token)

Valid Arguments

Can be used in Shadow/REXX.

Can be used from other REXX interpreter.s

High-level Language Interface available.

REXX Variable Description

EXCI.STMTHDL The statement handle for the interface call.

EXCI.RETCODE The EXCI Return Code Area as mapped by the CICS Copybooks.

Connection Type Specifies the type of connection.

• EXCI — use CICS EXCI interface.
• NEON — currently not supported.

Note: Required parameter.

Connection Name Logical name of the connection as specified on the “DEFINE CONNECTION” statemen
the Shadow Initialization exec member (SWS_IN00)

Note: Required parameter.

User Token The token created as a result of the SWSEXINI API Call. Use the EXCI.USERTOKN
REXX variable name.

Note: Required parameter.

Pipe Token The token created as a result of the SWSEXCON API Call. Use the EXCI.PIPETOKN
REXX variable name.

Note: Required parameter.
7-88 Shadow Programming Guide December 1999

CICS APIs
SDBEXDIS/SWSEXDIS Examples
contype = ’EXCI’ /* Connection Type */
conname = ’EWST’ /* Connection Name from DEFINE */
cicstran = ’EXCI’ /* CICS Transaction Code */
cicspgm = ’DFH$AXCS’ /* CICS Program Name */
address swssend

/*--*/
/* Initialize the user */
/*--*/
 rc = swsexini(contype,conname)
/*--*/
/* Allocate a pipe */
/*--*/
 rc = swsexcon(contype,conname,EXCI.USERTOKN)

/*--*/
/* Issue DPL Request */
/*--*/
 parm = ’00000001’x||’FILEA 000001’
 rc = swsexdpl(contype,conname,cicstran,cicspgm, ,
 parm,EXCI.USERTOKN,EXCI.PIPETOKN)

 pgmrc = substr(EXCI.COMMAREA.1,1,4)
 pgmrc = c2x(pgmrc)

 parm = substr(EXCI.COMMAREA.1,5,14)
 parm = ’00000002’x||parm

 data = substr(EXCI.COMMAREA.1,19,80)

/*--*/
/* Disconnect the pipe */
/*--*/
 rc = swsexdis(contype,conname,EXCI.USERTOKN,EXCI.PIPETOKN)

December 1999 Shadow Programming Guide 7-89

Host Application API Function Calls
Web Server Specific APIs

:

API Description DIRECT WEB SEF WEB/RX

Web Server Specific APIs

To transmit data to Web Server
clients:

SWCPSN SWSSEND

To buffer outbound HTTP response
headers:

SWCPRE SWSRESP

To transmit data directly to web
client:

SWCPFI SWSFILE

To provide new URL value: SWCPSO SWSSET

To provide a means to issue an
MVS write to operator:

SWCPWT SWSWTO
7-90 Shadow Programming Guide December 1999

Web Server Specific APIs

-

High-Level Language Interface
SWSSEND (SWCPSN) Function

SWSSEND is the Web Server API function used to transmit out-bound data to
web server clients, flush buffered data to the client, or to purge buffers which have
not been transmitted.

CALL Arguments

The SWSSEND function takes four arguments. All four arguments must be speci-
fied on the call.

Can be used in Shadow/REXX.

Can be used from other REXX interpreters.

HLL entry point name is SWCPSN.

Arg
HLL Argument Type

I/O Description of Argument
C COBOL PL/I

1 HDBC Usage
pointer

PTR Input The connection handle. The connection handle is an
opaque, four-byte address pointer. The connection
handle is currently not used, and must be set to zero
(NULL).

2 UDWORD PIC S9(5)
COMP

FIXED
BIN(31)

Input A four-byte flag-word indicating the type of
operation to be performed. One of the following
manifest constants should be used to indicate the
desired operation. The values are mutually exclusive;
only one can be used.

• SWS_SEND_BINARY indicates that the third
argument contains binary-format data which
should be transmitted to the web client, as is.

• SWS_SEND_TEXT indicates that the third
argument contains text-format data which is
processed by the web server to remove trailing
blanks, is translated from EBCDIC to ASCII,
and a CR character appended to the end.

• SWS_SEND_FLUSH indicates that any un-
sent data within Web Server buffers should be
immediately transmitted to the client program.

• SWS_SEND_PURGE indicates that any un-
sent data within the Web Servers transmission
buffers should be discarded without being trans
mitted to the client.
December 1999 Shadow Programming Guide 7-91

Host Application API Function Calls
Return Values

SWSSEND always sets a signed numeric return code value. Possible values are:

3 PTR PIC X(nnn) CHAR
(nnn)

Input The buffer area containing the data to be transmitted
to the web client. The data value can be no longer
than 8K in length. This argument must be specified,
even if the second argument specifies a flush or purge
operation. The length of the data value within the
buffer area is specified by the forth argument.

4 SDWORD PIC S9(5)
COMP

FIXED
BIN(31)

Input The size of the data value given by the third
argument. This can be an integer fullword value in
the range 0 to 8K. You can also use the manifest
constant, SWS_NTS, to specify that data is a null-
terminated string. This value should be zero for flush
or purge operations.

Return Value Description

SWS_SUCCESS,
SQL_SUCCESS

The operation succeeded. The output data has been buffered, or for
flush and purge operations, the buffer operation has been completed.

SWS_ERROR,
SQL_ERROR

A parameter validation or runtime error was encountered. Error
information is available using the SWSERROR/SQLERROR
function.

SWS_ENVIRONMENT_ERROR The request could not be processed because of a runtime
environmental error, for example, you invoked the API service
outside of a web transaction procedure, or from outside the Server’s
address space. The Server may provide diagnostic information in the
wrap-around trace.

SWS_INVALID_HANDLE,
SQL_INVALID_HANDLE

The connection handle argument is invalid. No error information can
be returned using SQLERROR/SWSERROR.

4 The operation failed due to loss of the communications session.
Further out-bound transmissions will not be possible.

8 The requested operation was invalid within the overall context of the
transaction process. When this return code is set, the cause for the
request rejection can normally be found in the wrap-around trace.

Possible reasons for return code 8 being set are:

• An additional transmission buffer was needed, but could not be
obtained. Transmission of data cannot be performed in cross-
memory mode.

• An output request (TEXT or BINARY) is being made, but is
invalid at the current time. This occurs if you attempt to trans-
mit data after having issued an SWSFILE(SEND) request.

Arg
HLL Argument Type

I/O Description of Argument
C COBOL PL/I
7-92 Shadow Programming Guide December 1999

Web Server Specific APIs
The SWSSEND operation is not logged to the Server’s wrap-around trace file
unless an error occurs. If you need to trace information sent using SWSSEND, use
the SENDTRACE keyword of the /*WWW rule header.

PL/I Example
DCL SCONN PTR; /* Connection Handle */
DCL SDATA CHAR(256); /* Text output area */
DCL SSIZE FIXED BIN(31); /* Text length area */
DCL RC FIXED BIN(31); /* return code */
DCL DMHX FIXED BIN(31) BASED; /* Dummy Handle field */
ADDR(SCONN)->DMHX = 0; /* Clear Connection Handle*/
SDATA = ’Hello World!’; /* Set output area */
SSIZE = 12; /* set lengt */
CALL SWSSEND(SCONN /* send the text data */
 SWS_SEND_TEXT,
 SDATA,
 SSIZE);
RC = PLIRETV(); /* get return code */
IF RC ^= SWS_SUCCESS THEN /* exit program if bad RC */
 EXIT;

C Example
HDBC sConn = NULL; /* Connection Handle */
char sData[] = "Null-terminated!"; /* Text string definition */
long RC; /* return code */
rc = SWSSend(&sConn, /* send the text data */
 SWS_SEND_TEXT,
 sData,
 SWS_NTS);
if (rc ^= SWS_SUCCESS) return; /* exit program if bad RC */

COBOL Example
77 SCONN SAGE IS POINTER.
77 SDATA PIC X(80).
77 SSIZE PIC S9(5) COMP.
MOVE ’HELLO WORLD!’ TO SDATA.
MOVE 12 TO SSIZE.
CALL ’SWCPSN’ USING SCONN,
 SWS-SEND-TEXT,
 SDATA,
 SSIZE.
MOVE RETURN-CODE TO WS-SWSAPI-RETURN-CODE.
IF NOT SWS-SUCCESS GOBACK
December 1999 Shadow Programming Guide 7-93

Host Application API Function Calls
SWSSEND Function

SWSSEND is a built-in function used to transmit out-bound data to web server
clients from REXX-Language event procedures. SWSSEND can only be used
from within WWW event procedures and will return an error if invoked from
other event procedure types.

Syntax

The general form for invocation of SWSSEND is:

z = SWSSEND(arg1 {, arg2 })

Valid Arguments

The SWSSEND function takes one or two arguments.

The first argument always specifies the data to be transmitted to the web server
client. A NULL string can be passed as the first argument, or the argument can be
omitted entirely by coding a single comma in its place.

The second argument can be one of the following string constants:

Can be used in Shadow/REXX.

Can be used from other REXX interpreters.

High-level language interface available.

Also see SWSSEND Host Command Environment.

TEXT Indicates that the data specified by the first argument is text data. The string is converted
from EBCDIC to ASCII before transmission and a trailing CRLF is added. Trailing blanks,
if any, are also removed from the string. Text format data is assumed, if the second argument
is omitted.

BINARY Indicates that the data specified by the first argument is binary data. The string is transmitted
to the Web Client, as is, without additional processing.

FLUSH Indicates any data already in the out-bound buffers should be written to the client
immediately. The first argument is ignored.

PURGE Indicates that all data currently un-transmitted within buffers should be discarded. The first
argument is ignored.
7-94 Shadow Programming Guide December 1999

Web Server Specific APIs
Return Values

SWSSEND always returns a numeric value. If the value is zero the operation has
completed successfully. A non-zero return value indicates that the communica-
tions session has been lost.

The SWSSEND operation is not logged to the Server’s wrap-around trace file
unless an error occurs. If you need to trace information sent using SWSSEND, use
the SENDTRACE keyword of the /*WWW rule header.

Examples

The following call will buffer the HTML data for out-bound transmission. A Line-
Feed character will be added following the data and the data will be translated to
ASCII before transmission:

htmldata = “<h1>This is a Header</h1>”
z=SWSSEND(htmldata)

The following call will place the data into the out-bound buffer with no additional
processing:

z=SWSSEND(gifdata , “BINARY”)

The following call will cause all buffered data to be sent to the client immediately.

z=SWSSEND(, “FLUSH”)

The following call will purge all previously buffered data. Data which was flushed
prior to this call, will have already been sent to the web client.

z=SWSSEND(, “PURGE”)
December 1999 Shadow Programming Guide 7-95

Host Application API Function Calls
High-Level Language Interface
SWSRESP (SWCPRE) Function

SWSRESP (entry point SWCPRE) is a high level function used to buffer custom-
ized out-bound HTTP response headers for subsequent transmission to web client
browsers.

SWSRESP can be used to buffer an HTTP response header at any time during the
life of a web transaction. Using SWSRESP to buffer HTTP response headers dif-
fers from merely writing these headers using SWSSEND:

n When using SWSSEND, HTTP headers must be written before any message
body data (e.g. an HTML page or binary GIF image) has been output.

n SWSRESP can be used before, during or after output of the message body.

The Server merges the HTTP response headers which have been buffered using
SWSRESP with any other data generated by the web transaction. This merge pro-
cessing takes place when the web transaction ends and causes the complete output
stream to be assembled and transmitted to the client.

SWSRESP is only valid when a web transaction procedure is operating in server-
parsed header mode since the merging/assembly, described above, is disabled in
non-parsed-header mode. A call to SWSRESP will return an error if the web
transaction is not operating in server-parsed header mode.

CALL Arguments

The SWSRESP (entry point SWCPRE) function takes six arguments. All six argu-
ments must be specified on the call.

Can be used in Shadow/REXX.

Can be used from other REXX interpreters.

HLL entry point name is SWCPRE.

Arg
HLL Argument Type

I/O Description of Argument
C COBOL PL/I

1 HDBC Usage
pointer

PTR Input The connection handle. The connection handle is an
opaque, four byte address pointer. The connection
handle is currently not used, and must be set to zero
(NULL).
7-96 Shadow Programming Guide December 1999

Web Server Specific APIs
Return Values

SWSRESP always sets a signed numeric return code value. Possible values are:

2 UDWORD PIC S9(5)
COMP

FIXED
BIN(31)

Input A four-byte flag-word indicating the type of
operation to be performed. The only value currently
supported is:

SWS_RESPONSE_ADD

3 PTR PIC X(nnn) CHAR
(nnn)

Input The buffer area containing the header to be
transmitted to the web client. The data value can be
no longer than 8K in length. The length of the header
is specified by the 4th argument. The colon after the
response/general header is added by the SWSRESP
function; therefore it is not necessary to include it in
the third argument of the SWSRESP call.

4 SDWORD PIC S9(5)
COMP

FIXED
BIN(31)

Input The length of the data value given by the third
argument. This can be an integer fullword value in
the range of 0 to 8K. You can also use the manifest
constant SWS_NTS to specify that the data is a null
terminated string.

5 PTR PIC X(nnn) CHAR
(nnn)

Input The buffer area containing the entity body text to be
transmitted to the web client. The data value can be
no longer than 8K in length. The length of the entity
body text is specified by the 5th argument.

6 SDWORD PIC S9(5)
COMP

FIXED
BIN(31)

Input The length of the data value given by the fourth
argument. This can be an integer fullword value in
the range of 0 to 8K. You can also use the manifest
constant SWS_NTS to specify that the data is a null
terminated string.

Return Value Description

SWS_SUCCESS The operation succeeded. The specified header has been placed in
the output buffer.

SWS_ERROR A parameter validation or runtime error was encountered. Error
information is available using the SWSERROR function.

SWS_ENVIRONMENT_ERROR The request could not be processed because of a runtime
environmental error, for example, you invoked the API service
outside of a web transaction procedure, or from outside the Server’s
address space. The Server may provide diagnostic information in the
wrap-around trace.

SWS_INVALID_HANDLE The connection handle argument is invalid. No error information can
be returned using SWSERROR.

Any other value The operation failed.

Arg
HLL Argument Type

I/O Description of Argument
C COBOL PL/I
December 1999 Shadow Programming Guide 7-97

Host Application API Function Calls
The SWSRESP operation is not logged to the Server’s warp-around trace file
unless an error occurs. If you need to trace information sent using SWSRESP, use
the SENDTRACE keyword of the /*WWW rule header.

PL/I Example
DCL SCONN PTR; /* Connection Handle */
DCL HDATA CHAR(256); /* Header area */
DCL HSIZE FIXED BIN(31); /* Header length */
DCL BDATA CHAR(256); /* Body area */
DCL BSIZE FIXED BIN(31); /* Body length */
DCL DMHX FIXED BIN(31) BASED;/* Dummy Handle field */
ADDR(SCONN)->DMHX=0; /* Zero connection handle */
HDATA=”Pragma”; /* Set header data */
HSIZE=6; /* Set header length */
BDATA=”no-cache”; /* Set body data */
BSIZE=8; /* Set body length */
CALL SWSRESP(SCONN /* Send the response */
 SWS_RESPONSE_ADD,
 HDATA,
 HSIZE,
 BDATA,
 BSIZE);
RC=PLIRETV(); /* Get return code */
IF RC ̂ =SWS_SUCCESS THEN /* exit if bad RC */
 EXIT;

C Example
HDBC sConn = NULL; /* Connection Handle */
char hData[] = “Pragma”; /* Header text */
char bData[] = “no-cache”; /* body text */
long RC; /* return code */
rc = SWSResp(&sConn, /* send the response */
 SWS_RESPONSE_ADD,
 hData,
 SWS_NTS,
 bData,
 SWS_NTS);
If(rc ̂ =SWS_SUCCESS) return; /* exit if bad rc */
7-98 Shadow Programming Guide December 1999

Web Server Specific APIs
COBOL Example
77 SCONN USAGE IS POINTER.
77 HDATA PIC X(80).
77 HSIZE PIC S9(5) COMP.
77 BDATA PIC X(80).
77 BSIZE PIC S9(5) COMP.
MOVE ’Pragma’ TO HDATA.
MOVE 6 TO HSIZE.
MOVE ’no-cache’ TO BDATA.
MOVE 8 TO BSIZE.
CALL ’SWCPRE’ USING SCONN,
 SWS-RESPONSE-ADD,
 HDATA,
 HSIZE,
 BDATA,
 BSIZE.
MOVE RETURN CODE TO WS-SWSAPI-RETURN-CODE.
IF NOT SWS-SUCCESS GOBACK.

December 1999 Shadow Programming Guide 7-99

Host Application API Function Calls
SWSRESP Function

SWSRESP is a high level function used to buffer customized out-bound HTTP
response headers for subsequent transmission to web client browsers.

SWSRESP can be used to buffer an HTTP response header at any time during the
life of a web transaction. Using SWSRESP to buffer HTTP response headers dif-
fers from merely writing these headers using SWSSEND:

n When using SWSSEND, HTTP headers must be written before any message
body data (e.g. an HTML page or binary GIF image) has been output.

n SWSRESP can be used before, during or after output of the message body.

The Server merges the HTTP response headers which have been buffered using
SWSRESP with any other data generated by the web transaction. This merge pro-
cessing takes place when the web transaction ends and causes the complete output
stream to be assembled and transmitted to the client.

SWSRESP is only valid when a web transaction procedure is operating in server-
parsed header mode since the merging/assembly, described above, is disabled in
non-parsed-header mode. A call to SWSRESP will return an error if the web
transaction is not operating in server-parsed header mode.

Syntax

The general form for invocation of SWSRESP is:

Z = SWSRESP(func, hname, hvalue)

Valid Arguments

The SWSRESP takes three arguments:

Can be used in Shadow/REXX.

Can be used from other REXX interpreters.

High Level language available.

func Specifies the function to be performed. At this time the only supported function value is ADD.
Any other argument value will return an error.

hname Specifies the name of the HTTP response/general header to be transmitted to the web server client.
The HTTP response header name should be one which is universally recognized as defined in the
Hypertext Transfer Protocol - HTTP/1.1(RFC2068) specification. However, any string can be
coded.

The colon which ends each HTTP response header name must be omitted from the string, since
SWSRESP always inserts a trailing colon (e.g. Code "Content-type", not "Content-type:").
7-100 Shadow Programming Guide December 1999

Web Server Specific APIs
Return Values

SWSRESP always returns a numeric value. A zero return value indicates success-
ful buffering (though not actual transmission) of the HTTP response header. A
non-zero return value indicates that an error has occurred.

The SWSRESP operation is not logged to the Server’s wrap-around trace file
unless an error occurs. If you need to trace information actually sent as a result of
an SWSRESP request, use the SENDTRACE keyword of the /*WWW rule header.

Example

The following call will cause two HTTP response headers to be merged with other
headers generated by SWSFILE. A "Pragma: no-cache" and "Expires:
Mon, 14 APR 1998 12:02:03 GMT" HTTP response header will be included
in the final output transmission stream.

/*WWW /testswsresp sendtrace(yes)
/*REXX
Z = SWSRESP(’ADD’,’Pragma’,’no-cache’)
Z = FILE(’SEND’,’DDN’,’SAMPDATA’,’ICINFO’,’image/gif’,’BINARY’)
Z = SWSRESP (‘ADD’, ‘Expires’, ‘Mon, 14 APR 1998 12:02:03 GHT’)

hvalue The third argument, hvalue, specifies the value for the corresponding HTTP response header. The
content of the third argument will, of course, vary depending on the response/general header
specified in the second argument. The entity body text is converted to ASCII and then transmitted
exactly as provided by this argument.
December 1999 Shadow Programming Guide 7-101

Host Application API Function Calls
High-Level Language Interface
SWSFILE (SWCPFI) Function

SWSFILE is the Web Server API function used to retrieve data from an MVS
dataset and transmit it to a Web Client program. The caller specifies the MVS
dataset from which data is to be retrieved and the MIME content type to be used
when the information is transmitted.

For text format data, the Server processes HTML Extension Statements, if any,
within the data file before the information is transmitted to the Web Client. This
facility allows the information to be specially tailored in response to run-time con-
ditions.

The SWSFILE (SWCPFI) interface supports the following operation request
types:

Can be used in Shadow/REXX.

Can be used from Other REXX interpreters.

HLL entry point name is SDCPAR/SWCPAR.

SWS_FILE_SEND This request type is used to invoke out-bound transmission of a PDS dataset member (BPAM
or PDSE), or a sequential dataset (QSAM). This request type contains all of the functionality
formerly incorporated into the SWS_FILE_PDSSEND request type.

We recommend that you use the SWS_FILE_SEND function for all PDS member or
sequential dataset transmission requests. This request type supercedes and obsoletes the
older SWS_FILE_PDSSEND request type.

SWS_FILE_QUEUE This request type is used to cause small data members to be read into the transaction’s
external data queue. Because the size of the external data queue is limited, this function
should not be used for members containing more than 2-300 logical records. The logical
record length is limited to 752 bytes in length and any excess bytes are truncated without
notification.

Once read to the external data queue member data records can be retrieve using the
SWSGetQueue HLL API interface.

SWS_FILE_PDSSEND This request type is being retired, and should not be used for future Web transaction HLL
program development. Use the newer SWS_FILE_SEND request type for future HLL
program development, since it supercedes this PDS-only, DDNAME-only API interface.

The Shadow Web Server will continue to support this request type so that HLL programs
developed before SWS_FILE_SEND was available will continue to operate correctly
without requiring a re-write. Future enhancements will only be made to the preferred
SWS_FILE_SEND type.

The SWS_FILE_PDSSEND request type is documented separately in the Deprecated High-
Level Language SWSFILE (SWCPFI) Request Types page.
7-102 Shadow Programming Guide December 1999

Web Server Specific APIs

 Call Arguments

The SWSFILE (SWCPFI) function arguments are described in the table which
follows. For send requests, each of the six arguments described must be present on
the API CALL. Omit the sixth argument for queue operation requests.

Arg
HLL Argument Type

I/O Description of Argument
C COBOL PL/I

1 HDBC USAGE
POINTER

PTR INPUT The Web Server connection handle. The connection
handle is an opaque, four-byte address pointer. The
connection handle is currently not used, and must be
set to zero (NULL).

2 UDWORD PIC
S9(5)
COMP

FIXED
BIN(31)

INPUT A four-byte flag-word indicating the request type of
file-related operation to be performed. One of the
following values must be specified for this argument:

• SWS_FILE_SEND is used to request out-
bound transmission of PDS members or an
entire sequential datasets. This request type
should be used for all future HLL development.

• SWS_FILE_QUEUE is used to request that the
file data records be read into the transactions
external data queue.

• SWS_FILE_PDSSEND has been superceded
by the SWS_FILE_SEND request type, which
should be used for all future HLL program
development. This request type continues to be
supported and is documented separately.
December 1999 Shadow Programming Guide 7-103

Host Application API Function Calls

-

-

,
3 UDWORD PIC
S9(5)
COMP

FIXED
BIN(31)

INPUT A four-byte flag-word specifying various options for
the API CALL request. The options available for
specification are defined as manifest constants within
each HLL header file.

You combine the options which define your request
by adding (or logically ORing) the manifest constants
together to form a single, 32-bit flag word.

The options are broken into three groups. One option
constant can be selected from each of the groups
shown below.

Name Specification Options

One option from this group must be coded. This
option indicates whether the call refers to the MVS
file using a DD name or fully-qualified dataset name.

• SWS_FILE_DDNAME specifies the
DDNAME of the MVS dataset.

• SWS_FILE_DSNAME specifies a fully-quali-
fied MVS dataset name.

Data Contents Format Options

One option from this group must be coded. This
option specifies the format of the data contained
within the dataset; either text or binary. The Server
transmits binary format data with no modifications,
but applies various translation and editing options to
text format data before transmission.

• SWS_SEND_TEXT contains text format data.
Before out-bound transmission, the Server
translates the information from EBCDIC to
ASCII, strips trailing blanks, and appends a car
riage return character to each line.

• If the file contains HTML Extension Statements
the Server will process these to tailor the final
output, unless extension processing is sur-
pressed by the SWS_FILE_NOHTX option.

• SWS_SEND_BINARY contains binary format
data. The Server transmits the data, as is, with
out modification.

HTML Extension Processing Options

One option from this group can optionally be coded
but none are required. No option from this group
should be coded when SWS_FILE_BINARY has
been specified.

Arg
HLL Argument Type

I/O Description of Argument
C COBOL PL/I
7-104 Shadow Programming Guide December 1999

Web Server Specific APIs

.

e

.
This option controls how, or if, HTML Extension
Statements within a text format file are processed by
the Server before transmission.

• SWS_FILE_HTX indicates the Server will pro-
cess HTML Extension Statements. This option
is the default for all text format files, so it need
not be explicitly coded except for documenta-
tion purposes.

• SWS_FILE_NOHTX indicates HTML Exten-
sion Statement processing will be surpressed.

• SWS_FILE_HTXREXXRULES indicates that
the Server will replace uninitialized variables
located during HTML Extension processing
with the upper-case variable name. If this option
is not specified, the Server replaces uninitialized
variables with a NULL string.

4 UCHAR * PIC X(8)
or
PIC X(44)

CHAR(8)
or
CHAR(44)

INPUT This argument specifies either the DDNAME or the
DSNAME of the file to be transmitted. You must
indicate which type of value is specified by coding
one of the Name Specification Options, given above

When the SWS_FILE_DDNAME option is used, this
value must be the 8-byte, blank padded DDNAME
for the file.

When the SWS_FILE_DSNAME option is used, this
value must be the 44-byte, blank padded dataset
name for the file.

For either DDNAME or DSNAME specifications, a
null-terminated string can be specified, if desired.

5 UCHAR * PIC X(8) CHAR(8) INPUT When the file referenced by this call is a PDS or
PDSE (BPAM) dataset, this argument must contain
the 8-byte, blank padded member name within the
library which is to be transmitted. A null-terminated
string can be specified, if desired.

For operations on other file types (non-BPAM), this
is not examined by the API function. You should
specify a NULL value of a type appropriate to the
particular high-level language.

6 UCHAR * PIC X(50) CHAR(50) INPUT The 50-byte, blank-padded MIME content type valu
to be used when the data is transmitted. A shorter
string can be specified if the string is null terminated

Omit this argument for SWS_FILE_QUEUE
requests.

Arg
HLL Argument Type

I/O Description of Argument
C COBOL PL/I
December 1999 Shadow Programming Guide 7-105

Host Application API Function Calls
Return Values

SWSFILE always sets a signed numeric return code value. Possible values are:

Return Value Description

SWS_SUCCESS The operation succeeded. The specified operation was performed.

SWS_ERROR A parameter validation or runtime error was encountered. Error
information is available using the SWSERROR function.

SWS_ENVIRONMENT_ERROR The request could not be processed because of a runtime
environmental error, for example, you invoked the API service
outside of a web transaction procedure, or from outside the Server’s
address space. The Server may provide diagnostic information in the
wrap-around trace.

SWS_NO_DATA_FOUND Indicates that the DDNAME, DSNAME or PDS member name is
not valid because the dataset or member does not exist, or because
the dataset is being held exclusively by some other address space.

SWS_INVALID_HANDLE The connection handle argument is invalid. No error information can
be returned using SWSERROR.

Any other value The operation failed. Generally this indicates an unrecoverable loss
of the communications session between the Shadow Web Server and
the client’s web browser program.
7-106 Shadow Programming Guide December 1999

Web Server Specific APIs
PL/I Example
DCL SCONN PTR; /* Connectionhandle */
DCL SDDNA CHAR(8) INIT(’HTMFILE’); /* File DDNAME */
DCL SDSNA CHAR(44) INIT(’MY.HTML.DATA’); /* File DSNAME */
DCL SDSNA2 CHAR(44) INIT(’SOME.QSAM.DATA’)/* File DSNAME */
DCL SMENA CHAR(8) INIT(’HLLFILE’); /* Member name */
DCL SMENA2 CHAR(8) INIT(’MYFILE’); /* Member name */
DCL SDUMMY FIXED BIN(31) INIT(0); /* NULL Argument */
DCL SCOTY CHAR(50) INIT(’text/html’); /* Content type */
DCL SCOTY2 CHAR(50) INIT(’image/gif’); /* Content type */
DCL SCOTY3 CHAR(50) INIT(’text/plain’); /* Content type */
DCL RC FIXED BIN(31); /* return code */
DCL DMHX FIXED BIN(31) BASED; /* Dummy Handle */

ADDR(SCONN)->DMHX = 0; /*Clear Connection Handle */

/* Send the member HLLFILE from the PDS allocated to the */
/* HTMFILE DD name using MIME type text/html. */

CALL SWSFILE (SCONN, /* Connection handle */
 SWS_FILE_SEND, /* Send a file */
 SWS_FILE_DDNAME + /* Arg 4 is a DD name */
 SWS_SEND_TEXT /* data is text format */
 SDDNA, /* Send from this DDNAME */
 SMENA /* Send this member */
 SCOTY), /* File content */

RC = PLIRETV(); /* get return code */
IF RC ^= SWS_SUCCESS THEN /* exit program if bad RC */
 EXIT;

/* Send binary data from the PDS ’MY.HTML.DATA(MYFILE) as */
/* MIME type image/gif. */

CALL SWSFILE (SCONN, /* Connection handle */
 SWS_FILE_SEND, /* Send a file */
 SWS_FILE_DSNAME + /* Arg 4 is a DSNAME */
 SWS_FILE_BINARY, /* data in binary format */
 SDSNA, /* Send from this DSNAME */
 SMENA2, /* Send this member */
 SCOTY2); /* File content */
RC=PLIRETV(); /* get return code */
IF RC ^= SWS_SUCCESS THEN /* exit program if bad RC*/
 EXIT;

/* Send the sequential file ’SOME.QSAM.DATA’ as MIME type */
/* text/plain. */

CALL SWSFILE (SCONN, /* Connection handle */
 SWS_FILE_SEND, /* Send a file */
 SWS_FILE_DSNAME + /* Arg 4 is a DSNAME */
 SWS_FILE_TEXT /* data in text format */
 SDSNA2, /* Send from this DSNAME */
 SDUMMY, /* NULL argument */
December 1999 Shadow Programming Guide 7-107

Host Application API Function Calls
 SCOTY3); /* File content */
RC = PLIRETV(); /* get return code */
IF RC ^= SWS_SUCCESS THEN /* exit program if bad RC*/
 EXIT;

C Example
HDBC sConn = NULL; */Connection Handle */
long RC; /* return code */

/* Send the HLLFILE member from the PDS allocated with the */
/* DD name HTMFILE as MIME type text/html. */

rc = SWSFILE(&sConn, /* connection handle */
 SWS_FILE_SEND, /* Send a file */
 SWS_FILE_DDNAME | /* Arg 4 is a DD name */
 SWS_SEND_TEXT, /* data is text format */
 "HTMFILE", /* Send from this DDNAME */
 "HLLFILE", /* Send this member */
 "text/html"); /* File content */
if (rc ^= SWS_SUCCESS) return; /* exit program if bad RC */

/* Send ’MY.HTML.DATA(MYFILE)’ as MIME type image/gif */
rc = SWSFILE(&sConn, /* Connection handle */

SWS_FILE_SEND, /* Send a file */
SWS_FILE_DSNAME | /* Arg 4 is a DSNAME */
SWS_FILE_BINARY, /* data is binary format */
"MY.HTML.DATA", /* Send from this DSNAME */
"MYFILE", /* Send this member */
"image/gif"); /* File content */

if (rc ^= SWS_SUCCESS) return; /* exit program if bad RC */

/* Send ’SOME.QSAM.DATA’ as MIME type text/plain. */

rc = SWSFILE(&sConn, /* connection handle */
SWS_FILE_SEND, /* Send a file */
SWS_FILE_DSNAME | /* Arg 4 is a DSNAME */
SWS_SEND_TEXT, /* data is binary format */
"SOME.QSAM.DATA", /* Send from this DSNAME */
"", /* NULL argument */
"text/plain" /* File content */

if (rc ^= SWS_SUCCESS) return; /* exit program if bad RC */
7-108 Shadow Programming Guide December 1999

Web Server Specific APIs
COBOL Example
77 SCONN USAGE IS POINTER.
77 SDDNA PIC X(8) VALUE ’HTMFILE’.
77 SDSNA PIC X(44) VALUE ’MY.HTML.DATA’.
77 SDSNA2 PIC X(44) VALUE ’SOME.QSAM.DATA’
77 SMENA PIC X(8) VALUE ’HLLFILE’.
77 SMENA2 PIC X(8) VALUE ’MYFILE’.
77 SCOTY PIC X(50) VALUE ’text/html’.
77 SCOTY2 PIC X(50) VALUE ’image/gif’.
77 SCOTY3 PIC X(50) VALUE ’text/plain’.
77 SDUMMY PIC S9(5) COMP VALUE 0.
77 SOPTION PIC S9(5) COMP.

* SEND THE HLLFILE MEMBER FROM THE PDS ALLOCATED TO
* THE HTMFILE DD NAME AS MIME TYPE text/html.

COMPUTE SOPTION = SWS-FILE-DDNAME + SWS-SEND-TEXT.
CALL ’SWCPFI’ USING SCONN,
 SWS-FILE-SEND,
 SOPTION,
 SDDNA,
 SMENA,
 SCOTY.
MOVE RETURN-CODE TO WS-SWSAPI-RETURN-CODE.
IF NOT SWS-SUCCESS GOBACK.

* SEND ’MY.HTML.DATA(MYFILE)’ AS MIME TYPE image/gif.

COMPUTE SOPTION = SWS-FILE-DSNAME + SWS-SEND-BINARY.
CALL ’SWCPFI’ USING SCONN,
 SWS-FILE-SEND,
 SOPTION,
 SDSNA,
 SMENA2,
 SCOTY2.
MOVE RETURN-CODE TO WS-SWSAPI-RETURN-CODE.
IF NOT SWS-SUCCESS GOBACK.

* SEND ’SOME.QSAM.DATA AS MIME TYPE text/plain.

COMPUTE SOPTION = SWS-FILE-DSNAME + SWS-SEND-TEXT.
CALL ’SWCPFI’ USING SCONN,
 SWS-FILE-SEND,
 SOPTION,
 SDSNA2,
 SDUMMY,
 SCOTY3.
MOVE RETURN-CODE TO WS-SWSAPI-RETURN-CODE.
IF NOT SWS-SUCCESS GOBACK.
December 1999 Shadow Programming Guide 7-109

Host Application API Function Calls

Deprecated SWSFILE (SWCPFI) Sub-Function:
SWS_FILE_PDSSEND

This sub-function is being retired in favor of the enhanced SWS_FILE_SEND
sub-function. In future, new enhancements will only be made to the enhanced sub-
function.

We recommend that all new HLL application be written using the enhanced
SWS_FILE_SEND function.

Previously written HLL programs need not be re-written; the Server will continue
to support the deprecated SWS_FILE_PDSSEND interface as documented on
this page.

CALL Arguments

The SWSFILE function takes six arguments. All six arguments must be specified.

Arg
HLL Argument Type

I/O Description of Argument
C COBOL PL/I

1 HDBC USAGE
POINTER

PTR INPUT The connection handle. The connection handle is an
opaque, four-byte address pointer. The connection
handle is currently not used, and must be set to zero
(NULL).

2 UDWORD PIC
S9(5)
COMP

FIXED
BIN(31)

INPUT Specify SWS_FILE_PDSSEND to invoke the
deprecated interface as documented here. Refer to the
current SWSFILE API for all other cases.

3 UDWORD PIC
S9(5)
COMP

FIXED
BIN(31)

INPUT A four-byte flag-word indicating options to be used
in performing the requested sub-function. The
following option flags can be specified, either singly,
or in combination:

• SWS_SEND_TEXT indicates the data to be
sent exists in text format. It is translated by the
server, during output, to ASCII.

• SWS_SEND_BINARY indicates the data to be
sent exists in binary format. It is transmitted by
the server, as is.

• SWS_FILE_NOHTX indicates the value indi-
cates that HTML extension processing should
not be performed during the output operation.
This flag can be combined with the
SWS_SEND_TEXT flag.

• SWS_FILE_HTX_REXXRULES indicates
the vale indicates that uninitialized variables
located during HTML extension processing are
replaced with the upper case variable name. If
SWS_FILE_HTX_REXXRULES is not speci-
fied, uninitialized variables are replaced with a
NULL string. This option can be combined with
the SWS_SEND_TEXT flag.
7-110 Shadow Programming Guide December 1999

Web Server Specific APIs
Return Values

SWSFILE always sets a signed numeric return code value. Possible values are:

4 UCHAR * PIC X(8) CHAR(8) INPUT The 8-byte, blank padded DD name for the file. A
shorter string can be specified if the string is null
terminated.

5 UCHAR * PIC X(8) CHAR(8) INPUT The 8-byte, blank padded member name to be
transmitted. A shorter string can be specified if the
string is null terminated.

6 UCHAR * PIC X(50) CHAR(50) INPUT The 50-byte, blank padded MIME content type value
to be used when the data is transmitted. A shorter
string can be specified if the string is null terminated.

Return Value Description

SWS_SUCCESS The operation succeeded. The specified operation was performed.

SWS_ERROR A parameter validation error was found. The error will be logged to
the wrap-around trace, and is available using the SWSERROR
function.

SWS_NO_DATA_FOUND Indicates that the DD name or PDS member name was invalid.

SWS_ENVIRONMENT_ERROR The request could not be processed because of a runtime
environmental error, for example, you invoked the API service
outside of a web transaction procedure, or from outside the Server’s
address space. The Server may provide diagnostic information in the
wrap-around trace.

SWS_INVALID_HANDLE The connection handle argument is invalid. No error information can
be returned using SWSERROR.

Any other value The operation failed. Generally this indicates an unrecoverable loss
of the communications session between the Shadow Web Server and
the client’s web browser program.

Arg
HLL Argument Type

I/O Description of Argument
C COBOL PL/I
December 1999 Shadow Programming Guide 7-111

Host Application API Function Calls
PL/I Example
DCL SCONN PTR; /* Connection Handle */
DCL SDDNA CHAR(8) INIT(’HTMFILE’);/* File DD name */
DCL SMENA CHAR(8) INIT(’HLLFILE’);/* Member name */
DCL SCOTY CHAR(50) INIT(’text/html’);/* Content type */
DCL RC FIXED BIN(31); /* return code */
DCL DMHX FIXED BIN(31) BASED; /* Dummy Handle field */

ADDR(SCONN)->DMHX = 0; /* Clear Connection Handle*/

CALL SWSFILE(SCONN /* send the text data */
 SWS_FILE_PDSSEND,
 SWS_SEND_TEXT,
 SDDNA,
 SMENA,
 SCOTY);
RC = PLIRETV(); /* get return code */
IF RC ^= SWS_SUCCESS THEN /* exit program if bad RC */
 EXIT;

C Example
HDBC sConn = NULL; /* Connection Handle */
long RC; /* return code */

rc = SWSFILE(&sConn, /* send the text data */
 SWS_FILE_PDSSEND,
 SWS_SEND_TEXT,
 "HTMFILE",
 "HLLFILE",
 "text/html");
if (rc ^= SWS_SUCCESS) return; /* exit program if bad RC */

COBOL Example
77 SCONN USAGE IS POINTER.
77 SDDNA PIC X(8) VALUE ’HTMFILE’.
77 SMENA PIC X(8) VALUE ’HLLFILE’.
7 SCOTY PIC X(50)VALUE ’text/html’.

CALL ’SWCPFI’ USING SCONN,
 SWS-FILE-PDSSEND,
 SWS-SEND-TEXT,
 SDDNA,
 SMENA,
 SCOTY.
MOVE RETURN-CODE TO WS-SWSAPI-RETURN-CODE.
IF NOT SWS-SUCCESS GOBACK
7-112 Shadow Programming Guide December 1999

Web Server Specific APIs
SWSFILE Function

When used with Other REXX-language Interpreters SWSFILE built-in function
can be used to transmit data with an external dataset directly to a web client. It can
also be used to retrieve information about external datasets for the REXX-lan-
guage procedure.

Syntax

The general form for a REXX-language invocation of SWSFILE is:

rc = SWSFILE(opertype, arg1, ... , argn)

The SWSFILE function incorporates several operation types. The first argument
to the function call must be the name of the specific operation to be performed.
The remaining arguments needed for the function call depend on which operation
is being invoked.

Valid Operation Types

One of the following operation types must be coded as the first argument to the
call (shown as opertype in the example above).

Can be used in Shadow/REXX.

Can be used from other REXX interpreters.

High-level Language Interface available.

SEND Transmit file-resident data to out-bound to a web client. This is a generic
function which can operate upon PDS, PDSE, or QSAM datasets.

STATS Return statistical information about a PDS member or a sequential dataset.

MBRLIST Queue a list of PDS members to the REXX external data queue.

QUEUE Read a PDS member or sequential dataset into the REXX external data queue.
A return code value of 28 is returned if the external data queue is not
sufficiently large to contain the entire file, or PDS(E) member.

Note:
You can increase the size of the external data queue using the
QUEUESIZE() keyword).

PDSSEND Send a PDS member out-bound to the web client.

PDSSTATS Return statistical information about a PDS member.

PDSQUEUE Read a PDS member into the REXX external data queue.
December 1999 Shadow Programming Guide 7-113

Host Application API Function Calls
The remaining arguments which must be coded for each operation type is given
below. A table, at the end of this page, explains how to code each of the argu-
ments.

Whenever text format data is transmitted to a web client (for the SEND or PDS-
SEND operations) or is placed into the REXX external data queue (for the
QUEUE or PDSQUEUE operations), the Server processes HTML Extension
Statements to tailor the output. This facility allows the file-resident data to be cus-
tomized at run-time.

The SEND Operation

SEND is used to transmit a member of a PDS dataset or a sequential dataset to the
web client. The function will create and transmit an HTML response header, fol-
lowed by the file-resident data.

Coding SEND Requests

To code the SWSFILE function call for SEND, use the following format:

zrc = SWSFILE("SEND",nametype,filename,mbrname,
 mimetype,datafmt,htxopt)

The arguments for the call are explained in the SWSFILE Arguments Table
below.

Run-time Operation of SEND

SEND can operate on RECFM F, FB, V, VB, or U datasets. RECFM VB is sug-
gested for binary data, and RECFM FB is suggested for text data.

When the PDS member or sequential dataset is transmitted out-bound, any record-
length fields (such as are present for VB format records) are removed and only the
raw data is transmitted.

The input file data can be ASCII binary data or EBCDIC text data.

Note:
The PDS-based operations (PDSSEND, PDSSTATS, and
PDSQUEUE are legacy operations from an earlier release of the
Server. They support only operations upon PDS datasets using a DD
name specification. These legacy operations continue to be
supported, however future enhancements will not be made to these
operation types.

New REXX-language applications should use the enhanced
operation types (SEND, STATS, and QUEUE) since they support
both PDS and sequential dataset organizations and allow dataset
names to be specified using either a DD name or fully-qualified
dataset name.
7-114 Shadow Programming Guide December 1999

Web Server Specific APIs
If TEXT format data is specified, trailing EBCDIC blanks are removed from each
data record before an ending CR (carriage return) character is appended. Each line
is translated from EBCDIC to ASCII before transmission.

Unless NOHTX was explicitly specified on the function request, HTML Exten-
sion values are processed before the member is transmitted. When HTML Exten-
sions are actually present within the input member, transmission of the Last-
Modified: HTTP response header is suppressed. Instead, an Expires: header
is generating giving the current time.

If ISPF-type statistics exist for the PDS member the ISPF last-modified data is
used to generate the Last-Modified: HTML response header; otherwise, the
Last-modified: HTML response header is not generated. The Last-modi-
fied: response header is surpressed if HTML Extension Statements are present
and might cause the data to be tailored different for a future request.

SEND checks the HTTP transaction headers before actually transmitting the full
PDS member outbound. If the in-bound HTTP transaction method is HEAD, only
the HTML response header information is transmitted. Similarly, if the in-bound
URL contained an If-modified-since: specification, the Server may have
transmitted a "Not Modified" (304) response instead of sending the contents of the
file.

The out-bound transmission generated by a successful SEND operation consti-
tutes an entire and complete HTTP response. The REXX process which issues the
SWSFILE function should not transmit additional data to the web client unless
some error is returned by the function.
December 1999 Shadow Programming Guide 7-115

Host Application API Function Calls
SEND Return Values

The STATS Operation

STATS is used to check the status of a PDS member or sequential dataset and
return to the REXX procedure information about that member or sequential
dataset. This information can be useful in dynamically creating transaction
responses from within the REXX procedure.

Coding STATS Requests
zrc = SWSFILE("STATS",nametype,filename,mbrname,datafmt)

The arguments for the STATS operation are described in the SWSFILE Argu-
ments Table below.

Run-Time Operation of STATS

STATS can operate of RECFM F,FB, V, VB, or U datasets.

STATS returns a content length, record count and last modification date value
which corresponds to information which would be required to transmit the mem-
ber out-bound to a web client.

STATS Return Values

For binary format data the member size or sequential dataset size returned will
reflect an exact count of the data bytes within each logical record of the PDS
member or sequential file.

Return Value Description

0 The function was completed successfully. The out-bound data
stream was flushed from Web Server buffers.

4 The communciations link failed during out-bound transmission.

8 The specified member name does not exist within the PDS.

12 Either the specified DDNAME (the filename operand) is not
allocated to the Shadow Web Server address space or the specified
DSNAME does not exist.

16 or 20 An internal processing error, or abend condition.

24 The SECURITY(USERID) is in effect for the dataset
and the effective userid does not have authority to the
dataset.

28 The file exceeds the FILESATAGINGSIZELIMIT
value set for pre-staging of data files. Normally such
requests are re-driven automatically without pre-
staging, but DDNAME format requests made from
REXX procedures cannot be re-driven automatically
and are rejected with this return code.
7-116 Shadow Programming Guide December 1999

Web Server Specific APIs
For text format data the member or sequential file is treated as EBCDIC text. In
calculating the member or sequential file size, trailing EBCDIC blanks are elimi-
nated, and 1 additional byte per logical record (for the trailing carriage return
character) is assumed. If a zero-length record is encountered within a RECFM=V
or RECFM=VB file, a single blank is substituted for the zero-length record (zero-
length records cannot be created in text files using ISPF, however, then can be
present if the data has been uploaded to MVS via FTP).

STATS returns a NULL string if the dataset does not exist, or member does not
exist within the specified PDS, or if the dataset cannot be accessed.

The STATS function returns a character string suitable for processing by REXX
using blank-delimited word type processing.

The returned string contains the following information:

Word 1
Set to the value YES or NO to indicate whether or not ISPF statistics
were present within the PDS directory for the member.

Word 2
Contains the integer value representing the length, in bytes, of the
member or sequential dataset.

Word 3
Contains the count of logical records within the member or sequential
dataset.

Word 4&ff
The remainder of the string contains the HTTP formatted Last-
Modified: data and time stamp and is derived from the ISPF last-
update time. This information is omitted if ISPF statistics are not
present for the member.

The MBRLIST Operation

MBRLIST is used to obtain a list of the PDS members within a library. The list of
member names is returned in the REXX external data queue. MBRLIST only
operates on PDS or PDSE dataset types.

Coding MBRLIST

To code the SWSFILE function call for MBRLIST, use the following format:

zrc = SWSFILE("MBRLIST",nametype,filename)

The SWSFILE arguments for the MBRLIST operation are described in the SWS-
FILE Argument Table below.
December 1999 Shadow Programming Guide 7-117

Host Application API Function Calls
Run-Time Operation of MBRLIST

MBRLIST only operations upon PDS or PDSE datasets. The MBRLIST function
queues the list of PDS(E) members to the REXX external data queue. The list can
be retrieved using the PARSE PULL REXX operation.

MBRLIST Return Values

If no members exist within the PDS, the function returns with an empty external
data queue and sets return code 0.

The QUEUE Operation

QUEUE is used to read a member of a PDS dataset or a sequential file into the
REXX external data queue. The QUEUE function is far more efficient than using
EXECIO for a similar purpose, and allows you to reference a single DD name for
all members of a PDS dataset.

The input source can be ASCII binary data or EBCDIC text data. If the input
source is in text format, HTML Extensions within the source are processed before
the source data is placed into the external queue.

Coding QUEUE

To code the SWSFILE function call for QUEUE, use the following format:

zrc = SWSFILE("QUEUE",nametype,filename,mbrname,datafmt,htxopt)

The SWSFILE arguments for the QUEUE operation are described in the SWS-
FILE Argument Table below.

Run-Time Operation of QUEUE

When the PDS member or sequential dataset is read and copied to the external
data queue any record-length fields (such as are present for VB format records)

Return Value Description

0 The function was completed successfully. The member list isqueued.

12 Either the specified DDNAME (the filename operand) is not
allocated to the Shadow Web Server address space or the specified
DSNAME does not exist.

16 or 20 An internal processing error, or abend condition.

24 The SECURITY(USERID) is in effect for the dataset
and the effective userid does not have authority to the
dataset.

28 The external data queue is not sufficiently large to contain the entire
member list. (Note: You can increase the size of the external data
queue using the QUEUESIZE() keyword)
7-118 Shadow Programming Guide December 1999

Web Server Specific APIs
are removed and only the raw data is copied. Trailing blanks are eliminated for
TEXT format records. Additionally, for TEXT format records, if a zero-length VB
record is read, a single blank is used for the corresponding queue entry (zero-
length VB records can, and frequently are, created when members are shipped to
an MVS system using FTP).

For binary format data no editing of any kind is applied to the data before it is cop-
ied to the external data queue. The data is copied to the queue as a continuous
string of bytes with each queue entry being exactly as long as the corresponding
source logical record.

For text format data each input record is stripped of trailing blanks before being
copied to the external data queue.

After checking the return code from the QUEUE operation, you can retrieve the
records from the external data queue with REXX coding, such as:

DO WHILE QUEUED() > 0
PARSE PULL nextlogicalrecord
END

Note:
The maximum logical record length which can be stored in a REXX
external data queue entry is 652 bytes. Logical records longer than
623 bytes will be truncated.
December 1999 Shadow Programming Guide 7-119

Host Application API Function Calls
QUEUE Return Values

The PDSSEND Operation

PDSSEND is a legacy operation type from an earlier release of the Server. Equiv-
alent operations can be requested using the SEND request, which is the preferred
method for new applications.

Coding PDSSEND Requests

To code SWSFILE function calls using PDSSEND, use the following format:

zrc = SWSFILE("PDSSEND",filename,mbrname,mimetype,datafmt,htxopt)

Run-Time Operation of PDSSEND

The operation of PDSSEND is the same as for the SEND request, shown above.

Return Value Description

0 The function was completed successfully. The data was copied to
the external data queue.

8 The specified member name does not exist within the PDS.

12 Either the specified DDNAME (the filename operand) is not
allocated to the Shadow Web Server address space or the specified
DSNAME does not exist.

16 or 20 There was an internal processing error, or abend condition. The most
likely cause of such an error is that the REXX external data queue
has become full. The size of the REXX external data queue is fixed,
but can be altered for Web Transaction programs by changing the
SEFMAXQUEUE start-up parameter value.

24 The SECURITY(USERID) is in effect for the dataset
and the effective userid does not have authority to the
dataset.

28 The external data queue is not sufficiently large to
contain the entire file, or PDS(E) member. (Note: You
can increase the size of the external data queue using
the QUEUESIZE() keyword).

Note:
This operation type must supply a DD name as the filename
argument. Use of a fully-qualified dataset name is not supported for
this interface.

 Also, note that the MVS dataset referred to must be either a PDS or
PDSE dataset. Access to sequential datasets is not supported.
7-120 Shadow Programming Guide December 1999

Web Server Specific APIs
PDSSEND Return Values

Return values set by PDSSEND are the same as for the SEND request, shown
above.

The PDSSTAT Operation

PDSSTAT is a legacy operation type from an earlier release of the Server. Equiva-
lent operations can be requested using the STATS request, which is the preferred
method for new applications.

Coding PDSSTAT Requests

To code SWSFILE function calls using PDSSTAT, use the following format:

zrc = SWSFILE("PDSSTAT",filename,mbrname,datafmt)

Run-Time Operation of PDSSTAT

The operation of PDSSTAT is the same as for the STATS request, shown above.

PDSSTAT Return Values

Return values set by PDSSTAT are the same as for the STATS request, shown
above.

The PDSQUEUE Operation

PDSQUEUE is a legacy operation type from an earlier release of the Server.
Equivalent operations can be requested using the QUEUES request, which is the
preferred method for new applications.

Coding PDSQUEUE Requests

To code SWSFILE function calls using PDSQUEUE, use the following format:

zrc = SWSFILE("PDSQUEUE",filename,mbrname,datafmt,htxopt)

Note:
This operation type must supply a DD name as the filename
argument. Use of a fully-qualified dataset name is not supported for
this interface.

Also, note that the MVS dataset referred to must be either a PDS or
PDSE dataset. Access to sequential datasets is not supported.
December 1999 Shadow Programming Guide 7-121

Host Application API Function Calls

tion
me.

.

.

sing

-
set.

taset.
DSE

Run-Time Operation of PDSQUEUE

The operation of PDSQUEUE is the same as for the QUEUE request, shown
above.

Return Values

Return values set by PDSQUEUE are the same as for the QUEUE request, shown
above.

ArgumentsTable

The table which follows describes each of the arguments which can be supplied
for an SWSFILE function call.

Note:
This operation type must supply a DD name as the filename
argument. Use of a fully-qualified dataset name is not supported for
this interface.

 Also, note that the MVS dataset referred to must be either a PDS or
PDSE dataset. Access to sequential datasets is not supported.

Argument Name
given in Syntax
Examples

Description of Argument

nametype Indicates whether the filename argument on the function call is an MVS DD name or a
fully-qualified dataset name.

The nametype argument must be one of the following:

• DDNAME or DD indicates that the filename argument is a DD name value. The
DD name must be allocated to the Shadow Web Server address space.

• DSNAME or DSN indicates that the filename argument is a fully-qualified MVS
dataset name.

Filename Specifies the dataset to be operated upon by the function call. The dataset specifica
can be made using either an MVS DD name value or as a fully-qualified dataset na
must be a PDS, PDSE, or sequential dataset.

• DD name values must be given as an 8-byte, blank-padded string.

• Fully-qualified dataset names must be given as a 44-byte, blank-padded string

• When a DD name is used, it must be pre-allocated to the Server address space

• You specify whether a DD name or dataset name is being passed on the call u
the nametype argument shown above.

• For the legacy operations (PDSSEND, PDSSTATS, and PDSQUEUE) only an 8
byte DD name is permitted. The DD name must reference a PDS or PDSE data

mbrname The 8-byte, blank padded member name to be transmitted from a PDS or PDSE da
This argument must be specified when the SWSFILE operation refers to a PDS or P
dataset. It should be omitted when a sequential dataset is referred to (code a single
comma in place of the argument).
7-122 Shadow Programming Guide December 1999

Web Server Specific APIs

the
n
the

ted

y
d is

e

r-

s.
mimetype The 50-byte, blank padded MIME content type value to be used when the data is
transmitted.

The value coded here is used to generate the Content-type: out-bound HTML response
header. It can be set to any value, but would normally be set to ’image/gif’, ’Text/HTML’
or some other widely known value. The server does not perform a validity test upon this
argument.

If this argument is omitted, the Server assumes a default value of ’text/plain’.

datafmt The format of the data contained within the file to be transmitted. Valid values are:

• TEXT indicates that the data to be sent exists in text format. It is translated by
server, during output, to ASCII, trailing blanks are stripped, and a carriage retur
character is appended to each line. HTML Extension Statements, if any, within
data are processed by the Server.

• BINARY indicates that the data to be sent exists in binary format. It is transmit
by the server, as is.

If this argument is omitted, the Server uses BINARY as the default value.

htxopt Indicate how (or if) HTML Extension Statements within the file data are processed b
the Server before output. This argument should be omitted for binary format files, an
optional when text format data is processed.

Valid values are:

• HTX indicates that HTML extension processing should be performed during th
output operation.

• NOHTX indicates that HTML extension processing should not be performed du
ing the output operation.

• HTXREXXRULES indicates that un-initialized variables located during HTML
extension processing are replaced with the upper-case variable name. Normal
extension processing replaces un-initialized variables with a NULL string.

If this argument is omitted, the Server assumes a value of HTX for all text format file

Argument Name
given in Syntax
Examples

Description of Argument
December 1999 Shadow Programming Guide 7-123

Host Application API Function Calls
The SWSFILE Function with Other REXX-
language Interpreters

When used with Other REXX-language Interpreters SWSFILE built-in function
can be used to transmit data with an external dataset directly to a web client. It can
also be used to retrieve information about external datasets for the REXX-lan-
guage procedure.

SWSFILE Syntax

The general form for a REXX-language invocation of SWSFILE is:

rc = SWSFILE(opertype, arg1, ... , argn)

The SWSFILE function incorporates several operation types. The first argument
to the function call must be the name of the specific operation to be performed.
The remaining arguments needed for the function call depend on which operation
is being invoked.

Valid Operation Types

One of the following operation types must be coded as the first argument to the
call (shown as opertype in the example above).

The remaining arguments which must be coded for each operation type is given
below. A table, at the end of this page, explains how to code each of the argu-
ments.

Whenever text format data is transmitted to a web client (for the SEND or PDS-
SEND operations) or is placed into the REXX external data queue (for the
QUEUE or PDSQUEUE operations), the Server processes HTML Extension

Can be used in Shadow/REXX.

Can be used from other REXX interpreters.

HLL entry point name is SWCPFI.

SEND Transmit file-resident data to out-bound to a web client. This is a generic
function which can operate upon PDS, PDSE, or QSAM datasets.

STATS Return statistical information about a PDS member or a sequential dataset.
7-124 Shadow Programming Guide December 1999

Web Server Specific APIs
Statements to tailor the output. This facility allows the file-resident data to be cus-
tomized at run-time.

The SEND Operation

SEND is used to transmit a member of a PDS dataset or a sequential dataset to the
web client. The function will create and transmit an HTML response header, fol-
lowed by the file-resident data.

Coding SEND Requests

To code the SWSFILE function call for SEND, use the following format:

zrc = SWSFILE("SEND",nametype,filename,mbrname,mimetype,
 datafmt,htxopt)

The arguments for the call are explained in the SWSFILE Arguments Table
below.

Run-time Operation of SEND

SEND can operate on RECFM F, FB, V, VB, or U datasets. RECFM VB is sug-
gested for binary data, and RECFM FB is suggested for text data.

When the PDS member or sequential dataset is transmitted out-bound, any record-
length fields (such as are present for VB format records) are removed and only the
raw data is transmitted.

The input file data can be ASCII binary data or EBCDIC text data.

If TEXT format data is specified, trailing EBCDIC blanks are removed from each
data record before an ending CR (carriage return) character is appended. Each line
is translated from EBCDIC to ASCII before transmission.

Unless NOHTX was explicitly specified on the function request, HTML Exten-
sion values are processed before the member is transmitted. When HTML Exten-
sions are actually present within the input member, transmission of the Last-

Note:
The PDS-based operations (PDSSEND, PDSSTATS, and
PDSQUEUE are legacy operations from an earlier release of the
Server. They support only operations upon PDS datasets using a DD
name specification. These legacy operations continue to be
supported, however future enhancements will not be made to these
operation types.

New REXX-language applications should use the enhanced
operation types (SEND, STATS, and QUEUE) since they support
both PDS and sequential dataset organizations and allow dataset
names to be specified using either a DD name or fully-qualified
dataset name.
December 1999 Shadow Programming Guide 7-125

Host Application API Function Calls
Modified: HTTP response header is suppressed. Instead, an Expires: header
is generating giving the current time.

If ISPF-type statistics exist for the PDS member, the ISPF last-modified data is
used to generate the Last-Modified: HTML response header; otherwise, the
Last-modified: HTML response header is not generated. The Last-modi-
fied: response header is surpressed if HTML Extension Statements are present
and might cause the data to be tailored different for a future request.

SEND checks the HTTP transaction headers before actually transmitting the full
PDS member outbound. If the in-bound HTTP transaction method is HEAD, only
the HTML response header information is transmitted. Similarly, if the in-bound
URL contained an If-modified-since: specification, the Server may have
transmitted a "Not Modified" (304) response instead of sending the contents of the
file.

The out-bound transmission generated by a successful SEND operation consti-
tutes an entire and complete HTTP response. The REXX process which issues the
SWSFILE function should not transmit additional data to the web client unless
some error is returned by the function.

SEND Return Values

The STATS Operation

STATS is used to check the status of a PDS member or sequential dataset and
return to the REXX procedure information about that member or sequential
dataset. This information can be useful in dynamically creating transaction
responses from within the REXX procedure.

Return Value Description

0 The function was completed successfully. The out-bound data
stream was flushed from Web Server buffers.

4 The communciations link failed during out-bound transmission.

8 The specified member name does not exist within the PDS.

12 Either the specified DDNAME (the filename operand) is not
allocated to the Shadow Web Server address space or the specified
DSNAME does not exist.

16 or 20 An internal processing error, or abend condition.

24 The SECURITY(USERID) is in effect for the dataset
and the effective userid does not have authority to the
dataset.

28 The file exceeds the FILESATAGINGSIZELIMIT
value set for pre-staging of data files. Normally such
requests are re-driven automatically without pre-
staging, but DDNAME format requests made from
REXX procedures cannot be re-driven automatically
and are rejected with this return code.
7-126 Shadow Programming Guide December 1999

Web Server Specific APIs
Coding STATS Requests
zrc = SWSFILE("STATS",nametype,filename,mbrname,datafmt)

The arguments for the STATS operation are described in the SWSFILE Arugu-
ments Table below.

Run-Time Operation of STATS

STATS can operate of RECFM F,FB, V, VB, or U datasets.

STATS returns a content length, record count and last modification date value
which corresponds to information which would be required to transmit the mem-
ber out-bound to a web client.

STATS Return Values

For binary format data, the member size or sequential dataset size returned will
reflect an exact count of the data bytes within each logical record of the PDS
member or sequential file.

For text format data, the member or sequential file is treated as EBCDIC text. In
calculating the member or sequential file size, trailing EBCDIC blanks are elimi-
nated, and one additional byte per logical record (for the trailing carriage return
character) is assumed. If a zero-length record is encountered within a RECFM=V
or RECFM=VB file, a single blank is substituted for the zero-length record (zero-
length records cannot be created in text files using ISPF, however, then can be
present if the data has been uploaded to MVS via FTP).

STATS returns a NULL string if the dataset does not exist, or member does not
exist within the specified PDS, or if the dataset cannot be accessed.

The STATS function returns a character string suitable for processing by REXX
using blank-delimited word type processing.

The returned string contains the following information:

Word 1
Set to the value YES or NO to indicate whether or not ISPF statistics
were present within the PDS directory for the member.

Word 2
Contains the integer value representing the length, in bytes, of the
member or sequential dataset.

Word 3
Contains the count of logical records within the member or sequential
dataset.

Word 4&ff
The remainder of the string contains the HTTP formatted Last-
Modified: data and time stamp and is derived from the ISPF last-
December 1999 Shadow Programming Guide 7-127

Host Application API Function Calls

tion
me.

.

.

sing

-
set.

taset.
DSE

nse
ML'
 this

the
n
the

ted
update time. This information is omitted if ISPF statistics are not
present for the member.

Arguments Table

The table which follows describes each of the arguments which can be supplied
for an SWSFILE function call.

Argument Name
given in Syntax
Examples

Description of Argument

nametype Indicates whether the filename argument on the function call is an MVS DD name or a
fully-qualified dataset name.

The nametype argument must be one of the following:

• DDNAME or DD indicates that the filename argument is a DD name value. The
DD name must be allocated to the Shadow Web Server address space.

• DSNAME or DSN indicates that the filename argument is a fully-qualified MVS
dataset name.

filename Specifies the dataset to be operated upon by the function call. The dataset specifica
can be made using either an MVS DD name value or as a fully-qualified dataset na
must be a PDS, PDSE, or sequential dataset.

• DD name values must be given as an 8-byte, blank-padded string.

• Fully-qualified dataset names must be given as a 44-byte, blank-padded string

• When a DD name is used, it must be pre-allocated to the Server address space

• You specify whether a DD name or dataset name is being passed on the call u
the nametype argument shown above.

• For the legacy operations (PDSSEND, PDSSTATS, and PDSQUEUE) only an 8
byte DD name is permitted. The DD name must reference a PDS or PDSE data

mbrname The 8-byte, blank padded member name to be transmitted from a PDS or PDSE da
This argument must be specified when the SWSFILE operation refers to a PDS or P
dataset. It should be omitted when a sequential dataset is referred to (code a single
comma in place of the argument).

mimetype The 50-byte, blank padded MIME content type value to be used when the data is
transmitted.

The value coded here is used to generate the Content-type: out-bound HTML respo
header. It can be set to any value, but would normally be set to 'image/gif', 'Text/HT
or some other widely known value. The server does not perform a validity test upon
argument.

If this argument is omitted, the Server assumes a default value of 'text/plain'.

datafmt The format of the data contained within the file to be transmitted. Valid values are:

• TEXT indicates that the data to be sent exists in text format. It is translated by
server, during output, to ASCII, trailing blanks are stripped, and a carriage retur
character is appended to each line. HTML Extension Statements, if any, within
data are processed by the Server.

• BINARY indicates that the data to be sent exists in binary format. It is transmit
by the server, as is.

If this argument is omitted, the Server uses BINARY as the default value.
7-128 Shadow Programming Guide December 1999

Web Server Specific APIs

e

r-

s.
htxopt Indicate how (or if) HTML Extension Statements within the file data are processed by
the Server before output. This argument should be omitted for binary format files, and is
optional when text format data is processed.

Valid values are:

• HTX indicates that HTML extension processing should be performed during th
output operation.

• NOHTX indicates that HTML extension processing should not be performed du
ing the output operation.

• HTXREXXRULES indicates that un-initialized variables located during HTML
extension processing are replaced with the upper-case variable name. Normal
extension processing replaces un-initialized variables with a NULL string.

If this argument is omitted, the Server assumes a value of HTX for all text format file

Argument Name
given in Syntax
Examples

Description of Argument
December 1999 Shadow Programming Guide 7-129

Host Application API Function Calls
High-Level Language Interface
SWSSET (SWCPSO) Function

 The SWSSET built-in function allows the caller to control various runtime envi-
ronmental options. Following is a list of functions that can be specified:

Can be used in Shadow/REXX. See RETURN RESCAN or RETURN FLUSH.

Can be used from other REXX interpreters.

HLL entry point name is SWCPSO.

Function Name Description

SWS_OPTION_RESCAN Provides a new URL value which the server uses during the rescan operation.
The rescan operation does not actually begin until after the current application
program terminates normally.

The rescan function provides high-level language programs with an equivalent
functionality which the Shadow/REXX Interpreter intrinsically provides. For
Shadow/REXX, the equivalent function is performed by using the RESCAN
option of the RETURN statement.

SWS_OPTION_FLUSH Allows the user to send the current "buffered" output. This function normally
occurs after the current application program terminates normally.

SWS_OPTION_NOFLUSH Allows the user to inhibit the sending of the "buffered" output. This function
occurs after the current application program terminates normally.

SWS_OPTION_SENDTRACE Allows the user to specify the output tracing option.

SWS_OPTION_PARSETRACE Allows the user to specify the URL tracing option.

SWS_OPTION_RESPMODE Allows the user to specify the server parsing mode.

SWS_OPTION_DPRTY Allows the user to adjust the current processing priority of their TCB within
the Shadow Server address space. This can be a positive or negative whole
number which is added to the TCB’s current dispatching priority.

SWS_OPTION_AUTOFLUSH Allows the user to specify the maximum number of buffers to allow before
automatically sending them. Value must be specified as a whole number
between 0 and 32767.

SWS_OPTION_MAXRESPBYTES Allows the user to specify the maximum number of bytes which can be sent in
response to a single URL. Value must be specified as a whole number between
0 and 2147483647.

SWS_OPTION_MASRESPBUFFERS Allows the user to specify the maximum number of buffers which can be sent
in response to a single URL. Value must be specified as a whole number
between 0 and 32767.

SWS_OPTION_USERDATA1 Allows the user to specify information to be added to the Shadow Web Server
SMF record.
7-130 Shadow Programming Guide December 1999

Web Server Specific APIs
CALL Arguments

The SWSSET function takes four arguments. All four arguments must be speci-
fied on the call.

SWS_OPTION_USERDATA2 Allows the user to specify information to be added to the Shadow Web Server
SMF record. This option can only be executed from a WWW Master rule.

SWS OPTION ASCIIEBCDICMAP Allows the user to specify a language conversion value to be used for
translating any subsequent output generated by this rule.

Arg
HLL Argument Type

I/O Description of Argument
C COBOL PL/I

1 HDBC Usage
pointer

PTR Input The Web Server connection handle. The connection
handle is an opaque, four-byte address pointer. The
connection handle is currently not used, and must be
set to zero (NULL).

2 UDWORD PIC S9(5)
COMP

FIXED
BIN(31)

Input A flag word indicating the function which the
SWSSET invocation should perform. You must
specify one of the aforementioned functions for this
parameter.

3 CHAR* PIC X(8) CHAR(8) OUTPUT The data value to be set. The format of this argument
varies, depending on the value supplied for the
second argument.

Function Value

SWS_OPTION_
RESCAN

Specify a 1-to-128 byte
URL rescan value. The
rescan URL value can be
a null terminated string.

SWS_OPTION_
FLUSH

Parameter not required.

SWS_OPTION_
NOFLUSH

Parameter not required.

SWS_OPTION_
SENDTRACE

• YES to turn the
option on.

• NO to turn the
option off.

SWS_OPTION_
RESPMODE

• NONE for Non-
parsed headers.

• SERVER for
Server-parsed head-
ers.

SWS_OPTION_
DPRTY

A value from -255 to 255.

Function Name Description
December 1999 Shadow Programming Guide 7-131

Host Application API Function Calls

el.

re:

a
s
The tape will contain a serial number of the form “NSnnnn” on its external lab
Use this label in the JCL above and in the SSINSTAL job below.

Return Values

SWSSET always sets a signed numeric return code value. Possible values a

SWS_OPTION_
AUTOFLUSH

A value from 0 to 32767.

SWS_OPTION_
MAXRESPBYTES

A value from 0 to
2147483647.

SWS_OPTION_
MAXRESPBUFFERS

A value from 0 to 32767.

SWS_OPTION_
PARSETRACE

• YES to turn the
option on.

• NO to turn the
option off.

SWS_OPTION_
USERDATA1

Any text string from 1 to
256 bytes long

SWS_OPTION_
USERDATA2

Any text string from 1 to
256 bytes long

SWS_OPTION_
ASCIIEBCDICMAP

Any valid 3 or 4 character
language code string

4 SDWORD PIC S9(5)
COMP

FIXED
BIN(31)

Input This argument specifies the size of the function dat
given by the third argument. The required size varie
depending on the function specified by the second
argument.

If the data specified as parameter 3 is a null-
terminated string, you can specify the manifest
constant SWS_NTS.

Return Value Description

SWS_SUCCESS The operation succeeded.

SWS_ERROR A parameter validation or runtime error was encountered. Error
information is available using the SWSERROR function.

SWS_ENVIRONMENT_ERROR The request could not be processed because of a runtime
environmental error, for example, you invoked the API service
outside of a web transaction procedure, or from outside the Server's
address space. The Server may provide diagnostic information in the
wrap-around trace.

SWS_INVALID_HANDLE The connection handle is invalid. No error information is available.

Arg
HLL Argument Type

I/O Description of Argument
C COBOL PL/I
7-132 Shadow Programming Guide December 1999

Web Server Specific APIs
SWS_OPTION_ASCIIEBCDICMAP Language Codes

The following list of language codes are used to translate text.

Any other value The operation failed. By using the SQLERROR/SWSERROR
interface, you can obtain the error message pertinent to the error.

Code Lanuguage

BEL BELGIAN

CBL CANADIAN BILINGUAL

DAN DANISH (MS)

DAN2 DANISH/NORWEGIAN

DEU GERMAN (MS)

DEU2 AUSTRIAN/GERMAN

ENG U.K. ENGLISH (MS)

ENG2 U.K. ENGLISH

ENU U.S. ENGLISH

ENU2 U.S. ENGLISH (ORIG. SWS VERSION)

ESN MODERN SPANISH (MS)

ESP CASTILIAN SPANISH (MS)

ESP2 SPANISH

FIN FINISH (MS)

FIN2 FINISH/SWEDISH

FRA FRENCH (MS)

FRA2 FRENCH

FRC CANADIAN FRENCH

ISL ICELANDIC (MS)

ITA ITALIAN (MS)

ITA2 ITALIAN

JPE JAPANESE/ENGLISH

NLD DUTCH (MS)

NLD2 DUTCH

NOR NORWEGIAN (MS)

PTG PORTUGUESE (MS)

Return Value Description
December 1999 Shadow Programming Guide 7-133

Host Application API Function Calls
PL/I Example
DCL TCONN PTR; /* Connection Handle */
DCL TDATA CHAR(256); /* data buffer area */
DCL TSIZE FIXED BIN(31); /* data length */
DCL RC FIXED BIN(31); /* return code */
DCL DMHX FIXED BIN(31) BASED; /* Dummy Handle field */

ADDR(TCONN)->DMHX = 0; /* Clear Connection Handle */

TDATA = ’SYSTEM/ERROR/500’; /* Set rescan URL value */
TSIZE = 16; /* set length */
CALL SWSSET(TCONN /* Set rescan URL value */
 SWS_OPTION_RESCAN,
 TDATA,
 TSIZE);

RC = PLIRETV(); /* get return code */
IF RC ^= SWS_SUCCESS THEN /* if bad RC, then go */
 GOTO ERROR_LABEL; /* report the error or */

/* abort the transaction */

CALL PLIRETC(0); /* Rescan URL is set up, so */
RETURN(0); /* let Server do re-match */

Other function call formats:
CALL SWSSET(TCONN
 SWS_OPTION_FLUSH);
CALL SWSSET(TCONN
 SWS_OPTION_NOFLUSH);
TSIZE = 3;
CALL SWSSET(TCONN,
 SWS_OPTION_SENDTRACE,
 SWS_OPTION_YES,
 TSIZE);
TSIZE = 2;
CALL SWSSET(TCONN,
 SWS_OPTION_PARSETRACE,
 SWS_OPTION_NO,
 TSIZE);
TSIZE = 4;
CALL SWSSET(TCONN,

PTG2 PORTUGUESE

SVE SWEDISH (MS)

SWF SWISS/FRENCH

SWG SWISS/GERMAN

Code Lanuguage
7-134 Shadow Programming Guide December 1999

Web Server Specific APIs
 SWS_OPTION_RESPMODE,
 SWS_OPTION_NONE,
 TSIZE);
TDATA = ’5’
TSIZE = 1;
CALL SWSSET(TCONN,
 SWS_OPTION_DPRTY,
 TDATA, TSIZE);

TDATA = ’100’
TSIZE = 3;
CALL SWSSET(TCONN,
 SWS_OPTION_AUTOFLUSH,
 TDATA,
 TSIZE);
TDATA = ’32000’
TSIZE = 5; CALL SWSSET(TCONN,
 SWS_OPTION_MAXRESPBYTES,
 TDATA,
 TSIZE);
TDATA = ’55’;
TSIZE = 2;
CALL SWSSET(TCONN,
 SWS_OPTION_MAXRESPBUFFERS,
 TDATA,
 TSIZE);
TDATA = ’USER DATA MESSAGE’;
TSIZE = 17;
CALL SWSSET(TCONN,
 SWS_OPTION_USERDATA1,
 TDATA,
 TSIZE);
TDATA = ’SECURED USER DATA MESSAGE’;
TSIZE = 25;
CALL SWSSET(TCONN,
 SWS_OPTION_USERDATA2,
 TDATA,
 TSIZE);
TDATA = ’FRA2’
TSIZE = 4; CALL SWSSET(TCONN,
 SWS_OPTION_ASCIIEBCDICMAP,
 TDATA,
 TSIZE);
December 1999 Shadow Programming Guide 7-135

Host Application API Function Calls
C Example
HDBC tConn = NULL; /* Connection Handle */
char tData[] = "SYSTEM/ERROR/500"; /* rescan URL value */
long RC; /* return code */
rc = SWSSet(&tConn, /* set rescan URL value */
 SWS_OPTION_RESCAN,
 tdata,
 strlen(tdata));
if (rc ^= SWS_SUCCESS) return; /* if bad RC from SWSSET */
{ /* perform some appl-dep. */
... /* error recovery or abort */
}; /* processing. */
else /* Otherwise, URL is set so*/
return 0; /* let Server do re-match */

Other function call formats:
rc = SWSSet(&tConn,
 SWS_OPTION_FLUSH);
rc = SWSSet(&tConn,
 SWS_OPTION_NOFLUSH);
rc = SWSSet(&tConn,
 SWS_OPTION_SENDTRACE,
 SWS_OPTION_NO,
 strlen(SWS_OPTION_NO));
rc = SWSSet(&tConn,
 SWS_OPTION_PARSETRACE,
 SWS_OPTION_NO,
 strlen(SWS_OPTION_NO));
rc = SWSSet(&tConn,
 SWS_OPTION_RESPMODE,
 SWS_OPTION_SERVER,
 strlen(SWS_OPTION_SERVER));
char tData[] = "-40";
rc = SWSSet(&tConn,
 SWS_OPTION_DPRTY,
 tdata,
 strlen(tdata));
char tData[] = "50";
rc = SWSSet(&tConn,
 SWS_OPTION_AUTOFLUSH,
 tdata,
 strlen(tdata));
char tData[] = "2000000";
rc = SWSSet(&tConn,
 SWS_OPTION_MAXRESPBYTES,
 tdata,
 strlen(tdata));
char tData[] = "80";
rc = SWSSet(&tConn,
 SWS_OPTION_MAXRESPBUFFERS,
 tdata,
 strlen(tdata));
char tData[] = "USER DATA MESSAGE";
7-136 Shadow Programming Guide December 1999

Web Server Specific APIs
rc = SWSSet(&tConn,
 SWS_OPTION_USERDATA1,
 tdata,
 strlen(tdata));
char tData[] = "SECURED USER DATA MESSAGE";
rc = SWSSet(&tConn,
 SWS_OPTION_USERDATA2,
 tdata,
 strlen(tdata));
char tData[] = "FRA2";
rc = SWSSet(&tConn,
 SWS_OPTION_ASCIIEBCDICMAP,
 tdata,
 strlen(tdata));
December 1999 Shadow Programming Guide 7-137

Host Application API Function Calls
COBOL Example
77 TCONN USAGE IS
POINTER.
77 TDATA PIC X(128).
77 TSIZE PIC S9(5)
COMP.

MOVE ’SYSTEM/ERROR/500’ TO TDATA.
MOVE 16 TO TSIZE.
CALL ’SWCPSO’ USING TCONN,
 SWS-OPTION-RESCAN,
 TDATA,
 TSIZE.
MOVE RETURN-CODE TO WS-SWSAPI-RETURN-CODE.
IF NOT SWS-SUCCESS PERFORM 9999-ABORT-PROCEDURE.
MOVE 0 to RETURN-CODE.
GOBACK.
Other function call formats:
CALL ’SWCPSO’
 USING TCONN,
 SWS-OPTION-FLUSH.
CALL ’SWCPSO’
 USING TCONN,
 SWS-OPTION-NOFLUSH.
MOVE 3 TO TSIZE.
CALL ’SWCPSO’ USING TCONN,
 SWS-OPTION-SENDTRACE,
 SWS-OPTION-YES,
 TSIZE.
MOVE 2 TO TSIZE.
CALL ’SWCPSO’
 USING TCONN,
 SWS-OPTION-PARSETRACE,
 SWS-OPTION-NO,
 TSIZE.
MOVE 4 TO TSIZE.
CALL ’SWCPSO’
 USING TCONN,
 SWS-OPTION-RESPMODE,
 SWS-OPTION-NONE,
 TSIZE.
MOVE ’-17’ TO TDATA.
MOVE 3 TO TSIZE.
CALL ’SWCPSO’
 USING TCONN,
 SWS-OPTION-DPRTY,
 TDATA,
 TSIZE.
MOVE ’100’ TO TDATA.
MOVE 3 TO TSIZE.
CALL ’SWCPSO’
 USING TCONN,
 SWS-OPTION-AUTOFLUSH,
7-138 Shadow Programming Guide December 1999

Web Server Specific APIs
 TDATA,
 TSIZE.
MOVE ’100000’ TO TDATA.
MOVE 6 TO TSIZE.
CALL ’SWCPSO’
 USING TCONN,
 SWS-OPTION-MAXRESPBYTES,
 TDATA,
 TSIZE.
MOVE ’255’ TO TDATA.
MOVE 3 TO TSIZE.
CALL ’SWCPSO’
 USING TCONN,
 SWS-OPTION-MAXRESPBUFFERS,
 TDATA,
 TSIZE.
MOVE ’USER DATA MESSAGE’ TO
TDATA.
MOVE 17 TO TSIZE.
CALL ’SWCPSO’
 USING TCONN,
 SWS-OPTION-USERDATA1,
 TDATA,
 TSIZE.
MOVE ’SECURED USER DATA MESSAGE’ TO
TDATA.
MOVE 25 TO TSIZE.
CALL ’SWCPSO’
 USING TCONN,
 SWS-OPTION-USERDATA2,
 TDATA,
 TSIZE.
MOVE ’FRA2’ TO TDATA.
MOVE 4 TO TSIZE.
CALL ’SWCPSO’
 USING TCONN,
 SWS-OPTION-ASCIIEBCDICMAP,
 TDATA,
 TSIZE.

December 1999 Shadow Programming Guide 7-139

Host Application API Function Calls
SWSSET Function

The SWSSET built-in function allows the caller to control various runtime envi-
ronmental options. The following is a list of functions that can be specified:

Can be used in Shadow/REXX. See RETURN RESCAN or RETURN FLUSH.

Can be used from other REXX interpreters.

High-level language interface available.

Function Name Description Subparameter

RESCAN Provides a new URL value which the Server uses during the
rescan operation. The rescan operation does not actually begin
until after the current application program terminates
normally.

Specify a 1-to-128 byte
URL rescan value.

FLUSH Provides a new URL value which the Server will use during
the rescan operation. The rescan operation does not actually
begin until after the current application program terminates
normally.

This function has no sub-
parameters.

NOFLUSH Forces any scheduled output to be sent to the user and
terminates any further processing.

This function has no sub-
parameters.

SENDTRACE Allows the user to specify the output tracing option. • YES to turn the option
on.

• NO to turn the option
off.

PARSETRACE Allows the user to specify the URL tracing option. •YES to turn the option
on.

• NO to turn the option
off.

RESPMODE Allows the user to specify the server parsing mode. •NONE for Non-parsed
headers.

• SERVER for Server-
parsed headers.

DPRTY Allows the user to adjust the current processing priority of
their TCB within the Shadow Server address space. This can
be a positive or negative whole number which is added to the
TCB's current dispatching priority.

A value from -255 to 255.

AUTOFLUSH Allows the user to specify the maximum number of buffers to
allow before automatically sending them.

A value from 0 to 32767.

MAXRESPBYTES Allows the user to specify the maximum number of bytes that
can be sent in response to a single URL.

A value from 0 to
2147483647.

MAXRESPBUFFERS Allows the user to specify the maximum number of buffers
that can be sent in response to a single URL.

A value from 0 to 32767.
7-140 Shadow Programming Guide December 1999

Web Server Specific APIs
Return Values

The function always returns 0 (zero) to the caller.

SWSSET always sets a signed numeric return code value. Possible values are:

Coding Samples
rc = SWSSET(’RESCAN’, newurl)

rc = SWSSET(’FLUSH’)

rc = SWSSET(’NOFLUSH’)

rc = SWSSET(’SENDTRACE’, ’YES’)

rc = SWSSET(’PARSETRACE’, ’YES’)

rc = SWSSET(’RESPMODE’, ’SERVER’)

rc = SWSSET(’DPRTY’, ’-2’)

rc = SWSSET(’AUTOFLUSH’, ’25’)

rc = SWSSET(’MAXRESPBYTES’, ’10000’)

rc = SWSSET(’MAXRESPBUFFERS’ ’100’)

rc = SWSSET(’USERDATA1’ ’USER MESSAGE DATA’)

rc = SWSSET(’USERDATA2’ ’SECURED USER MESSAGE DATA’)

rc = SWSSET(’ASCIIEBCDICMAPPING’ ’FRA2’)

USERDATA1 Allows the user to specify a text sting to be inserted in the
Shadow Web Server SMF record.

Must be a text string from 1
to 256 bytes long.

USERDATA2 Allows the user to specify a text sting to be inserted in the
Shadow Web Server SMF record. This string of text is secured
in as much as it can only be specified in a WWW Master rule.

Must be a text string from 1
to 256 bytes long.

Return Value Description

0 The function succeeded.

1 The API call cannot "connect back" into the subsystem code
properly.

Function Name Description Subparameter
December 1999 Shadow Programming Guide 7-141

Host Application API Function Calls
High-Level Language Interface
SWSWTO (SWCPWT) Function

The SWSWTO function allows a message to be written to the MVS opera-
tor console. Optionally, a route code can be supplied. If a zero route code is
coded, the default will be used. The route code is one of four constants,
which are described below. Each constant determines a set of route and
descriptor codes, which is described in the IBM publication - - Assembler
Services Reference.:

CALL Arguments

The SWSWTO function takes four arguments. All four arguments must be
specified on the call.

Can be used in Shadow/REXX.

Can be used from other REXX interpreters.

HLL entry point name is SWCPWT.

Arg
HLL Argument Type

I/O Description of Argument
C COBOL PL/I

1 HDBC Usage
pointer

PTR Input The Web Server connection handle is an opaque,
four-byte address pointer. The connection handle is
currently not used, and must be set to zero (NULL).

2 PTR PIC X(nnn) CHAR(nnn) Input The message passed to the WTO service. You can
specify a null terminated string, or explicitly provide
the value length via the third argument. The
maximum length is 70 bytes.

3 SDWORD PIC S9(5)
COMP

FIXED
BIN(31)

Input The size of the data value given by the second
argument passed to WTO. You can optionally specify
SWS_NTS to indicate the data is a null terminated
string.

4 UDWORD PIC S9(5)
COMP

FIXED
BIN(31)

Input This argument is one of the following constants:

SWS-WTO-INFO rtcde(1)desc(4,9)

SWS-WTO-WARN rtcde(1,11)desc(4,9)

SWS-WTO-SEVERE rtcd(1,11)desc(1,11)

SWS-WTO-HARDCOPY none
7-142 Shadow Programming Guide December 1999

Web Server Specific APIs
Return Values

SWSWTO always sets a signed numeric return code value. Possible values are:

PL/I Example
DCL TCONN PTR; /* Connection Handle */
DCL TDATA CHAR(70); /* Text output area */
DCL TSIZE FIXED BIN(31); /* Text length area */
DCL RC FIXED BIN(31); /* return code */
DCL DMHX FIXED BIN(31) BASED; /* Dummy Handle field */

ADDR(TCONN)->DMHX = 0; /* Clear Connection Handle */

TDATA = ’WTO Message Text’; /* Set output area */
TSIZE = 16; /* set length */
CALL SWSWTO(TCONN /* output trace message */
 TDATA,
 TSIZE,
 SWS-WTO-INFO);
RC = PLIRETV(); /* get return code */
IF RC ^= SWS_SUCCESS THEN /* exit program if bad RC */
 EXIT;

C Example

HDBC tConn = NULL; /* Connection Handle */
char tData[] = "Null-terminated!"; /* Text string definition */
long RC; /* return code */

rc = SWSWto(&tConn, /* output trace message */
 tData,
 SWS_NTS,
 SWS-WTO-INFO);
if (rc ^= SWS_SUCCESS) return; /* exit program if bad RC */

Return Value Description

SWS_SUCCESS The operation succeeded. The specified data was written to the
product’s wrap-around trace.

SWS_ERROR A parameter validation or runtime error was encountered. Error
information is available using the SWSERROR function.

SWS_INVALID_HANDLE The connection handle is invalid. No error information is available.

Any other value The operation failed.
December 1999 Shadow Programming Guide 7-143

Host Application API Function Calls
COBOL Example
 77 TCONN USAGE IS POINTER.
 77 TDATA PIC X(70).
 77 TSIZE PIC S9(5) COMP.
 77 DESC PIC S9(5) COMP VALUE 12.
 77 ROUTE PIC S9(5) COMP VALUE 1.

 MOVE ’WTO MESSAGE’ TO TDATA.
 MOVE 11 TO TSIZE.

 CALL ’SWCPWT’ USING TCONN,
 TDATA,
 TSIZE,
 SWS-WTO-INFO.

 MOVE RETURN-CODE TO WS-SWSAPI-RETURN-CODE.
 IF NOT SWS-SUCCESS GOBACK.

7-144 Shadow Programming Guide December 1999

Web Server Specific APIs
SWSWTO Function

The SWSWTO built-in function provides a means to issue an MVS write to oper-
ator.

The SWSWTO function allows a message to be written to the MVS operator con-
sole. Optionally, a route code may be supplied. If a zero route code is supplied, the
default will be used. The route code is one of four string constants, which
aredescribed below. Each constant determines a set of route and descriptor codes,
which is described in the IBM publication - - Assembler Services Reference.

Coding SWSWTO

To code the SWSWTO function, use the following format:

RC = SWSWTO(textstring ,<route code>)

Valid Route Codes

Return Values

The function returns 0 (zero) if successful and non-zero if the WTO failed.

Can be used in Shadow/REXX.

Can be used from other REXX interpreters.

High-level language interface available.

Route Code Description

Informational desc codes 4,9 route code 1

Warning desc codes 4,9 route codes 1,11

Severe desc codes 2,11 route codes 2,11

Hardcopy None

Route Code Description
December 1999 Shadow Programming Guide 7-145

Host Application API Function Calls
RPC Direct Host APIs
This section covers the following RPC Direct APIs:

Host RPCs can use a variety of APIs provided by Shadow Server to communicate
with the Shadow Server address space. These APIs are used to:

n Transmit data to and from the client.
n Add messages to Trace Browse.
n Obtain additional information about the execution environment.

Host RPCs can be used in any high-level language. The same routines are pro-
vided for all languages. All of the host RPC API functions can be invoked by
either AMODE 24 or AMODE 31 callers. All data areas passed to these functions
can either be above or below the 16 MB line. All functions accept a fixed number
of arguments passed using an OS parameter list with the VL bit set for the last
parameter in the list. The VL bit must be correctly set to maintain compatibility
with future releases of the host RPC API. The functions of the Shadow Server
host RPC API are:

sdcpif
Access and update execution environment information.

sdcpmg
Add a user message to the Trace Browse log.

sdcprd
Read a buffer of data from the client application.

sdcpwr
Write a buffer of data to the client application.

API Description DIRECT WEB SEF WEB/RX

RPC Direct APIs

To access current execution
environment information:

sdcpif

To add text message to trace
browser log:

sdcpmg

To read buffer of data from client: sdcprd

To send buffer of data to client: sdcpwr
7-146 Shadow Programming Guide December 1999

RPC Direct Host APIs
sdcpif Function

RPC Direct

sdcpif is used to gain information about the current execution environment. Infor-
mation requests and a buffer data area are passed to this function. This function
either updates the buffer with the requested data or uses the data in the buffer to
update the current execution environment.

Syntax

The general form for invoication of sdcpif is:

long sdcpif(rqsr, ouar)

CALL Arguments

The sdcpif function accepts the following arguments:

Return Values

sdcpif returns:

Comments

sdcpif provides supports requests for several different types of information about
the current execution environment. The supported request types are:

n HOSTNAME. This request is used to obtain the host name of the client
system that initiated the current RPC. The host name is returned in the output
buffer as a variable length string. The first two bytes of the output buffer will
contain the length of the host name string. Up to 16 bytes of host name
information will be returned after the two-byte length prefix. The size of the
return buffer should be at least 102 bytes to allow for longer host names in the

Type Argument Use Description

scrqsr * rqsr Input Request string. This request string is passed using a variable
length string. Variable length string starts with a two byte
prefix followed by name of current request. Request name
must be passed in uppercase, and length prefix must be equal
to number of characters in request name.

char * ouar I/O Buffer area. This data area is used to either return information
about the current execution environment or provide a new
value for some element of the current execution environment.

Return Value Description

CMCPCMOK The information request was successfully handled.

CMCPIVRQ The request name string was invalid.
December 1999 Shadow Programming Guide 7-147

Host Application API Function Calls
future. Currently, host names are limited to 16 bytes, however, 100 bytes
should be reserved in the result area to allow for future expansion of this field.
The host name will be on of the following:

n A TCP/IP host name in character string format
n An IP address in dotted decimal notation (for example, 140.252.14.65)
n The SNA LU name of the system running the client application.

n USERID. The userid that the client application program provided to logon to
the host system will be returned in the buffer area as a variable length string.
The first two bytes will contain the userid length followed by the userid string.
The userid string can be up to 8 bytes long and will not be padded with
trailing blanks.

n PROGRAM. This is the name of the currently executing RPC. The program
name will be either a load module name or a load module alias. The buffer
will contain the program name as a variable length string. The first two bytes
will contain the program name length followed by up to 8 bytes of the
program name. The program name will not be padded with trailing blanks.

n CPUTIME. CPU time is the amount of TCB time used by the current task so
far. The amount of TCB CPU time will be returned to the output buffer area as
an 8-byte double-precision floating-point value in units of seconds.

n UNIQUETOKEN. This is an 8-byte unique token value returned in the
output buffer area. The token value can be used as needed by the host RPC
application. It will always monotonically increase and can be assumed to be
unique across all of the CPU engines of a system image.

n USERAREA. This is a 4K scratchpad area shared by all RPCs running in the
Shadow Server address space. Shadow Server does not provide any
serialization for this user area. This area can be accessed and updated by all
RPCs using the 4-byte USERAREA address returned in the output buffer
area.

The sdcpif function can also be used to update certain elements of the current exe-
cution environment. The following update request type is supported:

PLANNAME. The plan name is updated using the contents of the buffer area.
The buffer area must be a variable length string containing the plan name. The
first 2 bytes of the buffer area indicate the length of the plan name, followed
7-148 Shadow Programming Guide December 1999

RPC Direct Host APIs
by the actual plan name. This name will be padded with trailing blanks if
needed when it copied into the plan name area.

Example

None at this time.

Related Functions

Note:
This call does not actually alter the DB2 plan (if any) used by
the current RPC. It will only update the plan names displayed by
the Shadow Server diagnostic facility and the SDB ISPF
application on the host. This request type is normally only used
by RPCs that establish their own connections to DB2 with
DSNALI, and then update the Shadow execution environment
plan name for diagnostic purposes.

For information about See

Adding a user message to the Trace Browse log sdcpmg

Reading a buffer of data from the client sdcprd

Writing a buffer of data to the client sdcpwr
December 1999 Shadow Programming Guide 7-149

Host Application API Function Calls
sdcpmg Function

RPC Direct

sdcpmg adds a text message to the Trace Browse log.

Syntax

The general form for invoication of sdcpmg is:

long sdcpmg(mgsr, mgln)

CALL Arguments

The sdcpmg function accepts the following arguments:

Return Values

sdcpmg returns:

Comments

This function adds user messages to the Trace Browse area. User messages have
an event type of message and can be added at any time and in any number, how-
ever, some caution should be used in adding user messages to Trace Browse. If
there are too many messages added, there will be less room for system messages
that can be needed for debugging purposes. A user message consists only of mes-
sage text. The message text can contain any combination of characters passed by
the caller and will be truncated if it exceeds the maximum message text length.

Type Argument Use Description

char * mgsr Input Text message. The mgsr argument points to text message that
should be added to Trace Browse log. This text message
should not start with a length prefix of any kind and should not
be null terminated. The text message can contain any
combination of characters, however, printable characters are
preferred for usability purposes.

long mgln Input Text message length. The mgsr argument must be greater than
or equal to zero.

Return Value Description

CMCPCMOK The user message was successfully added to Trace Browse.

CMCPEXER General execution errors were detected.

CMCPTBER The message could not be added to Trace Browse for any other
reason.
7-150 Shadow Programming Guide December 1999

RPC Direct Host APIs
Example

None at this time.

Related Functions

For information about See

Accessing and updating execution environment information sdcpif

Reading a buffer of data from the client application sdcprd

Writing a buffer of data to the client application sdcpwr
December 1999 Shadow Programming Guide 7-151

Host Application API Function Calls
sdcprd Function

RPC Direct

sdcprd reads a buffer of data from the client.

Syntax

The general form for invocation of sdcprd is:

long sdcprd(buar, buln)

CALL Arguments

The sdcprd function accepts the following arguments:

Return Values

sdcprd returns:

Comments

This function is used to read one buffer of data from the client. The return code
from this function will be either an actual buffer size or a negative error code. If
the client system network or application fails, this function will return a negative
error code.

Type Argument Use Description

char * buar Output Buffer area for message received from client application. This
area must be at least as large as the size value specified in next
argument.

long buln Input Buffer length. Size of the buar buffer area.

Return Value Description

A Non-Negative Buffer Length Value A message was successfully read from the client.

Note:
If the input buffer length is zero then the return code from this
function will also be zero.

CMCPBUER The message buffer reset failed.

CMCPEXER A general execution error occurred.

CMCPSXSZ The buffer sent by the client application was larger than the buffer
area provided by the host RPC.

CMCPREER The client application failed, the system running the client
application failed, or the network failed.

CMCPTPEN The client application terminated.
7-152 Shadow Programming Guide December 1999

RPC Direct Host APIs
The buffer should be large enough for the largest possible message sent by the cli-
ent application. In general, client applications are limited to sending messages of
up to 30 kilobytes.

The buffer of data received from a client will not be translated or converted in any
way, so if the buffer contains binary data values, these will be returned to the host
application unchanged. In other words, all bit combinations can be transmitted
from the client application to the host RPC without alteration.

Calling this function will suspend execution of a host RPC until a data buffer is
available or until a communication I/O error is detected. In other words, the host
RPC will be suspended until the client application transmits a data buffer or until a
communication failure occurs. If the client application fails to supply a buffer of
data, the host application will be suspended indefinitely. There is no time out asso-
ciated with this function at this time.

Examples

None at this time.

Related Functions

Note:
If the receiving buffer is smaller than the message transmitted by the
client, the client message will be discarded, not truncated.

For information about See

Accessing and updating execution environment information sdcpif

Adding a user message to the Trace Browse log sdcpmg

Writing a buffer of data to the client application sdcpwr
December 1999 Shadow Programming Guide 7-153

Host Application API Function Calls
sdcpwr Function

RPC Direct

This function is used to send a buffer of data from the host application to the cli-
ent.

Syntax

The general form for invocation of sdcpwr is:

long sdcpwr(buar, buln, cmfg)

CALL Arguments

The sdcpwr function accepts the following arguments:

Return Values

sdcpwr returns:

Type Argument Use Description

char * buar Input Buffer area containing message to be sent to client application.
This data area does not start with a length prefix and need not
be null-delimited. This data area must be at least as large as
size value specified by next argument.

long buln Input Buffer length. This argument contains number of bytes of data
to be transmitted from host to client. This value must be
greater than or equal to zero. This value should not exceed
maximum size buffer that can be transmitted from host to
client, or approximately 30K.

long cmfg Input Communication flags. This argument is used to pass flags to
write routine to control how write operation is done. See
comments section below for definition of flags.

Return Value Description

CMCPCMOK The data buffer was successfully transmitted to the client.

Note:
There is no guarantee that the buffer was successfully received even
if the return code is CMCPCMOK.

CMCPBUER The transmission buffer could not be reset.

CMCPEXER A general execution error occurred.

CMCPSEER A communication error of some kind was detected. A
communication error will be reported if the network failed, the client
application program failed, or the system running the client
application program failed.
7-154 Shadow Programming Guide December 1999

RPC Direct Host APIs

uff-
 data

l

llow
e
Comments

This buffer of data can contain any combination of characters or binary values,
and will not be translated or converted in any way as it is transmitted from the host
system to the client. This function will return to the caller before the data has actu-
ally been transmitted from the host, at which time the host RPC can assume that
the data has been copied from the buffer. However, no assumptions can be made
about when the data will actually be delivered to the client application.

The host RPC buffer write function can be called consecutively any number of
times. There is no requirement that any data buffer be received from the client
before, after, or in between buffer write calls. However, if the host application
attempts to write “too much” data to the client, then the host communication b
ers can be filled causing the call to be suspended until a sufficient amount of
has actually been sent to the client.

The communication flags argument is optional. If this argument is omitted, al
flags will be assumed to be off. The communication flag is:

SDCPWRNO. This flag is set to prevent the line from being turned around
after each write. By default, the line is turned around after each write to a
the client to send a buffer to the host. This flag must be set if another writ
will follow the current write without an intervening read.

Examples

None at this time.

Related Functions

Note:
This flag will only have an effect on LU 6.2 client/server
sessions. This flag should be set if there is any possibility that
the host RPC will ever have to use LU 6.2 to communicate with
the client.

For information about See

Accessing and updating execution environment information sdcpif

Adding a user message to the Trace Browse log sdcpmg

Reading a buffer of data form the client application sdcprd
December 1999 Shadow Programming Guide 7-155

Host Application API Function Calls
General APIs
This section covers the following General APIs:

API Description DIRECT WEB SEF WEB/RX

General APIs

To get error information: SQLERROR
or SDCPSE

SWSERROR
or SWCPSE

SDBERROR SWSERROR

To return information to ODBC
CALL RPC:

SQLGETINFO
or SDCPGI

SWSINFO
or SWCPGI

SDBINFO SWSINFO

To write message to trace
browser:

SQLTRACEMSG
or SDCPTM

SWSTRACEMSG
or SWCPTM

SDBTRACE SWSTRACE

To dynamically allocate a file: SDBALLOC
or SDCPAL

SWSALLOC
or SWCPAL

SDBALLOC SWSALLOC

To de-allocate datasets: SDBFREE
or SDCPFR

SWSFREE
or SWCPFR

SDBFREE SWSFREE

To fetch or set transaction run-
time variable values:

SDBVALUE
or SDCPVL

SWSVALUE
or SWCPVL

SDBVALUE SWSVALUE

To save and restore transaction-
oriented data :

SQLTOKEN
or SDCPTK

SWSTOKEN
or SWCPTK

SDBTOKEN SWSTOKEN

To concatenate multiple
DDNames under a single
DDName.

SDBCONCT
or SDCPCC

SWSCONCT
or SWCPCC.

SDBCONCT SWSCONCT
7-156 Shadow Programming Guide December 1999

General APIs
High-Level Language Interface
SQLERROR (SDCPSE)
SWSERROR (SWCPSE) Function

SQLERROR/SWSERROR is the Web Server API function used to fetch informa-
tion pertaining to the last Application Program Interface error detected for this
transaction.

CALL Arguments

The SQLERROR/SWSERROR function call requires eight arguments. None can
be omitted from the function call.

Can be used in Shadow/REXX.

Can be used from other REXX interpreters.

HLL entry point name is SDCPSE/SWCPSE.

Arg
HLL Argument Type

I/O Description of Argument
C COBOL PL/I

1 HENV USAGE
POINTER

PTR INPUT The Web Server environment handle. The
environment handle is an opaque, four-byte address
pointer. The environment handle is currently not
used, and must be set to zero (NULL).

2 HDBC USAGE
POINTER

PTR INPUT The connection handle. The connection handle is an
opaque, four-byte address pointer. The connection
handle is currently not used, and must be set to zero
(NULL).

3 HSTMT USAGE
POINTER

PTR INPUT The Web Server statement handle. The statement
handle is an opaque, four-byte address pointer. The
statement handle is currently not used, and must be
set to zero (NULL).

4 UCHAR* PIC
X(6)

CHAR(6) OUTPUT This argument should specify a character string
buffer of at least 6 bytes in length. A state value,
compatible in format with the ODBC specification is
returned in this area, as a null terminated string.

5 SDWORD* PIC S9(5)
COMP

FIXED
BIN(31)

OUTPUT The ’native’ error code is returned within this area.
This is some value that describes the error condition.

6 UCHAR* PIC X
(nnn)

CHAR
(nnn)

OUTPUT The buffer area which receives the error message
text. Note that the error message text will always be
null-terminated. Room for the trailing null must be
provided.
December 1999 Shadow Programming Guide 7-157

Host Application API Function Calls
Return Values

SQLERROR/SWSERROR always sets a signed numeric return code value. Possi-
ble values are:

7 SDWORD* PIC S9(5)
COMP

FIXED
BIN(31)

INPUT The total size of the error message buffer area
supplied by the sixth argument. The error message
will be truncated if it does not fit into this buffer,
including room for the trailing null terminator.

8 SDWORD* PIC S9(5)
COMP

FIXED
BIN(31)

OUTPUT The API returns the total size of the error message
(excluding the null terminator). The returned size
value will be larger than the buffer size if the error
message has been truncated.

Return Value Description

SWS_SUCCESS,
SQL_SUCCESS

The operation succeeded. The return values have been set.

SWS_SUCCESS_WITH_INFO,
SQL_SUCCESS_WITH_INFO

The operation partially succeeded. This return code value is set
when the returned error message text has been truncated.

SWS_ENVIRONMENT_ERROR The request could not be processed because of a runtime
environmental error, for example, you invoked the API service
outside of a web transaction procedure, or from outside the Server’s
address space. The Server may provide diagnostic information in the
wrap-around trace.

SWS_ERROR,
SQL_ERROR

A parameter validation or runtime error was encountered. Error
information is available using the SWSERROR/SQLERROR
function.

SWS_NO_DATA_FOUND,
SQL_NO_DATA_FOUND

There is no prior error condition upon which to report.

SWS_INVALID_HANDLE,
SQL_INVALID_HANDLE

One of the handle arguments is invalid.

Arg
HLL Argument Type

I/O Description of Argument
C COBOL PL/I
7-158 Shadow Programming Guide December 1999

General APIs
PL/I Example
DCL SENVH PTR; /* Environment Handle */
DCL SCONN PTR; /* Connection Handle */
DCL SSTMT PTR; /* Statment Handle */
DCL SSQST CHAR(6); /* ODBC State */
DCL SNATV FIXED BIN(31); /* Native Error Code */
DCL SERMG CHAR(256); /* error message text */
DCL SMGSZ FIXED BIN(31) INIT(256); /* Buffer size */
DCL SRTSZ FIXED BIN(31); /* Fetched value size */
DCL RC FIXED BIN(31); /* return code */
DCL DMHX FIXED BIN(31) BASED; /* Dummy Handle field */

ADDR(SENVH)->DMHX = 0; /* Clear Environment Hndl.*/
ADDR(SCONN)->DMHX = 0; /* Clear Connection Handle*/
ADDR(SSTMT)->DMHX = 0; /* Clear Statement Handle */

CALL SWSERROR(SENVH, /* get last error info */
 SCONN,
 SSTMT,
 SSQST,
 SNATV,
 SERMG,
 SMGSZ,
 SRTSZ);
RC = PLIRETV(); /* get return code */
IF (RC ^= SWS_SUCCESS & /* exit program if bad RC */
 RC ^= SWS_SUCCESS_WITH_INFO) THEN
 EXIT;

C Example
HDBC sEnvh = NULL; /* Environment Handle */
HDBC sConn = NULL; /* Connection Handle */
HSTMT sStmt = NULL; /* Statement Handle */
char sSqst[6]; /* ODBC-Compatible state */
SDWORD sNatv; /* Native Error Code */
char sErmg[256]; /* Error message text */
SDWORD sRtsz; /* Error message size */

rc = SWSError(&sEnvh, /* get error information */
 &sConn,
 &sStmt,
 sSqst,
 &sNatv,
 sErmg,
 sizeof(sErmg),
 &sRtsz);
if (rc ^= SWS_SUCCESS) return; /* exit program if bad RC */
December 1999 Shadow Programming Guide 7-159

Host Application API Function Calls
 COBOL Example
77 SENVH USAGE IS POINTER.
77 SCONN USAGE IS POINTER.
77 SSTMT USAGE IS POINTER.
77 SSQST PIC X(6).
77 SNATV PIC S9(5) COMP.
77 SERMG PIC X(256).
77 SMGSZ PIC S9(5) COMP VALUE 256.
77 SRTSZ PIC S9(5) COMP.
CALL ’SWCPSE’ USING SENVH,
 SCONN,
 SSTMT,
 SSQST,
 SNATV,
 SERMG,
 SMGSZ,
 SRTSZ.
MOVE RETURN-CODE TO WS-SWSAPI-RETURN-CODE.
IF NOT SWS-SUCCESS GOBACKGOBACK.
7-160 Shadow Programming Guide December 1999

General APIs
SDBERROR/SWSERROR Function

SDBERROR/SWSERROR is a built-in function used to retrieve information
about the last error condition encountered by a Web Server API function. If no
error condition has been encountered, the function returns a NULL string. Other-
wise a description of the last error is returned.

Syntax

The general form for invocation of SDBERROR/SWSERROR is:

string = SDBERROR()

 or

string = SWSERROR()

The SDBERROR/SWSERROR function is coded without arguments.

Return Values

After the call shown above completes, the variable string will be set to a NULL
value if no error condition has been encountered. Otherwise, it will contain a text-
format description of the error.

Can be used in Shadow/REXX.

Can be used from other REXX interpreters.

High-level language interface available.
December 1999 Shadow Programming Guide 7-161

Host Application API Function Calls
High-Level Language Interface
SQLGETINFO (SDCPGI)
SWSINFO (SWCPGI) Function

SQLGETINFO/SWSINFO is the Web Server API function used to fetch informa-
tion about the current transaction execution environment and return it to the caller.

CALL Arguments

The SQLGETINFO/SWSINFO function takes five arguments. All five arguments
must be specified on the call.

Can be used in Shadow/REXX.

Can be used from other REXX interpreters.

HLL entry point name is SDCPGI/SWCPGI.

Arg
HLL Argument Type

I/O Description of Argument
C COBOL PL/I

1 HDBC Usage
pointer

PTR Input The connection handle. The connection handle is an
opaque, four-byte address pointer. The connection
handle is currently not used, and must be set to zero
(NULL).

2 UDWORD PIC S9(5)
COMP

FIXED
BIN(31)

Input A four-byte binary integer indicating the information
item to be returned by the function. Specify any one
of the manifest constants, shown in the table below,
to indicate the data item to be fetched.

3 UCHAR * PIC X(nnn) CHAR
(nnn)

Output The data buffer to receive the fetched information.
Depending on the value of the second argument, the
returned data can be a null-terminated string; a 16-bit
integer value, a 32-bit flag-word value, or a 32-bit
signed or unsigned integer.

4 SDWORD PIC S9(5)
COMP

FIXED
BIN(31)

Input The size of the data buffer area given by the third
argument.
7-162 Shadow Programming Guide December 1999

General APIs
The following table shows the values which can be specified for the second argu-
ment. Note that for COBOL, the value names contain hyphens instead of underbar
characters.

5 SDWORD * PIC S9(5)
COMP

FIXED
BIN(31)

Output Return area receiving the total size, in bytes, of the
requested information value, regardless of whether
the fetched value could be completely stored within
the buffer area. For character format data items,
which are null terminated, this value does not include
the null termination byte.

For requests which return character data: If the total
size of the requested information is greater than or
equal to the size of the data buffer the returned
character string is truncated, and a null
terminationbyte is placed into the last available of the
buffer area.

For requests which return any other data type:The
value given by the forth argument is ignored. The
size of the return buffer area is assumed to be at least
four bytes.

Manifest Constant Value Returned

SWS_GET_ASID The ASID as a 2-byte binary value.

SWS_GET_BYTES The number of saved bytes

SWS_GET_CLOCK The current TOD clock value as an 8-byte binary TOD value. Note that this is
the un-adjusted STCK value.

SWS_GET_CONNECTID The unique CONNECTION ID value as a 4-byte binary value.

SWS_GET_CPUDELTA The 8-byte task CPU time delta value.

SWS_GET_CPUTIME The 8-byte task CPU time value.

SWS_GET_DB2PLAN The DB2 plan name.

SWS_GET_DB2SUBSYS The DB2 subsystem name.

SWS_GET_EVENTTYPE An indication of the event type associated with the invocation of the rule/
program.

SWS_GET_HOSTDOMAIN The host (server) domain associated with the current request.

SWS_GET_HOSTNAME The HOSTNAME (CLIENT) associated with the current request.

SWS_GET_IPADDRESS The IP Address for the current connection. The returned value is 4-byte binary
value.

SWS_GET_JOBNAME The MVS job name related to the current primary address space.

SWS_GET_LASTCONNECTID The last CONNECTION ID used on the current link.

SWS_GET_LASTUSERID The last Userid used on the current link

Arg
HLL Argument Type

I/O Description of Argument
C COBOL PL/I
December 1999 Shadow Programming Guide 7-163

Host Application API Function Calls
Return Values

SQLGETINFO/SWSINFO always sets a signed numeric return code value. Possi-
ble values are:

SWS_GET_LINKTYPE The link type for the current request

SWS_GET_LU The LU NAME for the current request

SWS_GET_MAINPGM The name of the main REXX program or rule.

SWS_GET_MODE The mode name for the current request

SWS_GET_PRODUCT The Product Identification string

SWS_GET_PRODUCTSTATUS The current product status

SWS_GET_PROGRAM The name of the REXX program or rule.

SWS_GET_ROWS The number of source rows

SWS_GET_SEFFEATURE A single blank if SEF is not enabled.

SWS_GET_SUBSYS The accessed subsystem ID from the current OPMS image.

SWS_GET_SUBSYSASID The ASID of the active subsystem from the real OPMS as a two-byte binary
value.

SWS_GET_SMFID The SMFID of the MVS system.

SWS_GET_TASKTYPE The task type.

SWS_GET_TRANSTYPE The transaction program type.

SWS_GET_USERID The Userid value.

SWS_GET_VERSION The version string of the product subsystem under which this rule/program is
running.

Return Value Description

SWS_SUCCESS,
SQL_SUCCESS

The operation succeeded. The requested data has been fetched and
placed into the buffer area. The actual size of the data is set into the
sixth argument.

SWS_SUCCESS_WITH_INFO,
SQL_SUCCESS_WITH_INFO

The return buffer area was not large enough to store the fetched
item. The fetched item was truncated. The size of the fetched item,
before truncation, is returned to the sixth argument. For character
data, a null termination byte is always placed into the last buffer
position.

SWS_ENVIRONMENT_ERROR The request could not be processed because of a runtime
environmental error, for example, you invoked the API service
outside of a web transaction procedure, or from outside the Server’s
address space. The Server may provide diagnostic information in the
wrap-around trace.

Manifest Constant Value Returned
7-164 Shadow Programming Guide December 1999

General APIs
PL/I Examples

DCL SCONN PTR; /* Connection Handle */
DCL SBUFF CHAR(256); /* Return Buffer area */
DCL SBFSZ FIXED BIN(31) INIT(256); /* Size of buffer */
DCL SRTSZ FIXED BIN(31); /* Actual item size */
DCL RC FIXED BIN(31); /* return code */
DCL DMHX FIXED BIN(31) BASED; /* Dummy Handle field */
ADDR(SCONN)-> DMHX = 0; /* Clear Connection Handle*/
CALL SWSINFO(SCONN /* fetch the IP address */
ADDR(SCONN)-> DMHX = 0; /* Clear Connection Handle*/
_IPADDRESS,

SBUFF,
SBFSZ,
SRTSZ);

RC = PLIRETV(); /* get return code */
IF RC ^= SWS_SUCCESS THEN /* exit program if bad RC */
 EXIT;

SWS_ERROR,
SQL_ERROR

A parameter validation or runtime error was encountered. Error
information is available using the SWSERROR/SQLERROR
function.

SWS_INVALID_HANDLE,
SQL_INVALID_HANDLE

The connection handle argument is invalid. No error information can
be returned using SQLERROR/SWSERROR.

Note:
SQLGETINFO/SWSINFO can be used as an alias for the pre-
processor symbol SWSINFO.

Return Value Description
December 1999 Shadow Programming Guide 7-165

Host Application API Function Calls
C Example

HDBC sConn = NULL; /* Connection Handle */
char sBuff[256]; /* Return Buffer Area */
SDWORD sRTSZ; /* Return item size */
long RC; /* return code */
 rc = SWSINFO(&sConn, /* obtain the IP Address */
 SWS_GET_IPADDRESS,
 &sBuff[0],
 (SDWORD) sizeof(sBuff),
 &sRTSZ);
if (rc ^= SWS_SUCCESS) return; /* exit program if bad RC */

COBOL Example
77 SCONN USAGE IS POINTER.
77 SBUFF PIC X(80).
77 SBFSZ PIC S9(5) COMP VALUE 80.
77 SRTSZ PIC S9(5) COMP.
CALL ’SWCPGI’ USING SCONN,
 SWS-GET-IPADDRESS,
 SBUFF,
 SBFSZ,
 SRTSZ.
MOVE RETURN-CODE TO WS-SWSAPI-RETURN-CODE.
IF NOT SWS-SUCCESS GOBACK.

Note:
SQLGETINFO/SWSINFO can be used as an alias for the pre-
processor symbol SWSINFO.
7-166 Shadow Programming Guide December 1999

General APIs
SDBINFO/SWSINFO Function

SDBINFO/SWSINFO is a built-in function used to retrieve environmental infor-
mation from the Shadow Web Server Subsystem.

Syntax

The general form for invocation of SDBINFO/SWSINFO is:

var = SDBINFO/SWSINFO(arg1)

Valid Arguments

The SDBINFO/SWSINFO function takes one argument. The input argument can
be one of the following string constants:

Can be used in Shadow/REXX.

Can be used from other REXX interpreters.

High-level language interface available.

Manifest Constant Value Returned

ASID The ASID as a 2-byte binary value, when invoked via the program API. The
ASID is returned as a 4-byte value when invoked from REXX.

BYTES The number of saved bytes

CLOCK The current TOD clock value as an 8-byte binary TOD value. Note that this is
the un-adjusted STCK value.

CONNECTID The unique CONNECTION ID value

CPUDELTA The 8-byte task CPU time delta value

CPUTIME The 8-byte task CPU time value

DB2PLAN The DB2 plan name

DB2SUBSYS The DB2 subsystem name

EVENTTYPE An indication of the event type associated with the invocation of the rule/
program.

HOSTDOMAIN The host (server) domain associated with the current request.

HOSTNAME The HOSTNAME (CLIENT) associated with the current request.

IPADDRESS The IP Address for the current request. The function returns a 4-byte binary
value, when invoked via the program API. A formatted character value in the
form, 10.123.2.12 is returned when this function is invoked from REXX.

JOBNAME TheMVS job name related to the current primary address space
December 1999 Shadow Programming Guide 7-167

Host Application API Function Calls
Return Values

The function always returns the indicated value. If the value requested is not valid
for the environment, a NULL string is returned.

Examples

The following request will set the REXX variable, IPA, to the 4-byte binary TCP/
IP address of the Web Client program:

IPA = SDBINFO/SWSINFO(’IPADDRESS’)

LASTCONNECTID The last CONNECTION ID used on the current link

LASTUSERID The last Userid used on the current link

LINKTYPE The link type for the current request

LU The LU NAME for the current request

MAINPGM The name of the main REXX program or rule

MODE The mode name for the current request

ODBCDATE The compile date of the ODBC driver

ODBCVERSION The ODBC driver version

PRODUCT The Product Identification string

PRODUCTSTATUS The current product status

PROGRAM The name of the REXX program or rule

ROWS The number of source rows

SEFFEATURE A single blank if SEF is not enabled.

SUBSYS The accessed subsystem ID from the current OPMS image

SUBSYSASID The ASID of the active subsystem from the real OPMS

SMFID The SMFID

TASKTYPE The task type

TRANSTYPE The transaction program type

USERID The Userid value

USERPARM The user parameter string from the client

VERSION The version string of the product subsystem under which this rule/program is
running.

Manifest Constant Value Returned
7-168 Shadow Programming Guide December 1999

General APIs

sage
wse
High-Level Language Interface
SQLTRACEMSG (SDCPTM)
SWSTRACEMSG (SWCPTM) Function

SQLTRACEMSG/SWSTRACEMSG is used to write a message into the Shadow
Web Server or Shadow Direct’s wrap-around trace browse dataset. The mes
can contain any text desired. If the message is too long to fit within a trace bro
record, it is truncated. Truncation is not considered an error.

CALL Arguments

The SQLTRACEMSG/SWSTRACEMSG function takes four arguments. All
four arguments must be specified on the call.

Can be used in Shadow/REXX.

Can be used from other REXX Intepreters.

HLL entry point name is SDCPTM/SWCPTM.

Arg
HLL Argument Type

I/O Description of Argument
C COBOL PL/I

1 HDBC Usage
pointer

PTR Input The connection handle. The connection handle is an
opaque, four-byte address pointer. The connection
handle is currently not used, and must be set to zero
(NULL).

2 PTR PIC X(nnn) CHAR
(nnn)

Input The data value which is to be written to the trace
browse wrap-around dataset. You can specify a null
terminated string, or explicitly provide the value
length via the third argument.

The maximum useable length for a trace browse
record is approximately 730 bytes.

3 SDWORD PIC S9(5)
COMP

FIXED
BIN(31)

Input The size of the data value given by the second
argument which is to be written to the trace record.

You can optionally specify SWS_NTS, to indicate
that the data is a null terminated string.

4 UDWORD PIC S9(5)
COMP

FIXED
BIN(31)

Input This argument is currently not used, but can be in
future releases. You must specify a zero value.
December 1999 Shadow Programming Guide 7-169

Host Application API Function Calls
Return Values

SQLTRACEMSG/SWSTRACEMSG always sets a signed numeric return code
value. Possible values are:

PL/I Example
DCL TCONN PTR; /* Connection Handle */
DCL TDATA CHAR(256); /* Text output area */
DCL TSIZE FIXED BIN(31); /* Text length area */
DCL RC FIXED BIN(31); /* return code */
DCL DMHX FIXED BIN(31) BASED; /* Dummy Handle field */
DCL FB00 FIXED BIN(31) INIT(0); /* Dummy argument */
ADDR(TCONN)->DMHX = 0; /* Clear Connection Handle*/
TDATA = ’Trace Message Text’; /* Set output area */
TSIZE = 18; /* set length */
CALL SWSTRACE(TCONN /* output trace message */
 TDATA,
 TSIZE,
 FB00);
RC = PLIRETV(); /* get return code */
IF RC ^= SWS_SUCCESS THEN /* exit program if bad RC */
EXIT;

Return Value Description

SWS_SUCCESS,
SQL_SUCCESS

The operation succeeded. The specified data was written to the
product’s wrap-around trace.

SWS_ENVIRONMENT_ERROR The request could not be processed because of a runtime
environmental error, for example, you invoked the API service
outside of a web transaction procedure, or from outside the Server’s
address space. The Server may provide diagnostic information in the
wrap-around trace.

SWS_ERROR,
SQL_ERROR

A parameter validation or runtime error was encountered. Error
information is available using the SWSERROR/SQLERROR
function.

SWS_INVALID_HANDLE,
SQL_INVALID_HANDLE

The connection handle is invalid. No error information is available

Any Other Value The operation failed.
7-170 Shadow Programming Guide December 1999

General APIs
C Example
HDBC tConn = NULL; /* Connection Handle */
char tData[] = "Null-terminated!"; /* Text string definition */
long RC; /* return code */
rc = SWSTRACE(&tConn, /* output trace message */
 tData,
 SWS_NTS,
 0);
if (rc ^= SWS_SUCCESS) return; /* exit program if bad RC */

COBOL Example
77 TCONN USAGE IS POINTER.
77 TDATA PIC X(80).
77 TSIZE PIC S9(5) COMP.
77 FB00 PIC S9(5) COMP VALUE 0.
MOVE ’TRACE MESSAGE’ TO TDATA.
MOVE 13TO TSIZE.
CALL ’SWCPTM’ USING TCONN,
 TDATA,
 TSIZE,
 FB00.
MOVE RETURN-CODE TO WS-SWSAPI-RETURN-CODE.
IF NOT SWS-SUCCESS GOBACK.
December 1999 Shadow Programming Guide 7-171

Host Application API Function Calls
SDBTRACE/SWSTRACE Function

The SWSTRACE built-in function provides a means of logging text information
to the Shadow Web Server Wrap-around trace.

The SWSTRACE function is primarily intended to allow logging of trace mes-
sages from other REXX interpreters. You can generate log messages from
Shadow/REXX using this function, if you desire. However, REXX SAY state-
ments issued from Shadow/REXX event procedures are automatically logged to
the wrap-around trace without the overhead of invoking this function.

Coding SDBTRACE/SWSTRACE

To code the SWSTRACE function, use the following format:

RC = SWSTRACE(textstring)

Return Values

The function always returns 0 (zero) to the caller.

Can be used in Shadow/REXX.

Can be used from other REXX interpreters.

High-level language interface available.
7-172 Shadow Programming Guide December 1999

General APIs
High-Level Language Interface
SDBALLOC (SDCPAL)
SWSALLOC (SWCPAL) Function

 SDBALLOC/SWSALLOC is used to dynamically allocate an MVS dataset for
use by Web Client program.

The format of this command is similar in features and functions to the TSO/E
Allocate command. A text string is used as input in order to provide the parame-
ters necessary to allocate the specified dataset. Use the SWSFREE command to
de-allocate datasets allocated with the SDBALLOC/SWSALLOC command.

Call Arguments

The SDBALLOC/SWSALLOC (SDCPAL/SWCPAL) function arguments are
described in the table which follows. Only two of the three arguments are
required.

Can be used in Shadow/REXX.

Can be used from other REXX interpreters.

HLL entry point name is SDCPAL/SWCPAL.

Note:
Because of comparable functionality of SWSALLOC to IBM’s
ALLOC function, this documentation is similar to IBM’s TSO/E
online help.

Arg
HLL Argument Type

I/O Description of Argument
C COBOL PL/I

1 LONG PIC
S9(5)
COMP

FIXED
BINARY
(31)

INPUT The length of the allocation command string. If the
length is longer than the actual command, trailing
nulls or blanks will be ignored. If the length is less
than the actual command string, the allocation
command string will be truncated and possibly cause
execution errors. The maximum string length is
32768 bytes.

2 CHAR* PIC
X(nnnnn)

CHAR
(nnnnn)

INPUT The allocation command string. See Supported
Dynamic Allocation Keywords below.
December 1999 Shadow Programming Guide 7-173

Host Application API Function Calls
Return Values

SDBALLOC/SWSALLOC always sets a signed numeric return code value. Possi-
ble values are:

Supported Dynamic Allocation Keywords

The SWSALLOC (SWCPAL) interface supports the following dataset allocation
request parameters:

3 SWSASB* Usage
Pointer

PTR OUTPUT The Shadow Web Server Allocation Status Block.
This is an optional argument that provides
information concerning the status of the allocation
request. If you do not specify this argument, you will
not have access to the reason code nor the DAIR
code.

Return Value Description

SWS_SUCCESS,
SQL_SUCCESS

The operation succeeded. The specified operation was performed.

SWS_ERROR,
SQLERROR

A parameter validation or runtime error was encountered. Error
information is available using the SWSERROR/SQLERROR
function.

SWS_ENVIRONMENT_ERROR The request could not be processed because of a runtime
environmental error, for example, you invoked the API service
outside of a web transaction procedure, or from outside the Server’s
address space. The Server may provide diagnostic information in the
wrap-around trace.

Any other value The operation failed. Generally this indicates that the file was not
allocated. There will be an error message in the Allocation Status
Block describing the error.

Allocation Keyword Description

DSN(DSNAME) Specifies the name of the dataset to be allocated. You can only specify a single
dataset name.

Dataset names must be fully qualified as there will be no prefix appended to
the supplied name.

Note: This is a required parameter unless you specify a PATH parameter.

DDN(DDNAME) Specifies the DDNAME to associate with the allocated file. If you do not
specify one, one will be dynamically generated for you. The generated
DDNAME can be obtained from the Allocation Status Block which is input to
the allocation request.

Arg
HLL Argument Type

I/O Description of Argument
C COBOL PL/I
7-174 Shadow Programming Guide December 1999

General APIs
DEST(DESTINATION/NODE
USERID)

Remote destination or a User at a specified node to which SYSOUT data sets
are to be routed.

DISP(STATUS NORMAL
ABNORMAL)

Specifies the disposition of file upon normal and abnormal (conditional)
session termination.

Status disposition: Indicates the disposition of the file upon normal session
termination.

• SHR = Dataset exists and exclusive control is not required.
• OLD = Dataset exists and exclusive control is required.
• MOD = Additions are to be made to the dataset.
• NEW = Dataset is to be created .

Normal termination disposition: Indicates the disposition of the file upon
normal session termination.

• UNCATALOG = Specifies that the file should be uncatalogued.
• CATALOG = Specifies that the file should be catalog.
• KEEP = Specifies that the file should be kept.
• DELETE = Specifies that the file should be deleted.

Abnormal (conditional) termination disposition: indicates the disposition of
the file upon abnormal (conditional) session termination.

• UNCATALOG = Specifies that the file should be uncatalogued.
• CATALOG = Specifies that the file should be catalog.
• KEEP = Specifies that the file should be kept.
• DELETE = Specifies that the file should be deleted.

SYSOUT(CLASS) Dataset is to be a system output dataset.

VOLUME(SERIAL(s)) Volume(s) on which the dataset resides or is to reside.

BLKSIZE(VALUE) Blocksize; must be 0 to 32760.

BLOCKS(PRIMARY
SECONDARY)

Space is to be allocated by BLOCKS.

Note: Requires the BLKSIZE parameter.

TRACKS(PRIMARY
SECONDARY)

Space is to be allocated by tracks.

CYLINDERS(PRIMARY
SECONDARY)

Space is to be allocated by cylinders.

DIR(INTEGER) Number of Directory Blocks required.

Allocation Keyword Description
December 1999 Shadow Programming Guide 7-175

Host Application API Function Calls

the
LIKE(MODEL_DATASET_
NAME)

The model dataset is a dataset whose attributes are to be used to allocate a new
dataset. The following attributes are copied from the model dataset:

• Primary and Secondary space quantities (SPACE).
• Directory space quantity (DIR).
• Dataset Organization (DSORG).
• Record Format (RECFM).
• Optional Services Codes (OPTCD).
• Logical Record Length (LRECL).
• Key Length (KEYLEN).
• Blocksize (BLKSIZE).
• Volume Sequence Number (VSEQ).
• Expiration Date (EXPDT).

If SMS is active the following attributes are not copied:

• Optional Services Codes (OPTCD).
• Blocksize (BLKSIZE).
• Volume Sequence Number (VSEQ).
• Expiration Date (EXPDT).

Any attribute(s) of the model data set can be overridden by explicitly
specifying the appropriate keyword(s) on the allocate command.

HOLD Dataset is to be placed on a hold queue upon de-allocation.

UNIT(UNIT_TYPE) Device type to which a file or data set is to be allocated.

UCOUNT(COUNT) Maximum number of devices to which a file or data set can be allocated.

PARALLEL One device mounted for each volume specified on the volume parameter.

MAXVOL(VOL_COUNT) Maximum number of volumes a data set can use.

PRIVATE A volume which is not permanently resident or reserved is to be assigned
private volume use attribute.

RELEASE Unused space is to be deleted when the data set is closed.

VSEQ(VOL_SEQ_NUM) Which volume of a multi-volume data set to begin processing with.

ROUND Allocated space should be equal to one or more cylinders.

BFALN(VALUE) Buffer boundary alignment. Legitimate values are:

• D = Double word boundary.
• F = Full word boundary.

BFTEK(VALUE) Type of buffering. Legitimate values are:

• A = Automatic record area construction.
• D = Dynamic buffering.
• E = Exchange buffering.
• R = Record buffering.
• S = Simple buffering.

BUFL(INTEGER) Buffer length; must be 0 to 32760.

BUFNO(INTEGER) Number of buffers; must be 0 to 255.

BUFOFF(INTEGER) Block prefix length; must be 0 to 99.

Allocation Keyword Description
7-176 Shadow Programming Guide December 1999

General APIs

ust

5.

c-

 be

ly .
DSORG(VALUE) Dataset Organization. Legitimate values are:

• DA = Direct Access.
• DAU = Direct Access Unmovable.
• PO = Partitioned Organization.
• POU = Partitioned Organization Unmovable.
• PS = Physical Sequential.
• PSU = Physical Sequential Unmovable.

EROPT(VALUE) Error Option. Legitimate values are:

• ABE = Abnormal End-Of-Task.
• ACC = Accept block causing error.
• SKP = Skip block causing error.

KEYLEN(INTEGER) Key length; must be 0 to 255.

LIMCT(INTEGER) Number of blocks or tracks to be searched for a block or available space; m
be 0 to 32760.

LRECL(VALUE) Logical Record Length. Legitimate values are:

• 0 to 32760.
• Character "X".
• 1 to 16384 with K-multiplier.

Where:

• X = LRECL value exceeds 32756 for variable length spanned records
processed under QSAM.

• K = LRECL value is a multiplier of 1024.

NCP(INTEGER) Maximum number of read or write macros before a check; must be 0 to 25

If you are running TSO/E on MVS/ESA SP 4.2.2 or earlier, the maximum
value is 99.

OPTCD(VALUE) Optional Services Codes. Legitimate values are:

• A = Actual device addresses presented in read and write macro instru
tions.

• B = End-Of-File recognition disregarded for tapes.
• C = Chained scheduling is to be used.
• E = Extended search for block or available space.
• F = Feedback can be requested in read and write macro instructions.
• Q = ANSI translate.
• R = Requests relative block addressing.
• T = Requests user totaling facility.
• W = Requests a validity check for write operations on direct access

devices.
• J = Indicates that the character after the carriage control character is to

interpreted as a table reference character .

PROCOPT(VALUE) File processing option. Legitimate values are:

• INPUT = Specifies that the data set is to be processed for input only.
• OUTPUT = Specifies that the data set is to be processed for output on

EXPDT(VALUE) Dataset expiration date (YYDDD OR YYYY/DDD).

RETPD(INTEGER) Dataset retention period (NNNN).

Allocation Keyword Description
December 1999 Shadow Programming Guide 7-177

Host Application API Function Calls

er

us

s it

is

ata
dow

ing a

rite

r the

e

 data
FCB(IMAGE_ID) Forms Control Image (Buffer) to be used to print an output data set.

IMAGE_ID specifies a 1 to 4 alphanumeric or national characters which
identify the image to be loaded into the Forms Control Buffer.

COPIES(NNN) Number of copies of a dataset to print. An integer from 1 to 255.

COPYGROUPS(GROUP_
VALUE1 GROUP_VALUE2
...GROUP_VALUE8))

Used with the COPIES option to specify the number of times each page is to
be printed. Up to eight group values can be specified with a sum not exceeding
the number specified in the COPIES parameter.

PROTECT Specifies that the DASD data set or tape volume containing a tape data set is to
be RACF protected.

ACCODE(VALUE) ANSI accessibility code (A through Z).

OUTBIN(VALUE) Specifies the output bin on the IBM 3800 laser printer. Legitimate values are:

• BURST = Specifies that the data set should be sent to the burster/trimm
bin on the IBM 3800 laser printer.

• NOBURST = Specifies that the data set should be sent to the continuo
feed bin on the IBM 3800 laser printer.

CHARS(CHAR_TABLE1
...CHAR_TABLE4)

Specifies the character table that is to be used for printing. One to four
character tables can be specified.

FLASH(NAME COPIES) Provides the ability to print a form, grid, design, or constant data on paper a
is being processed through the 3800 printer. Legitimate values are:

• NAME = Specifies the name of the forms overlay to be used.
• COPIES = Specifies the number of copies on which the forms overlay

to be used.

Note: Separate parameters by spaces. Do not use commas.

FORMS(VALUE) Specifies the specific print form to be mounted.

OUTDES(OUTPUT_
DESCRIPTOR_NAME ...)

Specifies a list of output descriptors that will be associated with the sysout d
set. These descriptors are created by //OUTPUT JCL statements in the Sha
Web Server or Shadow Direct procedure.

Note: Separate parameters by spaces. Do not use commas.

UCS(UCS_NAME) Specifies the universal character set (font name) to be used when process
print data set in the absence of a 'CHARS' specification.

WRITER(EXTERNAL_
WRITER_NAME)

Specifies the member name of a program in the system library that is to w
the sysout data set. This program will be used instead of JES2 or JES3.

STORCLAS(STORAGE_CLASS) The name of the storage class which is used to specify the service level fo
data set.

MGMTCLAS
(MANAGEMENT_CLASS)

The management class which is used to specify management criteria for th
data set.

DATACLAS(DATA_CLASS) The name of the data class which is used as an allocation template for the
set.

Allocation Keyword Description
7-178 Shadow Programming Guide December 1999

General APIs

 be
ate

ent
wing

te

M

r-

se
RECFM(OPTION1 OPTION2
...OPTION5)

Record Format. Legitimate option values are:

• A = ASA PRINTER CHARACTERS.
• B = BLOCKED.
• D = VARIABLE LENGTH ASCII RECORDS.
• F = FIXED.
• M = MACHINE CONTROL CHARACTER.
• S = STANDARD BLOCKS OR SPANNED.
• T = TRACK OVERFLOW.
• U = UNDEFINED.
• V = VARIABLE.

Note: Combinations of these options can be selected. Each selection must
separated by a space. Review your MVS JCL Reference Manual for legitim
combinations.

RECORG(ORGANIZATION) Dataset Organization. Legitimate values are:

• KS = VSAM Cluster (KSDS).
• ES = VSAM Entry Sequenced (ESDS).
• RR = VSAM Relative Record (RRDS).
• LS = VSAM Linear Space (LDS).

KEYOFF(OFFSET) Key Offset.

REFDD(DDNAME) The DDNAME of a data set whose properties specified on the JCL statem
and in the data class are to be used to allocate the new data set. The follo
properties are copied from the referenced DD statement:

• Dataset Organization (RECORG).
• Size.
• Directory blocks.
• Logical Record Length (LRECL).
• Record Format (RECFM).
• Key Length (KEYLEN).
• Key Offset (KEYOFF).

SECMODEL(MODEL_NAME) The name of a "model" profile which RACF should use in creating a discre
profile for the data set.

DSNTYPE(DSNTYPE) DATA SET NAME TYPE. Legitimate values are:

• LIBRARY = A partitioned data set in PDSE format.
• PDS = A partitioned data set in record format.
• PIPE = A data pipe.
• HFS = An HFS (Hierarchical File System) file.

RLS(RLS_VALUE) Record Level Sharing. Legitimate values are:

• CR = Consistent Read.
• NRI = No Read Integrity.

FILEDATA(VALUE) How the system converts between record format and byte-stream format.
Currently meaningful only if path also is coded and the program uses BSA
or QSAM. Legitimate values are:

• TEXT = Data consists of records that are separated by a delimiter. Cu
rently it is EBCDIC newline (x'15').

• BINARY = Data does not contain record delimiters. In the current relea
the default is binary when creating the file. If you do not code PATHO-
PTS(OCREATE), then FILEDATA temporarily overrides the creation
value.

Allocation Keyword Description
December 1999 Shadow Programming Guide 7-179

Host Application API Function Calls

PATH(PATHNAME) Identifies an HFS file.

A pathname consists of the names of the directories from the root to the file
being identified, and then the name of the file. The form is /NAME1/NAME2/
.../NAMEn.

A pathname begins with a slash (/). The system treats any consecutive slashes
like a single slash.

The pathname can be 1 to 250 characters. A name can be 1 to 249 characters.

Consists of printable characters from x’40’ through x’FE’.

A pathname is case sensitive. Thus, /usr/joe and /USR/joe define two different
files.

Note: This is a required parameter unless you specify a DSN parameter.

PATHDISP(NORMAL
ABNORMAL)

Specifies the disposition of an HFS file upon normal and abnormal
(conditional) session termination.

Normal termination disposition: Indicates the disposition of the HFS file upon
normal session termination.

• KEEP = Specifies that the file should be kept.
• DELETE = Specifies that the file should be deleted.

Abnormal (conditional) termination disposition: indicates the disposition of
the HFS file upon abnormal (conditional) session termination.

• KEEP = Specifies that the file should be kept.
• DELETE = Specifies that the file should be deleted.

Note: The default for datasets allocated with the PATH parameter is
PATHDISP(KEEP KEEP).

PATHMODE(FILE_ACCESS_
ATTRIBUTE ...)

Specifies the file access attributes when the PATHOPTS operand specifies
OCREAT. A FILE ACCESS ATTRIBUTE is one of the following:

• SIRUSR
• SIWUSR
• SIXUSR
• SIRWXU
• SIRGRP
• SIWGRP
• SIXGRP
• SIRWXG
• SIROTH
• SIWOTH
• SIXOTH
• SIRWXO
• SISUID
• SISGID

You can specify up to 14 FILE ACCESS ATTRIBUTES. The system treats
duplicate specifications of FILE ACCESS ATTRIBUTES as a single
specification.

Allocation Keyword Description
7-180 Shadow Programming Guide December 1999

General APIs

uses

ssed

r
the

n.

 the
See

ble

-

PATHOPTS(FILE_OPTION ...) Specifies the file access and status used when accessing a file specified on the
path operand. A FILE OPTION can be in the access group or the status group
and is one of the following:

Valid Access Groups are:

• ORDONLY
• OWRONLY
• ORDWR

Valid Status Groups are:

• OAPPEND
• OCREAT
• OEXCL
• ONOCTTY
• ONONBLOCK
• OSYNC
• OTRUNC

You can specify up to 8 FILE OPTIONs.

The system treats duplicate specifications of FILE OPTIONs as a single
specification.

Code the FILE OPTIONs as follows:

• Specify only one FILE OPTION from the access group. if you specify
more than one access group file-option, the system ignores them and
ORDWR as the option.

• Specify up to 7 FILE OPTIONs from the status group. You can specify
any combination of FILE OPTIONs from the status group.

SEGMENT(INTEGER) The number of pages produced for a sysout data set before they are proce
for printing. Must be 1 to 99999

SPIN(VALUE) Specifies when a sysout data set is printed. Legitimate values are:

• UNALLOC = Makes the dataset available for printing immediately afte
the dataset is unallocated from an explicit unallocation or at the end of
session.

• NO = Makes the dataset available for printing at the end of the sessio

MESSAGE(VALUE) Specifies whether or not to display dynamic allocation failure messages on
system console. This value overrides the user-specifiable system default (
FILEMESSAGES). Legitimate values are:

• YES = Display dynamic allocation failure messages.
• NO = Do not display dynamic allocation failure messages.

MOUNT(VALUE) Specifies whether to allow or not allow a volume to be mounted in order to
satisfy a dynamic allocation request. This value overrides the user-specifia
system default. (See FILEMOUNT). Legitimate values are:

• YES = Allow the system to mount a volume to satisfy a dynamic alloca
tion request.

• NO = Do not allow the system to mount a volume to satisfy a dynamic
allocation request.

Allocation Keyword Description
December 1999 Shadow Programming Guide 7-181

Host Application API Function Calls

on

llo-
File Access Attributes for PATHMODE parameter

RECALL(VALUE) Specifies whether to allow or not allow the system to recall a migrated dataset
in order to satisfy a dynamic allocation request. This value overrides the user-
specifiable system default. (See FILERECALL). Legitimate values are:

• YES = Allow the system to recall datasets to satisfy a dynamic allocati
request.

• NO = Do not allow the system to recall datasets to satisfy a dynamic a
cation request.

Sub-Parameter Definition

SIRUSR Specifies permission for the file owner to read the file.

SIWUSR Specifies permission for the file owner to write the file.

SIXUSR Specifies permission for the file owner to search, if the file is a directory, or to
execute, for any other file.

SIRWXU Specifies permission for the file owner to read, write, and search, if the file is a
directory, or to read, write, and execute, for any other file. this value is the bit
inclusive or of SIRUSR, SIWUSR, and SIXUSR.

SIRGRP Specifies permission for users in the file group to read the file.

SIWGRP Specifies permission for users in the file group to write the file.

SIXGRP Specifies permission for users in the file group to search, if the file is a
directory, or to execute, for any other file.

SIRWXG Specifies permission for users in the file group to read, write, and search, if the
file is a directory, or to read, write, and execute, for any other file. This value is
the bit inclusive or of SIRGRP, SIWGRP, and SIXGRP.

SIROTH Specifies permission for users in the file other class to read the file.

SIWOTH Specifies permission for users in the file other class to write the file.

SIXOTH Specifies permission for users in the file other class to search, if the file is a
directory, or to execute, for any other file.

SIRWXO Specifies permission for users in the file other class to read, write, and search,
if the file is a directory, or to read, write, and execute, for any other file. this
value is the bit inclusive or of SIROTH, SIWOTH, and SIXOTH.

SISUID Specifies that the system set the user id of the process to be the same as the
user id of the file owner when the file is run as a program.

SISGID Specifies that the system set the file group of the process to be the same as the
group id of the file owner when the file is run as a program.

Allocation Keyword Description
7-182 Shadow Programming Guide December 1999

General APIs
File Option descriptions for PATHOPTS parameter

Sub-Parameter Definition

ORDONLY Specifies that the program can open the file for reading.

OWRONLY Specifies that the program can open the file for writing.

ORDWR Specifies that the program can open the file for reading and writing. Do not
use this option for a FIFO special file; the result is undefined.

OAPPEND Specifies that the system sets the file offset to the end of the file before each
write, so that data is written at the end of the existing file.

OCREAT Specifies that the system is to create the file. If the file already exists, the
operation will fail if OEXCL is specified, and will open existing file if
OEXCL is not specified.

OEXCL Specifies that, if the file already exists, then HFS open file processing will fail.

Note: The system ignores OEXCL if OCREAT is not also specified.

ONOCTTY Specifies that, if the patterning of the file will not make the terminal device the
controlling a terminal device, then op

ONONBLOCK Specifies the following, depending on the type of file. For FIFO special files:

• With ONONBLOCK specified and ORDONLY access: an open() func-
tion for reading-only returns without delay.

• With ONONBLOCK not specified and ORDONLY access: an open()
function for reading-only blocks (waits) until a process opens the file for
writing.

• With ONONBLOCK specified and OWRONLY access: an open() func-
tion for writing-only returns an error if no process currently has the file
open for reading.

• With ONONBLOCK not specified and OWRONLY access: an open()
function for writing-only blocks (waits) until a process opens the file for
reading.

For character special files:

• If ONONBLOCK is specified: an open() function returns without block-
ing (waiting) until the device is ready or available. Device response
depends on the type of device.

• If ONONBLOCK is not specified: an open() function blocks (waits) until
the device is ready or available. Specification of ONONBLOCK has no
other effects.

OSYNC Specifies that the system is to move data from buffer storage to disk (or other
permanent storage) before returning control from a callable service that
performs a write.

OTRUNC Specifies that the system is to truncate the file length to zero if all of the
following are true:

• The file specified on the path operand exists.
• The file is a regular file.
• The file successfully opened with ORDWR or OWRONLY.

The system does not change the mode and owner. OTRUNC has no effect on
FIFO special files or terminal device files.
December 1999 Shadow Programming Guide 7-183

Host Application API Function Calls
PL/I Example
%INCLUDE SPCPHD
 .
 .
DCL COMMAND CHAR(80) /* ALLOCATE COMMAND */
 INIT(’DSN(SWS.INPUT.DATA) DDN(INFILE) DISP(SHR)’);
DCL CMDLEN FIXED BIN(31); /* COMMAND LENGTH */
DCL RC FIXED BIN(31); /* RETURN CODE */
CMDLEN = LENGTH(COMMAND); /* SET COMMAND LEN */

/* DYNAMICALLY ALLOCATE
AN INPUT FILE */

CALL SWSALLOC(CMDLEN, /* COMMAND LENGTH */
COMMAND, /* COMMAND */
SWSASB); /* ALLOCATION STATUS BLOCK*/

RC = PLIRETV(); /* GET RETURN CODE */
IF RC ¬= SWS_SUCCESS THEN /* EXIT PROGRAM IF BAD RC */
 EXIT;

C Example
SWS_ALLOCATION_STATUS_BLOCK swsASB; /* response area */
 .
 .
long RC; /* return code */
char szCommand[] = "DSN(SWS.INPUT.DATA) DDN(INFILE) DISP(SHR)";

/* Dynamically allocate an
input file */

rc = SWSALLOC(strlen(szCommand), /* Command Length */
 szCommand, /* Command */
 swsASB); /* Response area */
if (rc ¬= SWS_SUCCESS)
 do
 printf(swsASB.Error_Message);
 return rc;
 end
7-184 Shadow Programming Guide December 1999

General APIs
COBOL Example
* NEON API COPY BOOK
 COPY SBCPHD.
 .
 .
 .
 .
 77 COMMAND-LENGTH PIC S9(5) COMP
 77 COMMAND PIC X(80)
 VALUE ’DSN(SWS.INPUT.DATA) DDN(INFILE) DISP(SHR)’.
* DYNAMICALLY ALLOCATE AN INPUT FILE
 MOVE 80 TO COMMAND-LENGTH.
 CALL SWSALLOC
 USING COMMAND-LENGTH,
 COMMAND,
 SWS-ALLOCATION-STATUS-BLOCK.
MOVE RETURN-CODE TO WS-SWSAPI-RETURN-CODE.
IF NOT SWS-SUCCESS
 DISPLAY ’INFILE ALLOCATION FAILED.’ UPON CONSOLE
 DISPLAY SWSASB-ERROR-MESSAGE UPON CONSOLE
 GOBACK.
December 1999 Shadow Programming Guide 7-185

Host Application API Function Calls
The Shadow Web Server Allocation Status Block

This structure allows the user to retrieve any error messages generated during
dynamic allocation and de-allocation. It will also allow the user to obtain the sys-
tem-generated DDName or DSName if one is not specified during the invocation
of the SWSALLOC API.

PL/I Layout
/*--*/
/* THE FOLLOWING DEFINES THE ALLOCATION STATUS BLOCK */
/* WHERE DYNAMIC ALLOCATION INFORMATION IS RETURNED TO THE */
/* CLIENT PROGRAM. THIS CONTROL BLOCK IS USED WITH THE */
/* SWSALLOC AND SWSFREE HIGH-LEVEL LANGUAGE INTERFACE. */
/*-+----1----+----2----+----3----+----4----+----5----+----6---*/
 DCL 1 SWSASB, /* ALLOCATION STATUS BLOCK AREA*/
 2 ASBINFO FIXED BIN(31),/* DAIR INFO CODE */
 2 ASBRSN FIXED BIN(31),/* DAIR REASON CODE */
 2 ASBDDN CHAR(8), /* ASSIGNED DDNAME */
 2 ASBDSN CHAR(44), /* ASSIGNED DSNAME */
 2 ASBMSG CHAR(256); /* ERROR MESSAGE */

 This layout is available when you specify:
 %INCLUDE SPCPHD;

Can not be used in Shadow/REXX.

Can not be used from Other REXX interpreters.

High-level language interface available through the use of the SWSFREE and SWSALLOC
APIs.
7-186 Shadow Programming Guide December 1999

General APIs
C Layout
/*--*/
/* The following structure is used as a feedback area */
/* for dynamic allocate and de-allocation requests. */
/*--+----1----+----2----+----3----+----4----+----5----+----6--*/
typedef struct SWS_ALLOCATION_STATUS_BLOCK{ */
 long Info_Code; /* DAIR Info Code */
 long Reason_Code; /* SVC 99 Reason Code */
 char Assigned_DDName[8]; /* Assigned DDName from SWSALLOC */
 char Assigned_DSName[44]; /* Assigned DSName from SWSALLOC */
 char Error_Message[256]; /* Dynamic (de)allocation rrormsg*/
} SWS_ALLOCATION_STATUS_BLOCK;/* request string structure */

 This layout is available when you specify:

 #include "sccphd.h"

COBOL Layout
019105***
019110* THE SWSALLOC/SWSFREE API INTERFACES USE THE FOLLOWING AREA
019115***
019120 01 SWS-ALLOCATION-STATUS-BLOCK.
019125 03 SWSASB-INFO-CODE PIC S9(5) COMP.
019130 03 SWSASB-REASON-CODE PIC S9(5) COMP.
019135 03 SWSASB-ASSIGNED-DDNAME PIC X(8).
019140 03 SWSASB-ASSIGNED-DSNAME PIC X(44).
019145 03 SWSASB-ERROR-MESSAGE PIC X(256).

 This layout is available when you specify:

 COPY SBCPHD.

December 1999 Shadow Programming Guide 7-187

Host Application API Function Calls
SDBALLOC/SWSALLOC Function

The REXX-language SDBALLOC/SWSALLOC built-in function can be used to
dynamically allocate datasets. Datasets allocated using the SWSALLOC built-in
function should use the SWSFREE built-in function.

Syntax

The general form for a REXX-language invocation of SDBALLOC/SWSALLOC
is:

rc = SDBALLOC/SWSALLOC("STRING")

The format of this command is similar in features and functions to the TSO/E
Alloc command. If an error occurs, Shadow WebServer variable ALLOC.MES-
SAGE will be populated with a descriptive error message.

If you do not specify a DDN parameter, a system generated DDNAME will be
created and the variable ALLOC.DDNAME will contain the generated
DDNAME. The system generated DDNAME will be in the form of SYS followed
by a five (5) digit number.

If you do not specify a DSN parameter, a system generated DATASET NAME
will be created and the variable ALLOC.DSNAME will contain the generated
DATASET NAME.

In the event of an error, the DAIR return code can be obtained from the
ALLOC.INFOCODE and the reason code can be obtained from the
ALLOC.REASON.

Can be used in Shadow/REXX.

Can be used from other REXX interpreters.

High-level Language Interface available.

Note:
Because of comparable functionality of SWSALLOC to IBM’s
ALLOC function, this documentation is similar to IBM’s TSO/E
online help.
7-188 Shadow Programming Guide December 1999

General APIs
Valid Arguments

DSN(DSNAME) Specifies the name of the dataset to be allocated. You can only specify a single
dataset name.

Dataset names must be fully qualified as there will be no prefix appended to
the supplied name.

Note: This is a required parameter unless you specify a PATH parameter.

DDN(DDNAME) Specifies the DDNAME to associate with the allocated file. If you do not
specify one, one will be dynamically generated for you. The generated
DDNAME can be obtained from the variable ALLOC.DDNAME.

DEST(DESTINATION/NODE
USERID)

Remote destination or a User at a specified node to which SYSOUT data sets
are to be routed.

DISP(STATUS NORMAL
ABNORMAL)

Specifies the disposition of file upon normal and abnormal (conditional)
session termination.

Status disposition: Indicates the disposition of the file upon normal session
termination.

• SHR = Dataset exists and exclusive control is not required.
• OLD = Dataset exists and exclusive control is required.
• MOD = Additions are to be made to the dataset.
• NEW = Dataset is to be created.

Normal termination disposition: Indicates the disposition of the file upon
normal session termination.

• UNCATALOG = Specifies that the file should be uncatalogued.
• CATALOG = Specifies that the file should be catalog.
• KEEP = Specifies that the file should be kept.
• DELETE = Specifies that the file should be deleted.

Abnormal (conditional) termination disposition: indicates the disposition of
the file upon abnormal (conditional) session termination.

• UNCATALOG = Specifies that the file should be uncatalogued.
• CATALOG = Specifies that the file should be catalog.
• KEEP = Specifies that the file should be kept.
• DELETE = Specifies that the file should be deleted.

SYSOUT(CLASS) Dataset is to be a system output dataset.

VOLUME(SERIAL(s)) Volume(s) on which the dataset resides or is to reside.

BLKSIZE(VALUE) Blocksize; must be 0 to 32760.

BLOCKS(PRIMARY
SECONDARY)

Space is to be allocated by BLOCKS.

Note: Requires the BLKSIZE parameter.

TRACKS(PRIMARY
SECONDARY)

Space is to be allocated by tracks.

CYLINDERS(PRIMARY
SECONDARY)

Space is to be allocated by cylinders.

DIR(INTEGER) Number of Directory Blocks required.
December 1999 Shadow Programming Guide 7-189

Host Application API Function Calls

the
LIKE(MODEL_DATASET_NAME) The model dataset is a dataset whose attributes are to be used to allocate a new
dataset.

The following attributes are copied from the model dataset:

• Primary and Secondary space quantities (SPACE).
• Directory space quantity (DIR).
• Dataset Organization (DSORG).
• Record Format (RECFM).
• Optional Services Codes (OPTCD).
• Logical Record Length (LRECL).
• Key Length (KEYLEN).
• Blocksize (BLKSIZE).
• Volume Sequence Number (VSEQ).
• Expiration Date (EXPDT).

If SMS is active the following attributes are not copied:

• Optional Services Codes (OPTCD).
• Blocksize (BLKSIZE).
• Volume Sequence Number (VSEQ).
• Expiration Date (EXPDT).

Any attribute(s) of the model data set can be overridden by explicitly
specifying the appropriate keyword(s) on the allocate command.

HOLD Dataset is to be placed on a hold queue upon de-allocation.

UNIT(UNIT_TYPE) Device type to which a file or data set is to be allocated.

UCOUNT(COUNT) Maximum number of devices to which a file or data set can be allocated.

PARALLEL One device mounted for each volume specified on the volume parameter.

MAXVOL(VOL_COUNT) Maximum number of volumes a data set can use.

PRIVATE A volume which is not permanently resident or reserved is to be assigned
private volume use attribute.

RELEASE Unused space is to be deleted when the data set is closed.

VSEQ(VOL_SEQ_NUM) Which volume of a multi-volume data set to begin processing with.

ROUND Allocated space should be equal to one or more cylinders.

BFALN(VALUE) Buffer boundary alignment. Legitimate values are:

• D = Double word boundary.
• F = Full word boundary.

BFTEK(VALUE) Type of buffering. Legitimate values are:

• A = Automatic record area construction.
• D = Dynamic buffering.
• E = Exchange buffering.
• R = Record buffering.
• S = Simple buffering .

BUFL(INTEGER) Buffer length; must be 0 to 32760.

BUFNO(INTEGER) Number of buffers; must be 0 to 255.

BUFOFF(INTEGER) Block prefix length; must be 0 to 99.
7-190 Shadow Programming Guide December 1999

General APIs

ust

5.

c-

 be

ly.

ify
DSORG(VALUE) Dataset Organization. Legitimate values are:

• DA = Direct Access.
• DAU = Direct Access Unmovable.
• PO = Partitioned Organization.
• POU = Partitioned Organization Unmovable.
• PS = Physical Sequential.
• PSU = Physical Sequential Unmovable.

EROPT(VALUE) Error Option. Legitimate values are:

• ABE = Abnormal End-Of-Task.
• ACC = Accept block causing error.
• SKP = Skip block causing error.

KEYLEN(INTEGER) Key length; must be 0 to 255.

LIMCT(INTEGER) Number of blocks or tracks to be searched for a block or available space; m
be 0 to 32760.

LRECL(VALUE) Logical Record Length. Legitimate values are:

• 0 to 32760.
• Character "X".
• 1 to 16384 with K-multiplier .

Where:

• X = LRECL value exceeds 32756 for variable length spanned records
processed under QSAM.

• K = LRECL value is a multiplier of 1024.

NCP(INTEGER) Maximum number of read or write macros before a check; must be 0 to 25

If you are running TSO/E on MVS/ESA SP 4.2.2 or earlier, the maximum
value is 99.

OPTCD(VALUE) Optional Services Codes. Legitimate values are:

• A = Actual device addresses presented in read and write macro instru
tions.

• B = End-Of-File recognition disregarded for tapes.
• C = Chained scheduling is to be used.
• E = Extended search for block or available space.
• F = Feedback can be requested in read and write macro instructions.
• Q = ANSI translate.
• R = Requests relative block addressing.
• T = Requests user totaling facility.
• W = Requests a validity check for write operations on direct access

devices.
• J = Indicates that the character after the carriage control character is to

interpreted as a table reference character.

PROCOPT(VALUE) File processing option. Legitimate values are:

• INPUT = Specifies that the data set is to be processed for input only.
• OUTPUT = Specifies that the data set is to be processed for output on

RETPD(INTEGER) Dataset retention period (NNNN).

FCB(IMAGE_ID) Forms Control Image (Buffer) to be used to print an output data set.

IMAGE_ID specifies a 1 to 4 alphameric or national characters which ident
the image to be loaded into the Forms Control Buffer.

COPIES(NNN) Number of copies of a dataset to print; an integer from 1 to 255.
December 1999 Shadow Programming Guide 7-191

Host Application API Function Calls

er

us

s it

is

ata
dow

ing a

rite

r the

e

 data
COPYGROUPS(GROUP_
VALUE1 GROUP_VALUE2
...GROUP_VALUE8))

Used with the COPIES option to specify the number of times each page is to
be printed. Up to eight group values can be specified with a sum not exceeding
the number specified in the COPIES parameter. PROTECT Specifies that the
DASD data set or tape volume containing a tape data set is to be RACF
protected.

ACCODE(VALUE) ANSI accessibility code (A through Z).

OUTBIN(VALUE) Specifies the output bin on the IBM 3800 laser printer. Legitimate values are:

• BURST = Specifies that the data set should be sent to the burster/trimm
bin on the IBM 3800 laser printer.

• NOBURST = Specifies that the data set should be sent to the continuo
feed bin on the IBM 3800 laser printer.

CHARS(CHAR_TABLE1
...CHAR_TABLE4)

Specifies the character table that is to be used for printing. One to four
character tables can be specified.

FLASH(NAME COPIES) Provides the ability to print a form, grid, design, or constant data on paper a
is being processed through the 3800 printer. Legitimate values are:

• NAME - Specifies the name of the forms overlay to be used.
• COPIES - Specifies the number of copies on which the forms overlay

to be used.

Note: Separate parameters by spaces. Do not use commas.

FORMS(VALUE) Specifies the specific print form to be mounted.

OUTDES(OUTPUT_
DESCRIPTOR_NAME ...)

Specifies a list of output descriptors that will be associated with the sysout d
set. These descriptors are created by //OUTPUT JCL statements in the Sha
WebServer or Shadow Direct procedure.

Note: Separate parameters by spaces. Do not use commas.

UCS(UCS_NAME) Specifies the universal character set (font name) to be used when process
print data set in the absence of a 'CHARS' specification.

WRITER(EXTERNAL_
WRITER_NAME)

Specifies the member name of a program in the system library that is to w
the sysout data set. This program will be used instead of JES2 or JES3.

STORCLAS(STORAGE_CLASS) The name of the storage class which is used to specify the service level fo
data set.

MGMTCLAS
(MANAGEMENT_CLASS)

The management class which is used to specify management criteria for th
data set.

DATACLAS(DATA_CLASS) The name of the data class which is used as an allocation template for the
set.
7-192 Shadow Programming Guide December 1999

General APIs

 be
ate

t
wing

te

M

r-

se
RECFM(OPTION1 OPTION2
...OPTION5)

Record Format. Legitimate option values are:

• A = ASA PRINTER CHARACTERS.
• B = BLOCKED.
• D = VARIABLE LENGTH ASCII RECORDS.
• F = FIXED.
• M = MACHINE CONTROL CHARACTER.
• S = STANDARD BLOCKS OR SPANNED.
• T = TRACK OVERFLOW.
• U = UNDEFINED.
• V = VARIABLE.

Note: Combinations of these options can be selected. Each selection must
separated by a space. Review your MVS JCL Reference Manual for legitim
combinations.

RECORG
(ORGANIZATION)

Dataset Organization. Legitimate values are:

• KS = VSAM Cluster (KSDS).
• ES = VSAM Entry Sequenced (ESDS).
• RR = VSAM Relative Record (RRDS).
• LS = VSAM Linear Space (LDS) .

KEYOFF(OFFSET) Key Offset.

REFDD(DDNAME) The DDNAME of a data set whose properties specified on the jcl statemen
and in the data class are to be used to allocate the new data set. The follo
properties are copied from the referenced DD statement:

• Dataset Organization (RECORG).
• Size.
• Directory blocks Logical Record Length (LRECL).
• Record Format (RECFM).
• Key Length (KEYLEN).
• Key Offset (KEYOFF).

SECMODEL(MODEL_
NAME)

The name of a "model" profile which RACF should use in creating a discre
profile for the data set.

DSNTYPE(DSNTYPE) DATA SET
NAME TYPE

Legitimate values are:

• LIBRARY = A partitioned data set in pdse format.
• PDS = A partitioned data set in record format.
• PIPE = A data pipe.
• HFS = An HFS (Hierarchical File System) file.

RLS(RLS_VALUE) Record Level Sharing. Legitimate values are:

• CR = Consistent Read.
• NRI = No Read Integrity.

FILEDATA(VALUE) How the system converts between record format and byte-stream format.
Currently meaningful only if path also is coded and the program uses BSA
or QSAM. Legitimate values are:

• TEXT = Data consists of records that are separated by a delimiter. Cu
rently it is EBCDIC newline (x'15').

• BINARY = Data does not contain record delimiters. In the current relea
the default is binary when creating the file. If you do not code PATHO-
PTS(OCREATE), then FILEDATA temporarily overrides the creation
value.
December 1999 Shadow Programming Guide 7-193

Host Application API Function Calls

S
PATH(PATHNAME) Identifies an HFS file.

A pathname consists of the names of the directories from the root to the file
being identified, and then the name of the file. The form is /NAME1/NAME2/
.../NAMEn.

A pathname begins with a slash (/). The system treats any consecutive slashes
like a single slash.

The pathname can be 1 to 250 characters. A name can be 1 to 249 characters.

Consists of printable characters from x’40’ through x’FE’.

A pathname is case sensitive. Thus, /usr/joe and /USR/joe define two different
files.

Note: This is a required parameter unless you specify a DSN parameter.

PATHDISP(NORMAL
ABNORMAL)

Specifies the disposition of an HFS file upon normal and abnormal
(conditional) session termination.

Normal termination disposition: Indicates the disposition of the HFS file upon
normal session termination.

• KEEP = Specifies that the file should be kept.
• DELETE = Specifies that the file should be deleted.

Abnormal (conditional) termination disposition: indicates the disposition of
the HFS file upon abnormal (conditional) session termination.

• KEEP = Specifies that the file should be kept.
• DELETE = Specifies that the file should be deleted.

Note: The default for datasets allocated with the PATH parameter is
PATHDISP(KEEP KEEP).

PATHMODE(FILE_
ACCESS_ATTRIBUTE ...)

Specifies the file access attributes when the PATHOPTS operand specifies
OCREAT. A FILE_ACCESS_ATTRIBUTE is one of the following:

• SIRUSR
• SIWUSR
• SIXUSR
• SIRWXU
• SIRGRP
• SIWGRP
• SIXGRP
• SIRWXG
• SIROTH
• SIWOTH
• SIXOTH
• SIRWXO
• SISUID
• SISGID

You can specify up to 14 FILE_ACCESS_ATTRIBUTES.

The system treats duplicate specifications of FILE_ACCESS_ATTRIBUTE
as a single specification.
7-194 Shadow Programming Guide December 1999

General APIs

uses

ssed

r
the

n.

 the
See

ble

-

set
er-

on

llo-
PATHOPTS(FILE_
OPTION ...)

Specifies the file access and status used when accessing a file specified on the
path operand. A file_option can be in the access group or the status group and
is one of the following:

Valid Access Groups are:

• ORDONLY
• OWRONLY
• ORDWR
• Valid Status Groups are:
• OAPPEND
• OCREAT
• OEXCL
• ONOCTTY
• ONONBLOCK
• OSYNC
• OTRUNC

You can specify up to 8 FILE_OPTIONs.

The system treats duplicate specifications of FILE_OPTIONs as a single
specification.

Code the FILE_OPTIONs as follows:

• Specify only one FILE_OPTION from the access group. if you specify
more than one access group file-option, the system ignores them and
ORDWR as the option.

• Specify up to 7 FILE_OPTIONs from the status group. You can specify
any combination of FILE_OPTIONs from the status group.

SEGMENT(INTEGER) The number of pages produced for a sysout data set before they are proce
for printing; must be 1 to 99999

SPIN(VALUE) Specifies when a sysout data set is printed. Legitimate values are:

• UNALLOC = Makes the dataset available for printing immediately afte
the dataset is unallocated from an explicit unallocation or at the end of
session.

• NO = Makes the dataset available for printing at the end of the sessio

MESSAGE(VALUE) Specifies whether or not to display dynamic allocation failure messages on
system console. This value overrides the user-specifiable system default (
FILEMESSAGES). Legitimate values are:

• YES = Display dynamic allocation failure messages.
• NO = Do not display dynamic allocation failure messages.

MOUNT(VALUE) Specifies whether to allow or not allow a volume to be mounted in order to
satisfy a dynamic allocation request. This value overrides the user-specifia
system default. (See FILEMOUNT). Legitimate values are:

• YES = Allow the system to mount a volume to satisfy a dynamic alloca
tion request.

• NO = Do not allow the system to mount a volume to satisfy a dynamic
allocation request.

RECALL(VALUE) Specifies whether to allow or not allow the system to recall a migrated data
in order to satisfy a dynamic allocation request. This value overrides the us
specifiable system default. (See FILERECALL). Legitimate values are:

• YES = Allow the system to recall datasets to satisfy a dynamic allocati
request.

• NO = Do not allow the system to recall datasets to satisfy a dynamic a
cation request.
December 1999 Shadow Programming Guide 7-195

Host Application API Function Calls
File Access Attributes for PATHMODE parameter

File Option descriptions for PATHOPTS parameter

Sub-Parameter Definition

SIRUSR Specifies permission for the file owner to read the file.

SIWUSR Specifies permission for the file owner to write the file.

SIXUSR Specifies permission for the file owner to search, if the file is a directory, or to
execute, for any other file.

SIRWXU Specifies permission for the file owner to read, write, and search, if the file is a
directory, or to read, write, and execute, for any other file. this value is the bit
inclusive or of SIRUSR, SIWUSR, and SIXUSR.

SIRGRP Specifies permission for users in the file group to read the file.

SIWGRP Specifies permission for users in the file group to write the file.

SIXGRP Specifies permission for users in the file group to search, if the file is a
directory, or to execute, for any other file.

SIRWXG Specifies permission for users in the file group to read, write, and search, if the
file is a directory, or to read, write, and execute, for any other file. This value is
the bit inclusive or of SIRGRP, SIWGRP, and SIXGRP.

SIROTH Specifies permission for users in the file other class to read the file.

SIWOTH Specifies permission for users in the file other class to write the file.

SIXOTH Specifies permission for users in the file other class to search, if the file is a
directory, or to execute, for any other file.

SIRWXO Specifies permission for users in the file other class to read, write, and search,
if the file is a directory, or to read, write, and execute, for any other file. this
value is the bit inclusive or of SIROTH, SIWOTH, and SIXOTH.

SISUID Specifies that the system set the user id of the process to be the same as the
user id of the file owner when the file is run as a program.

SISGID Specifies that the system set the file group of the process to be the same as the
group id of the file owner when the file is run as a program.

Sub-Parameter Definition

ORDONLY Specifies that the program can open the file for reading.

OWRONLY Specifies that the program can open the file for writing.

ORDWR Specifies that the program can open the file for reading and writing. Do not
use this option for a fifo special file; the result is undefined.

OAPPEND Specifies that the system sets the file offset to the end of the file before each
write, so that data is written at the end of the existing file.

OCREAT Specifies that the system is to create the file. If the file already exists, the
operation will fail if OEXCL is specified, and will open the existing file if
OEXCL is not specified.
7-196 Shadow Programming Guide December 1999

General APIs
OEXCL Specifies that, if the file already exists, then HFS open file processing will fail.

Note: The system ignores OEXCL if OCREAT is not also specified.

ONOCTTY Specifies that, if the patenting of the file will not make the terminal device the
controlling a terminal device, then op ONONBLOCK Specifies the following,
depending on the type of file:

For fifo special files:

• With ONONBLOCK specified and ORDONLY access: an open() func-
tion for reading-only returns without delay.

• With ONONBLOCK not specified and ORDONLY access: an open()
function for reading-only blocks (waits) until a process opens the file for
writing.

• With ONONBLOCK specified and OWRONLY access: an open() func-
tion for writing-only returns an error if no process currently has the file
open for reading.

• With ONONBLOCK not specified and OWRONLY access: an open()
function for writing-only blocks (waits) until a process opens the file for
reading.

For character special files:

• If ONONBLOCK is specified: an open() function returns without block-
ing (waiting) until the device is ready or available. Device response
depends on the type of device.

• If ONONBLOCK is not specified: an open() function blocks (waits) until
the device is ready or available. Specification of ononblock has no other
effects.

OSYNC Specifies that the system is to move data from buffer storage to disk (or other
permanent storage) before returning control from a callable service that
performs a write.

OTRUNC Specifies that the system is to truncate the file length to zero if all of the
following are true:

• The file specified on the path operand exists.
• The file is a regular file.
• The file successfully opened with ordwr or owronly.

The system does not change the mode and owner. OTRUNC has no effect on
fifo special files or terminal device files.

Sub-Parameter Definition
December 1999 Shadow Programming Guide 7-197

Host Application API Function Calls
SDBALLOC/SWSALLOC Examples
To allocate an input file with shared control:
rc = SWSALLOC(DSN(SWS.INPUT.FILE) DISP(SHR))
To allocate a new file as output
rc = SWSALLOC("DSN(SWS.OUTPUT.FILE) DDN(OUTFILE)
 DISP(NEW CATALOG DELETE) SPACE(1 5) TRACKS
 LRECL(80) BLKSIZE(3120) RECFM(F B)
 DSORG(PS)")
To allocate a sysout file:
rc = SWSALLOC(DDN(PRTFILE) SYSOUT(A) DEST(RMT3))
7-198 Shadow Programming Guide December 1999

General APIs
High-Level Language Interface
SDBFREE (SDCPFR)
SWSFREE (SWCPFR) Function

SDBFREE/SWSFREE is used to de-allocate datasets. The SDBFREE/SWSFREE
API dynamically de-allocates a data set and/or an HFS file. You can also change
the output class of a sysout dataset, making it immediately available for process-
ing by an output writer, while de-allocating them. The original dataset disposition,
set when the dataset was dynamically allocated, can be overridden during de-allo-
cation.

The format of this command is similar in features and functions to the TSO/E Free
command. A text string is used as input in order to provide the parameters neces-
sary to de-allocate the specified dataset.

CALL Arguments

The SDBFREE/SWSFREE (SDCPFR/SWCPFR) function arguments are
described in the table which follows.

Can be used in Shadow/REXX.

Can be used from other REXX interpreters.

HLL entry point name is SDCPFR/SWCPFR .

Arg
HLL Argument Type

I/O Description of Argument
C COBOL PL/I

1 LONG PIC S9(5)
COMP

FIXED
BIN(31)

Input The length of the de-allocation command string. If
the length is longer than the actual command, trailing
nulls or blanks will be ignored. If the length is less
than the actual command string, the de-allocation
command string will be truncated and possibly cause
execution errors. The maximum string length is
32768 bytes.

2 CHAR * PIC
X(nnnnn)

CHAR
(nnnn)

Input The de-allocation command string. See Supported
dynamic de-allocation keywords below.

3 SWSASB * Usage
pointer

PTR Output The Shadow WebServer Allocation Status Block.
This is an required argument that provides
information concerning the status of the de-allocation
request.
December 1999 Shadow Programming Guide 7-199

Host Application API Function Calls
Return Values

SDBFREE/SWSFREE always sets a signed numeric return code value. Possible
values are:

Supported dynamic de-allocation keywords

The SDBFREE/SWSFREE (SDCPFR/SWCPFR) interface supports the following
dataset de-allocation request parameters:

Return Value Description

SWS_SUCCESS,
SQL_SUCCESS

The operation succeeded. The specified operation was performed.

SWS_ERROR,
SQL_ERROR

A parameter validation or runtime error was encountered. Error
information is available using the SWSERROR/SQLERROR
function.

SWS_ENVIRONMENT_ERROR The request could not be processed because of a runtime
environmental error, for example, you invoked the API service
outside of a web transaction procedure, or from outside the Server’s
address space. The Server may provide diagnostic information in the
wrap-around trace.

Any other value The operation failed. Generally this indicates that the file was not
allocated. There will be an error message in the Allocation Status
Block describing the error.

Allocation Keyword Description

DSN(DSNAME) Specifies the name of the dataset to be de-allocated. You can only specify a
single dataset name. Dataset names must be fully qualified as there will be no
prefix appended to the supplied name.

PATH(PATHNAME) Identifies an HFS file to be de-allocated. A pathname consists of the names of
the directories from the root to the file being identified, and then the name of
the file. The form is /NAME1/NAME2/.../NAMEn.

A pathname begins with a slash (/). The system treats any consecutive slashes
like a single slash.

The pathname can be 1 to 250 characters. A name can be 1 to 249 characters.

Consists of printable characters from x’40’ through x’FE’.

A pathname is case sensitive. Thus, /usr/joe and /USR/joe define two different
files.

DDN(DDNAME) Specifies the DDNAME, of the datasets, to be de-allocated. This is a required
field.

DEST(DESTINATION/NODE
USERID)

Remote destination or a User at a specified node to which SYSOUT data sets
are to be routed.

OUTDES(OUTPUT_DESCRIPTOR
_NAME ...)

Specifies a list of output descriptors that will be associated with the sysout data
set. These descriptors are created by //OUTPUT JCL statements in the Shadow
WebServer or Shadow Direct procedure.

Note: Separate parameters by spaces. Do not use commas.
7-200 Shadow Programming Guide December 1999

General APIs

se

r
the

 the
See

ble

-

set
er-

on

llo-
SYSOUT(CLASS) Dataset is to be a system output dataset

DISP(NORMAL) Specifies the disposition of file upon de-allocation. Legitimate values are:

• UNCATALOG = Specifies that the file should be uncatalogued.
• CATALOG = Specifies that the file should be catalog.
• KEEP = Specifies that the file should be kept.
• DELETE = Specifies that the file should be deleted.

HOLD Dataset is to be placed on a hold queue upon de-allocation.

NOHOLD Dataset is not to be placed on a hold queue upon unallocation.

PATHDISP(NORMAL) Specifies the disposition of an HFS file upon normal session termination. U
one of the following dispositions:

• KEEP = Specifies that the file should be kept.
• DELETE = Specifies that the file should be deleted.

SPIN(VALUE) Specifies when a sysout data set is printed. Legitimate values are:

• UNALLOC = Makes the dataset available for printing immediately afte
the dataset is unallocated from an explicit unallocation or at the end of
session.

• b = Makes the dataset available for printing at the end of the session.

MESSAGE(VALUE) Specifies whether or not to display dynamic allocation failure messages on
system console. This value overrides the user-specifiable system default (
FILEMESSAGES). Legitimate values are:

• YES = Display dynamic allocation failure messages.
• NO = Do not display dynamic allocation failure messages.

MOUNT(VALUE) Specifies whether to allow or not allow a volume to be mounted in order to
satisfy a dynamic allocation request. This value overrides the user-specifia
system default. (See FILEMOUNT). Legitimate values are:

• YES = Allow the system to mount a volume to satisfy a dynamic alloca
tion request.

• NO = Do not allow the system to mount a volume to satisfy a dynamic
allocation request.

RECALL(VALUE) Specifies whether to allow or not allow the system to recall a migrated data
in order to satisfy a dynamic allocation request. This value overrides the us
specifiable system default. (See FILERECALL). Legitimate values are:

• YES = Allow the system to recall datasets to satisfy a dynamic allocati
request.

• NO = Do not allow the system to recall datasets to satisfy a dynamic a
cation request.

Allocation Keyword Description
December 1999 Shadow Programming Guide 7-201

Host Application API Function Calls
PL/I Example
%INCLUDE SPCPHD
 .
 .
DCL COMMAND CHAR(80) /* ALLOCATE COMMAND */
 INIT(’DDN(INFILE)’);
DCL CMDLEN FIXED BIN(31); /* COMMAND LENGTH */
DCL RC FIXED BIN(31); /* RETURN CODE */
CMDLEN = LENGTH(COMMAND); /* SET COMMAND LEN */
/*DYNAMICALLY ALLOCATE AN INPUT FILE */
CALL SWSFREE(CMDLEN, /* COMMAND LENGTH */
 COMMAND, /* COMMAND */
 SWSASB); /* ALLOCATION STATUS BLOCK*/
RC = PLIRETV(); /* GET RETURN CODE */
IF RC ¬= SWS_SUCCESS THEN /* EXIT PROGRAM IF BAD RC */
 EXIT;

C Example
SWS_ALLOCATION_STATUS_BLOCK swsASB; /* response area */
 .
 .
 .
 .
long RC; /* return code */
char szCommand[] = "DDN(INFILE)"; /* Dynamically de-allocate

a dataset by it's DDName */
rc = SWSFREE(strlen(szCommand), /* Command Length */
 szCommand, /* Command */
 swsASB); /* Response area */
if (rc ¬= SWS_SUCCESS)
 do
 print(swsASB.Error_Message);
 return rc;
 end
7-202 Shadow Programming Guide December 1999

General APIs
COBOL Example
* NEON API COPY BOOK
 COPY SBCPHD.
 .
 .
 .
 .
 77 COMMAND-LENGTH PIC S9(5) COMP.
 77 COMMAND PIC X(80) VALUE
 ’DDN(INFILE)’.
 * DYNAMICALLY DE-ALLOCATE A DATASET BY IT’S DDNAME
MOVE 80 TO COMMAND-LENGTH.
 CALL SWSFREE
 USING COMMAND-LENGTH,
 COMMAND,
 SWS-ALLOCATION-STATUS-BLOCK.
MOVE RETURN-CODE TO WS-SWSAPI-RETURN-CODE.
 IF NOT SWS-SUCCESS
 DISPLAY ’INFILE DE-ALLOCATION FAILED.’ UPON CONSOLE
 DISPLAY SWSASB-ERROR-MESSAGE UPON CONSOLE
 GOBACK.
December 1999 Shadow Programming Guide 7-203

Host Application API Function Calls
SDBFREE/SWSFREE Function

The REXX-language SDBFREE/SWSFREE built-in function can be used to
dynamically unallocate datasets.

Syntax

The general form for a REXX-language invocation of SDBFREE/SWSFREE is:

rc = SDBFREE/SWSFREE("STRING")

The format of this command is similar in features and functions to the TSO/E Free
command. If an error occurs, the variable ALLOC.MESSAGE will be populated
with a descriptive error message.

In the event of an error, the DAIR return code can be obtained from the
ALLOC.INFOCODE and the reason code can be obtained from the
ALLOC.REASON.

Valid Arguments

Can be used in Shadow/REXX.

Can be used from other REXX interpreters.

High-level Language Interface available.

DSN(DSNAME) Specifies the name of the dataset to be de-allocated. You can only specify a
single dataset name.

Dataset names must be fully qualified as there will be no prefix appended to
the supplied name.

PATH(PATHNAME) Identifies an HFS file to be de-allocated.

A pathname consists of the names of the directories from the root to the file
being identified, and then the name of the file. The form is /NAME1/NAME2/
.../NAMEn.

A pathname begins with a slash (/). The system treats any consecutive slashes
like a single slash.

The pathname can be 1 to 250 characters. A name can be 1 to 249 characters.

Consists of printable characters from x’40’ through x’FE’.

A pathname is case sensitive. Thus, /usr/joe and /USR/joe define two different
files.

DDN(DDNAME) Specifies the DDNAME,of the datasets, to be de-allocated.

DEST(DESTINATION/NODE
USERID)

Remote destination or a User at a specified node to which SYSOUT data sets
are to be routed.
7-204 Shadow Programming Guide December 1999

General APIs

se

r
the

n.

 the
See

ble

-

set
er-

on

llo-
OUTDES(OUTPUT_
DESCRIPTOR_NAME ...)

Specifies a list of output descriptors that will be associated with the sysout data
set. These descriptors are created by //OUTPUT JCL statements in the Shadow
Web Server or Shadow Direct procedure.

Note: Separate parameters by spaces. Do not use commas.

SYSOUT(CLASS) Dataset is to be a system output dataset

DISP(NORMAL) Specifies the disposition of file upon de-allocation. Use one of the following
dispositions:

• UNCATALOG = Specifies that the file should be uncatalogued.
• CATALOG = Specifies that the file should be catalog.
• KEEP = Specifies that the file should be kept.
• DELETE = Specifies that the file should be deleted.

HOLD Dataset is to be placed on a hold queue upon de-allocation.

NOHOLD Dataset is not to be placed on a hold queue upon unallocation.

PATHDISP(NORMAL) Specifies the disposition of an HFS file upon normal session termination. U
one of the following dispositions:

• KEEP = Specifies that the file should be kept.
• DELETE = Specifies that the file should be deleted.

SPIN(VALUE) Specifies when a sysout data set is printed. Legitimate values are:

• UNALLOC = Makes the dataset available for printing immediately afte
the dataset is unallocated from an explicit unallocation or at the end of
session.

• NO = Makes the dataset available for printing at the end of the sessio

MESSAGE(VALUE) Specifies whether or not to display dynamic allocation failure messages on
system console. This value overrides the user-specifiable system default (
FILEMESSAGES). Legitimate values are:

• YES = Display dynamic allocation failure messages.
• NO = Do not display dynamic allocation failure messages.

OUNT(VALUE) Specifies whether to allow or not allow a volume to be mounted in order to
satisfy a dynamic allocation request. This value overrides the user-specifia
system default. (See FILEMOUNT). Legitimate values are:

• YES = Allow the system to mount a volume to satisfy a dynamic alloca
tion request.

• NO = Do not allow the system to mount a volume to satisfy a dynamic
allocation request.

RECALL(VALUE) Specifies whether to allow or not allow the system to recall a migrated data
in order to satisfy a dynamic allocation request. This value overrides the us
specifiable system default. (See FILERECALL). Legitimate values are:

• YES = Allow the system to recall datasets to satisfy a dynamic allocati
request.

• NO = Do not allow the system to recall datasets to satisfy a dynamic a
cation request.
December 1999 Shadow Programming Guide 7-205

Host Application API Function Calls
SDBFREE/SWSFREE Examples
To free a specific DSName:
 rc = SWSFREE("DSN(MYPFX.DSNAME)")
To free a specific DDName:
 rc = SWSFREE("DDN(INFILE)")
To route a file to sysout:
 rc = SWSFREE("DDN(PRTFILE) SYSOUT(A)")
7-206 Shadow Programming Guide December 1999

General APIs
High-Level Language Interface
SDBVALUE (SDCPVL)
SWSVALUE (SWCPVL) Function

SDBVALUE/SWSVALUE is used to fetch or set transaction run-time variable
values. The HLL API can operate upon the following variable types:

CALL Arguments

The SDBVALUE/SWSVALUE function call requires either six or seven argu-
ments. The seventh argument is required for value fetch requests; It must be omit-
ted for value update operations.

Can be used in Shadow/REXX.

Can be used from other REXX interpreters.

HLL entry point name is SDCPVL/SWCPVL.

Variable Type Fetch Existing Values Assign New/Changed Value

GLOBAL Yes Yes

GLVEVENT Yes Yes

Event-Related (See also, WWW.) Yes No

Arg
HLL Argument Type

I/O Description of Argument
C COBOL PL/I

1 HDBC Usage
pointer

PTR Input The connection handle. The connection handle is an
opaque, four-byte address pointer. The connection
handle is currently not used, and must be set to zero
(NULL).
December 1999 Shadow Programming Guide 7-207

Host Application API Function Calls

-

i-

n.

e

d

be

n
2 UDWORD PIC S9(5)
COMP

FIXED
BIN(31)

Input A four-byte flag-word indicating the sub-function to
be performed. One of the following manifest
constants should be used to indicate the desired
operation. The values are mutually exclusive; only
one can be used.

• SWS_VALUE_OBTAIN fetches the current
value of the named variable. If the variable is
not initialized, return an error
(SWS_NO_DATA_FOUND) to the caller.

• SWS_VALUE_VALUE fetches the current
value of the named variable. If the variable is
not initialized, the upper-case name of the vari-
able is returned as its current value. (This
matches the behavior of REXX-language proce
dures, where the value of an un-initialized vari-
able is the name of the variable, itself.)

• SWS_VALUE_UPDATE replaces the value of
an already named variable with the new value
specified by the caller. If the variable is un-ini-
tialized, create the variable and assign the spec
fied value to it.

3 UCHAR * PIC X(nnn) CHAR
(nnn)

Input The character name of the variable to be acted upo
The variable name string can be null-terminated, or
the size can be explicitly specified by the 'SVASZ'
argument. The maximum length of any variable nam
passed to the SWSVALUE API can not exceed 50
bytes.

4 SDWORD PIC S9(5)
COMP

FIXED

BIN(31)

Input The size of the variable name specified by the third
argument. This argument can be an integer fullword
value in the range 5-to-50. You can also use the
manifest constant, SWS_NTS, to specify that
variable name is a null-terminated string.

5 PTR PIC X(nnn) CHAR
(nnn)

InOut For the SWS_VALUE_OBTAIN or
SWS_VALUE_VALUE sub-function, this argument
is the address of the data buffer which will receive
the fetched variable value.

Fetched values are always returned as a null-
terminated string, even if the value must be truncate
to fit within the supplied buffer space.

For the SWS_VALUE_UPDATE sub-function, this
argument specifies the address of the value data to
assigned to the new/updated variable.

Note: The implementation maximum size for the
value of any variable is 32,000 bytes; 8,000 if used i
HTML extension substitution processing.

Arg
HLL Argument Type

I/O Description of Argument
C COBOL PL/I
7-208 Shadow Programming Guide December 1999

General APIs

s

e

Return Values

SDBVALUE/SWSVALUE always sets a signed numeric return code value. Possi-
ble values are:

6 SDWORD PIC S9(5)
COMP

FIXED
BIN(31)

Input For the SWS_VALUE_OBTAIN or
SWS_VALUE_VALUE sub-function, this argument
specifies the total size of the buffer area (argument
five).

For the SWS_VALUE_UPDATE sub-function, this
argument specifies the size of the variable value,
given by the argument five, which is to be assigned to
the variable.

7 SDWORD* PIC S9(5)
COMP

FIXED
BIN(31)

Output For the SWS_VALUE_OBTAIN or
SWS_VALUE_VALUE sub-function, this argument
receives the actual size of the variable’s value.

• If the return value is shorter than the supplied
buffer area, this argument receives the actual
number of bytes used to store the value within
the output buffer.

• If the number of bytes required to store the
fetched value is greater than or equal to the
return buffer area size, then the fetched value i
truncated, and a null terminator is placed in the
last buffer position. This argument receives the
count of bytes actually needed to save the entir
value.

For the SWS_VALUE_UPDATE sub-function, C-
language callers should code NULL for this
argument. COBOL and PL/I callers should omit this
argument.

Return Value Description

SWS_SUCCESS,
SQL_SUCCESS

The operation succeeded. The variable's value was fetched or
updated as requested.

SWS_SUCCESS_WITH_INFO,
SQL_SUCCESS_WITH_INFO

The operation partially succeeded. This return code value is set for
fetch operations when the returned variable value has been
truncated.

SWS_ERROR,
SQL_ERROR

A parameter validation or runtime error was encountered. Error
information is available using the SWSERROR/SQLERROR
function.

SWS_ENVIRONMENT_ERROR The request could not be processed because of a runtime
environmental error. For instance, you invoked the API service
outside of a web transaction procedure, or from outside the Server's
address space. The Server may provide diagnostic information in the
wrap-around trace.

Arg
HLL Argument Type

I/O Description of Argument
C COBOL PL/I
December 1999 Shadow Programming Guide 7-209

Host Application API Function Calls
PL/I Example
DCL SCONN PTR; /* Connection Handle */
DCL SVANA CHAR(50); /* variable name */
DCL SVASZ FIXED BIN(31); /* variable name size */
DCL SBUFF CHAR(256); /* buffer area */
DCL SBFSZ FIXED BIN(31) INIT(256);/* Buffer size */
DCL SRTSZ FIXED BIN(31); /* Fetched value size */
DCL RC FIXED BIN(31); /* return code */
DCL DMHX FIXED BIN(31) BASED; /* Dummy Handle field */
ADDR(SCONN)->DMHX = 0; /* Clear Connection Handle*/
SVANA = ’WWW.VAR.FORMFIELD’; /* Set variable name */
SVASZ = 17; /* set variable name length*/
CALL SWSVALUE(SCONN /* get the variable value */
 SWS_VALUE_VALUE,
 SVANA,
 SVASZ,
 SBUFF,
 SBFSZ,
 SRTSZ);
RC = PLIRETV(); /* get return code */
IF (RC ^= SWS_SUCCESS & /* exit program if bad RC */
 RC ^= SWS_SUCCESS_WITH_INFO) THEN
EXIT;

SVANA = ’GLVEVENT.FORMFIELD’; /* Set variable name */
SVASZ = 18; /* set variable name length*/
SBUFF = ’Html Form Field Value’; /* set variable value data*/
SBFSZ = 21; /* length of value data */
CALL SWSVALUE(SCONN /* create GLVEVENT variable*/
SWS_VALUE_UPDATE,
 SVANA,
 SVASZ,
 SBUFF,
 SBFSZ);
RC = PLIRETV(); /* get return code */
IF (RC ^= SWS_SUCCESS & /* exit program if bad RC */
 RC ^= SWS_SUCCESS_WITH_INFO) THEN
 EXIT;

SWS_NO_DATA_FOUND,
SQL_NO_DATA_FOUND

For a SWS_VALUE_OBTAIN sub-function request, the named
variable is not initialized.

SWS_INVALID_HANDLE,
SQL_INVALID_HANDLE

The connection handle argument is invalid. No error information can
be returned using SQLERROR/SWSERROR

Return Value Description
7-210 Shadow Programming Guide December 1999

General APIs
C Example
HDBC sConn = NULL; /* Connection Handle */
char sVana[] = "WWW.VAR.FORMDATA";/* variable name */
char sVana2[] = "GLVEVENT.DATA"; /* variable name */
char sBuff[256]; /* return buffer area */
SDWORD sRtsz; /* return variable size */
long RC; /* return code */

rc = SWSValue(&sConn, /* get query variable value */
 SWS_VALUE_VALUE, /* subfunction = retrieve */
 sVana, /* null-terminated name */

SWS_NTS, /* indicate null-terminated */
sBuff, /* return buffer address */
sizeof(sBuff), /* maximum buffer size */
&sRtsz); /* actual size return area */

if (rc ^= SWS_SUCCESS) return; /* exit program if bad RC */

rc = SWSValue(&sConn, /* set new variable value */
 SWS_VALUE_UPDATE, /* subfunction = set value */
 sVana2, /* null-terminated name */
 SWS_NTS, /* indicate null-terminated */
 sBuff, /* value information buffer */

 sRtsz, /* size of value data */
NULL); /* Must be NULL for UPDATE */

if (rc ^= SWS_SUCCESS) return; /* exit program if bad RC */
December 1999 Shadow Programming Guide 7-211

Host Application API Function Calls
COBOL Example
 77 SCONN USAGE IS POINTER.
 77 SBUFF PIC X(80).
 77 SBFSZ PIC S9(5) COMP VALUE 80.
 77 SVANA PIC X(50) VALUE ’WWW.INPUTURL’.
 77 SVANA2 PIC X(50) VALUE ’GLVEVENT.ABC’.
 77 SVASZ PIC S9(5) COMP VALUE 50.
 77 SRTSZ PIC S9(5) COMP.
 *
 * Obtain input URL value
 *
 CALL ’SWCPVL’ USING SCONN,
 SWS-VALUE-VALUE,
 SVANA,
 SVASZ,
 SBUFF,
 SBFSZ,
 SRTSZ.
 MOVE RETURN-CODE TO WS-SWSAPI-RETURN-CODE.
 IF NOT SWS-SUCCESS GOBACK.
 *
 * Set GLVEVENT.ABC to the same value
 *
 MOVE SRTSZ TO SBFSZ.
 CALL ’SWCPVL’ USING SCONN,
 SWS-VALUE-UPDATE,
 SVANA2,
 SVASZ,
 SBUFF,
 SBFSZ.
 MOVE RETURN-CODE TO WS-SWSAPI-RETURN-CODE.
 IF NOT SWS-SUCCESS GOBACK.
7-212 Shadow Programming Guide December 1999

General APIs
SDBVALUE/SWSVALUE Function

Using this function, you can manipulate Global Variables in ways which are not
possible in standard Shadow/REXX. For example, the SDBVALUE/SWSVALUE
function lets you use compound symbols as a kind of data base.

Use this function to access only Global Variables. Do not use this function to
access WWW. Event-Related Variables or GLVEVENT. Temporary Variables.

You need use this function only when some special interrogation or serialization
processing is required by your Shadow/REXX procedure. Under normal circum-
stances, you can reference or set the value of a Global variable, simply by using it
within a normal REXX-language statement, as in the following:

SAVENAME = GLOBAL.COMPANY.NAME
GLOBAL.COMPANY.NAME = "NEON Systems, Inc."
GLVEVENT.MYDATA = "ABC"

You should not create too many global variables under a single global variable
stem. If you do, you will no longer be able to view them using the SWS/IPSF 7.1
Option, nor access them using the SWSVALUE function.

The absolute product limit is 32,768 variables under a single global variable stem.
However, in practice, we strongly recommend that no more than 10,000 global
variables exist at any given instant under a single global variable stem.

Syntax

The general form for invocation of SDBVALUE/SWSVALUE is:

var = SDBVALUE/SWSVALUE(derivedname, actioncode, newval, oldval)

Can be used in Shadow/REXX.

Can be used from other REXX interpreters (see SWSVALUE For other REXX
interpreters).

High-level language interface available.

This Shadow/REXX intrinsic function has been exported for use by other
REXX interpreters (see Invoking other REXX interpreters for additional
information).

However, the exported functionality differs considerably from the
functionality described here, by allowing other REXX interpreters to access
WWW Event-Related and GLVEVENT. Variables.

Consult the page SDBVALUE/SWSVALUE For other REXX interpreters for
information on using this function from other REXX interpreters. The
information on this page applies only to the Shadow/REXX implementation!
December 1999 Shadow Programming Guide 7-213

Host Application API Function Calls
Valid Arguments

Return Values

SDBVALUE/SWSVALUE returns a value from the function call, and, in the case
of some action codes, also places information in the external data queue.

The Chart below shows what actions are performed for each of the action codes
values, and what values are returned.

derivedname Gives the name of the symbol to be acted on. When you use this argument
without quotation marks, simple symbols (which are case sensitive) following
the stem are replaced by their values.

Actioncode Specifies the action to be taken on the symbol. The table below indicates what
actions are taken.

newval Supplies the new value (if any) to assign to the symbol.

oldval Fetches the value of the symbol before the action takes place.

Action Code Description

A (Add) Adds a number specified by increment, to the existing compound symbol
given by derivedname.

Returns the sum of the compound symbol and the increment

Does not change the external data queue

All references to the compound symbol are serialized during the ADD
operation. That is, you can use this function safely to increment a counter that
is set by concurrent tasks.

Syntax Example:

val = SWSVALUE(derivedname,’A’,increment)

C (Compare and Update) Updates a compound symbol after verifying its current value.

Safely updates Global symbols shared by more than one event procedure or
symbols that multiple copies of the same rule might access and update.

Does not change the Shadow/REXX external data queue.

Returns the REXX "true" value (1), if the comparison found the symbol’s pre-
action value to be equal to old value and the compound symbol was updated,
or the REXX "false" value (0), if the comparison found unequal values and
therefore did not update the value of the compound symbol.

Serializes the compare and update operations for global variables.

Syntax Example:

val = SWSVALUE(derivedname,’C’,newval,oldval)
7-214 Shadow Programming Guide December 1999

General APIs
D (Drop) Performs the Shadow/REXX DROP operation on the compound symbol
specified by derivedname. The compound symbol is reset to its "uninitialized"
value; that is, its derived name.

If derivedname is the name of a stem, then all compound symbols belonging to
that stem are not just dropped, but also rendered "nonexistent" and the virtual
storage allocated to them is released. Returns the value of derivedname.

Does not change the external data queue.

All other references either see the compound symbol as it existed before the
DROP operation began, or as it is after the DROP operation completes.

Syntax Example:

val = SWSVALUE(derivedname,’D’)

E (Existence) Checks to see whether a given global variable exists.

Does not change the Shadow/REXX external data queue.

Returns the status of a given global variable as one of these characters:

• I for Initialized.
• U for Uninitialized.
• N for Does not exist.

Syntax Example:

val = SWSVALUE(derivedname,’E’)

Note: For normal REXX symbols N and U would have interchangeable
meanings. However, for global variables, N means that no storage exists for a
variable; and U means that the variable exists in storage, but is uninitialized
and so is set to the value of its name.

F (Find) Checks to see if a given global variable exists. The F action is more efficient
and more reliable than using the E and O functions together.

Returns the status of a given global variable as one of these characters:

• I for Initialized.
• U for Uninitialized.
• N for Does not exist.

When the returned value is not N (meaning that the derived name exists), the
value of the node is returned on the external data queue. The maximum length
of a string pulled from the external data queue is 350 bytes. Longer values are
truncated.

Syntax Example:

val = SWSVALUE(derivedname,’F’)

Action Code Description
December 1999 Shadow Programming Guide 7-215

Host Application API Function Calls
I (Information) Returns to the external data queue information about all of the immediate
subnodes of the derivedname.

The derivedname value must be a compound symbol node. The return value is
the number of immediate subnodes that exist. The external data queue contains
two lines per subnode: the first line contains the next segment of the derived
name, and the second line contains statistics

about the derived name. The second line returned for each derived name
contains the information shown below:

Returns the number of subnodes listed in the external data queue.

Places two lines per subnode in the external data queue.

Returns no partially-updated symbol names.

Syntax Example:

val = SWSVALUE(derivedname,’I’)

Action Code Description
7-216 Shadow Programming Guide December 1999

General APIs
L (List) Lists the derived names of all the immediate subnodes of derivedname by
placing them on the external data queue.

The results of this action illustrate the difference between dropped symbols
(processed by action D) and removed symbols (processed by action R).
Dropped symbols still exist, so the List action can find them. The List action
does not return removed symbols.

Returns the number of subnodes listed in the external data queue.

Places a list of subnodes of the specified nodes in the external data queue.

Syntax Example:

val = SWSVALUE(derivedname,’L’)

O (Obtain) Obtains the value of a global variable. If the global variable does not exist,
Shadow/REXX returns an error.

Does not change the external data queue.

Syntax Example:

val = SWSVALUE(derivedname,’O’)

R (Remove) Removes the node specified by derivedname and all of its subnodes. Once a
node is removed, it ceases to exist.

Returns the number of subnodes removed.

Does not change the external data queue.

Does not allow other accessors of compound symbols to see partially-updated
symbols.

Syntax Example:

val = SWSVALUE(derivedname,’R’)

S (Subtree) Lists the derived names of all the subnodes of derivedname in the external data
queue.

Action code S is similar to code L with two differences:

• Shadow/REXX places the entire global variable name in the external data
queue.

• All subnodes of the derived name are listed.

Returns the number of subnodes listed in the external data queue.

Places the entire global variable name in the external data queue.

Returns no partially-updated symbol names

Syntax Example:

val = SWSVALUE(derivedname,’S’)

Action Code Description
December 1999 Shadow Programming Guide 7-217

Host Application API Function Calls
T (Subtree/Info) Returns to the external data queue information on all the subnodes of the
derivedname

The derivedname value parameter must be a compound symbol node. The
return value is the number of subnodes that exist. The external data queue
contains two lines per subnode: the first line contains the next segment of the
derived name, and the second line contains statistics about the derived name.
The second line contains information in the format shown for the I actioncode.

Action code T resembles code I with three differences:

The entire global variable name goes into the external data queue.

All subnodes of the derived name are listed.

The "Number of Subnodes" field on the second line of pair of messages in the
external data queue for each node always contains zero.

Returns the number of subnodes listed in the external data queue

Places in the external data queue two lines per subnode and the entire Global
Variable name.

Returns no partially-updated symbol names

Syntax Example:

val = SWSVALUE(derivedname,’S’)

U (Update) Assigns newvalue as the value of the compound symbol specified by
derivedname. If the compound does not exist, Shadow/REXX creates it and
gives it the new value.

Returns the variable specified by newvalue.

Does not change the external data queue

Prevents others accessing compound symbols from seeing partially-updated
symbols

Syntax Example:

val = SWSVALUE(derivedname,’U’,newval)

V (Value) Returns the current value of the node specified by derivedname. If the node
does not exist, Shadow/REXX creates it but assigns it no value (giving the
symbol the same value as its name).

Returns the value of the specified compound symbol.

Does not change the external data queue.

Prevents the issuer of SWSVALUE from seeing partially-updated symbols.

Syntax Example:

val = SWSVALUE(derivedname,’V’)

Action Code Description
7-218 Shadow Programming Guide December 1999

General APIs
High-Level Language Interface
SQLTOKEN (SDCPTK)
SWSTOKEN (SWCPTK) Function

The SQLTOKEN/SWSTOKEN service provides a means of saving and restoring
transaction-oriented data using a server-created token value.

Transaction data can be saved before generating an out-bound response to a Web
transaction, and then be restored (using the token value) when the next transaction
arrives.

The token service allows you to create complex, inter-active Web transactions
which need a scratch-pad area to save state information between Web transaction
boundaries.

All tokens have a timeout associated with them at creation time. If the token is not
accessed within the timeout period the Server automatically deletes the token
(along with the associated data).

CALL Arguments

The SQLTOKEN/SWSTOKEN service takes from three to eight arguments,
depending on the sub-function being requested.

The Create Sub-function

The create sub-function causes the Server to create a new token and save an initial
data value. The service returns the 24-byte token identifier. The token identifier is
used to request other operations against the token.

Can be used in Shadow/REXX.

Can be used from other REXX interpreters.

HLL entry point name is SDCPTK/SWCPTK.

Arg
HLL Argument Type

I/O Description of Argument
C COBOL PL/I

1 HDBC Usage
pointer

PTR Input The connection handle. The connection handle is an
opaque, four-byte address pointer. The connection
handle is currently not used, and must be set to zero
(NULL).

2 SWS_TOKEN_CREATE Input A four-byte flag-word indicating the type of
operation to be performed. The constant shown
invokes the create sub-function.
December 1999 Shadow Programming Guide 7-219

Host Application API Function Calls
The Delete Sub-function

The delete sub-function causes the Server to delete a token.

3 UCHAR* PIC X(25) CHAR(25) Output The buffer area where the service returns the 24-byte
token identifier. The 24-byte token ID is returned
with a 1-byte null terminator value in the 25th
position.

4 PTR PIC X(nnn) CHAR(nnn) Input The buffer area containing the initial data to be saved
when the token is created. You can not specify a null-
terminated string for this argument. The length of the
data must be explicitly given by the fifth argument.

5 SDWORD PIC S9(5)
COMP

FIXED
BIN(31)

Input The size of the initial data to be saved for the token.
You must explicitly provide the size of the forth
argument; SWS_NTS is not a valid argument value.

6 SDWORD PIC S9(5)
COMP

FIXED
BIN(31)

Input The timeout value for the token, expressed in
seconds. The token service deletes un-referenced
tokens after some defined time period. The time
period for auto-delete can be expressed using this
argument.

7 PTR PIC X(nnn) CHAR(nnn) Input Optional argument. If used, this argument is the user
data value to be associated with the token. The value
can be a null-terminated string.

8 SDWORD PIC S9(5)
COMP

FIXED
BIN(31)

Input Optional argument. If used, this argument is the
length of the user data given by the 7th argument.
You may specify SWS_NTS to indicate that the user
data value is a null terminated string.

Arg
HLL Argument Type

I/O Description of Argument
C COBOL PL/I

1 HDBC Usage
pointer

PTR Input The connection handle. The connection handle is an
opaque, four-byte address pointer. The connection
handle is currently not used, and must be set to zero
(NULL).

2 SWS_TOKEN_ DELETE Input A four-byte flag-word indicating the type of
operation to be performed. The constant shown
invokes the delete sub-function.

3 UCHAR* PIC X(24) CHAR(24) Intput The buffer area where the service obtains the 24-byte
token identifier of the token to be deleted.

4 PTR PIC X(nnn) CHAR
(nnn)

Input The buffer area containing the initial data to be saved
when the token is created. You can not specify a null-
terminated string for this argument. The length of the
data must be explicitly given by the
fifth argument.

Arg
HLL Argument Type

I/O Description of Argument
C COBOL PL/I
7-220 Shadow Programming Guide December 1999

General APIs
The Get Sub-function

The get sub-function retrieves the data associated with a token.

The Put Sub-function

The put sub-function updates part or all of the data value associated with a token.
Note that the put sub-function cannot be used to alter the length of the data value
associated with a token; only to re-write some or all of it.

Arg
HLL Argument Type

I/O Description of Argument
C COBOL PL/I

1 HDBC Usage
pointer

PTR Input The connection handle. The connection handle is an
opaque, four-byte address pointer. The connection
handle is currently not used, and must be set to zero
(NULL).

2 SWS_TOKEN_ GET

Input A four-byte flag-word indicating the type of
operation to be performed. The constant shown
invokes the get sub-function

3 UCHAR* PIC X(24) CHAR(24) Input The buffer area where the service obtains the 24-byte
token identifier of the token to be referenced.

4 PTR PIC X(nnn) CHAR(nnn) Output The buffer area where the service returns the data
value associated with the token. If the actual token
data is larger than this area, the returned value will be
truncated to fit within this area.

5 SDWORD PIC S9(5)
COMP

FIXED
BIN(31)

Input The size of the return data area buffer, specified by
the forth argument.

6 SDWORD * PIC S9(5)
COMP

FIXED
BIN(31)

Output The token service returns the actual size of the data
value associated with the token into this area.

Arg
HLL Argument Type

I/O Description of Argument
C COBOL PL/I

1 HDBC Usage
pointer

PTR Input The connection handle. The connection handle is an
opaque, four-byte address pointer. The connection
handle is currently not used, and must be set to zero
(NULL).

2 SWS_TOKEN_ PUT Input A four-byte flag-word indicating the type of
operation to be performed. The constant shown
invokes the put sub-function .

3 UCHAR* PIC X(24) CHAR(24) Intput The buffer area where the service obtains the 24-byte
token identifier of the token to be updated.
December 1999 Shadow Programming Guide 7-221

Host Application API Function Calls
The Replace Sub-function

The replace sub-function re-writes the data value associated with a token. The
original data value is purged, and the new value becomes associated with the
token. Use this sub-function (not the put sub-function) to change the size of the
data associated with a token.

4 PTR PIC X(nnn) CHAR(nnn) Output The buffer area where the service obtains the new
data value to be written for the token. If the size of
this area is smaller than the actual token data, this
data will overwrite only the leading portion of the
token’s data value; the remainder will be un-changed.
If this data value is larger than the actual token data,
the service rewrites only the portion corresponding to
the existing actual token data length. (I.E. This
service cannot be used to enlarge the data area
associated with a token.)

5 SDWORD PIC S9(5)
COMP

FIXED
BIN(31)

Input The size of the data area given by the forth argument.

Arg
HLL Argument Type

I/O Description of Argument
C COBOL PL/I

1 HDBC Usage
pointer

PTR Input The Web Server connection connection handle. The
connection handle is an opaque, four-byte address
pointer. The connection handle is currently not used,
and must be set to zero (NULL).

2 SWS_TOKEN_ REPLACE Input A four-byte flag-word indicating the type of
operation to be performed. The constant shown
invokes the replace sub-function

3 UCHAR* PIC X(24) CHAR(24) Input The buffer area where the service obtains the 24-byte
token identifier of the token to be replaced.

4 PTR PIC X(nnn) CHAR(nnn) Output The buffer area where the service obtains the new
data value to be written for the token. The new data
value completely replaces the existing data value.

5 SDWORD PIC S9(5)
COMP

FIXED
BIN(31)

Input The size of the data area given by the forth argument.

Arg
HLL Argument Type

I/O Description of Argument
C COBOL PL/I
7-222 Shadow Programming Guide December 1999

General APIs
Return Values

SWSTOKEN/SQLTOKEN always sets a signed numeric return code value. Possi-
ble values are:

PL/I Example
DCL SCONN PTR; /* Connection Handle */
DCL STKID CHAR(25); /* token ID value */
DCL SDATA CHAR(256); /* data value */
DCL SSIZE FIXED BIN(31); /* data value size */
DCL STMOU FIXED BIN(31) INIT(300); /* timeout value */
DCL RC FIXED BIN(31); /* return code */
DCL DMHX FIXED BIN(31) BASED; /* Dummy Handle field */
ADDR(SCONN)->DMHX = 0; /* Clear Connection Handle*/
SDATA= ’Hello World!’; /* Set output area */
SSIZE = 12; /* set length */
CALL SWSTOKEN(SCONN /* create a token */
 SWS_TOKEN_CREATE,
 STKID,
 SDATA,
 SSIZE,
 STMOU);
RC = PLIRETV(); /* get return code */
IF RC ^= SWS_SUCCESS THEN /* exit program if bad RC */
 EXIT;

Return Value Description

SWS_SUCCESS, SQL_SUCCESS The operation succeeded without error.

SWS_SUCCESS_WITH_INFO,
SQL_SUCCESS_WITH_INFO

The operation succeeded. This return value is set when data is
truncated for the get sub-function.

SWS_NO_DATA_FOUND,
SQL_NO_DATA_FOUND

The requested token could not be found.

SWS_ERROR,
SQL_ERROR

A parameter validation or runtime error was encountered. Error
information is available using the SWSERROR/SQLERROR
function.

SWS_ENVIRONMENT_ERROR The request could not be processed because of a runtime
environmental error. For instance, you invoked the API service
outside of a web transaction procedure, or from outside the Server’s
address space. The Server may provide diagnostic information in the
wrap-around trace.

SWS_INVALID_HANDLE,
SQL_INVALID_HANDLE

The connection handle argument is invalid. No error information can
be returned using SQLERROR/SWSERROR.
December 1999 Shadow Programming Guide 7-223

Host Application API Function Calls
C Example
HDBC sConn = NULL; /* Connection Handle */
char sData[] = "Token Data Area"; /*data string definition*/
char sTkid[25]; /* Token ID return area */
long RC; /* return code */
rc = SWSTOKEN(&sConn, /* create the token */

SWS_TOKEN_CREATE,
sTkid,
sData,
sizeof(sData));

if (rc ^= SWS_SUCCESS) return; /* exit program if bad RC*/

COBOL Example
77 SCONN USAGE IS POINTER.
77 STKID PIC X(25).
77 SDATA PIC X(80).
77 SSIZE PIC S9(5) COMP.
77 STMOU PIC S9(5) COMP VALUE 300.
77 SUSDA PIC X(30) VALUE ’User Data Area’.
77 SUSLN PIC S9(5) COMP VALUE 30.
MOVE ’HELLO WORLD!’ TO SDATA.
MOVE 12 TO SSIZE.
CALL ’SWCPTK’ USING SCONN,
 SWS-CREATE-TOKEN,
 STKID,
 SDATA,
 SSIZE,
 STMOU,
 SUSDA,
 SUSLN);
MOVE RETURN-CODE TO WS-SWSAPI-RETURN-CODE.
IF NOT SWS-SUCCESS GOBACK.
7-224 Shadow Programming Guide December 1999

General APIs
SDBTOKEN/SWSTOKEN Function

The SDBTOKEN/SWSTOKEN built-in function provides a means of saving and
restoring transaction-oriented data using a server-created token value.

Transaction data can be saved before generating an out-bound response to a trans-
action, and then be restored (using the token value) when the next transaction
arrives.

The token service allows you to create complex, inter-active transactions which
need a scratch-pad area to save state information between transaction boundaries.

All tokens have a timeout associated with them at creation time. If the token is not
accessed within the timeout period the Server automatically deletes the token
(along with the associated data).

Syntax

The general form for invocation of SDBTOKEN/SWSTOKEN is:

var = SWSTOKEN(func, arg2, arg3, arg 4)

Valid Arguments

The first argument, func, to the SDBTOKEN/SWSTOKEN function specifies the
sub-function to be performed. The values which can be coded for the func argu-
ment are:

CREATE Service

The sub-function creates a new token value and saves data associated with the
token. The data can later be retrieved or updated, using the token value.

Can be used in Shadow/REXX

Can be used from other REXX interpreters

High-level language interface available

CREATE Create a new token and save the associated data.

GET Retrieve data associated with a token value.

PUT Update the data associated with an existing token value.

REPLACE Replace the data associated with an existing token value.

DELETE Delete a token and the associated data.
December 1999 Shadow Programming Guide 7-225

Host Application API Function Calls
Syntax Example

The CREATE service is invoked by coding:

newtok = SWSVALUE(’CREATE’,data,timeout,userdata)

The arguments to the CREATE service call are:

Return Value

The token CREATE service always returns the 24-byte token value. A run-time
error is generated if the token cannot be created.

GET Service

The sub-function retrieves the data associated with a previously created token.

Syntax Example

The GET service is invoked by coding:

data = SWSVALUE(’GET’,token)

The arguments to the GET service call are:

data The data to be associated with the token. This operand is
required. Once the token is created, the size of the data can
only be altered using the REPLACE token service (PUT
cannot be used to change the data size). When invoked
from Shadow/REXX, the maximum size of the data area is
limited to 32,000 bytes.

Timeout A expiration timeout value to be associated with the token,
specified in seconds. If the token value is un-accessed for
this length of time, the token value (and associated data) is
discarded by the system.

Any access to the token value causes this expiration timer
to be restarted. If this argument to the function call is
omitted, the system uses the value set for the
TOKENTIMEOUT product parameter.

Userdata Specifies an optional character string which is associated
with the token. If this operand is not specified, the user
data value is set to the value of the original URL under
which the token was created. This character string is
displayed on the active tokens ISPF display, but has no
other purpose.

This argument is optional. .

Token The token value returned from the CREATE function.
7-226 Shadow Programming Guide December 1999

General APIs
Return Value

The token GET service returns the data associated with the token when it was cre-
ated. The length of the data returned is always equal to the length of the data asso-
ciated with the token when it was created.

If the input token value is unknown the function returns a NULL string. This can
occur because another application has caused the token to be explicitly deleted or
because the token timeout period has expired.

PUT Service

The sub-function updates the data associated with a previously created token.

Syntax Example

The PUT service is invoked by coding:

rc = SWSVALUE(’PUT’,token,newdata)

The arguments to the PUT service call are:

Return Value

The token PUT service returns one of the following numeric values:

REPLACE Service

The sub-function replaces the data associated with a previously created token.

Syntax Example

The REPLACE service is invoked by coding:

rc = SWSVALUE(’REPLACE’,token,newdata)

token The token value returned from the CREATE function.

newdata The new data value to be written to the token. If this data
value is longer than the value originally written, it is
truncated to the length of the original data value. If the
new value is shorter than the previous value, it overlays
only the front portion of the value. Note that the
REPLACE service must be used to alter the size of the
data associated with a token.

Return Value Description

0 The newdata value was saved.

100 The token value is unknown or invalid. For example, the token has
been explicitly deleted or the timeout period has elapsed.
December 1999 Shadow Programming Guide 7-227

Host Application API Function Calls
The arguments to the REPLACE service call are:

Return Value

The token REPLACE service returns one of the following numeric values:

DELETE Service

The sub-function deletes a token and associated data and removes is from the sys-
tem.

Syntax Example

The DELETE service is invoked by coding:

rc = SWSVALUE(’DELETE’,token)

The arguments to the DELETE service call are:

Return Value

The token DELETE service returns one of the following numeric values:

token The token value returned from the CREATE function.

newdata The new data value to be written to the token. This data
completely replaces the data associated with the token.

Return Value Description

0 The newdata value was saved.

100 The token value is unknown or invalid. For example, the token has
been explicitly deleted or the timeout period has elapsed.

token The token value returned from the CREATE function.

Return Value Description

0 The token has been deleted.

100 The token value is unknown or invalid. For example, the token has
been explicitly deleted or the timeout period has elapsed.
7-228 Shadow Programming Guide December 1999

General APIs
High-Level Language Interface
SDBCONCT (SDCPCC)
SWSCONCT (SWCPCC) Function

SDBCONCT/SWSCONCT is used to concatenate multiple DDNames under a
single DDName.

The format of this command is similar in features and functions to the TSO/E
CONCAT command. A text string is used as input in order to provide the parame-
ters necessary to define the files to be concatenated. Files can be "de-concate-
nated" using the SDBDECON/SWSDECON command.

CALL Arguments

The SDBCONCT/SWSCONCT (SDBPCC/SWCPCC) function arguments are
described in the table which follows. Only two of the three arguments are
required.

Can be used in Shadow/REXX.

Can be used from other REXX interpreters.

HLL entry point name is SDCPCC/SWCPCC.

Arg
HLL Argument Type

I/O Description of Argument
C COBOL PL/I

1 LONG PIC S9(5)
COMP

FIXED
BIN(31)

Input The length of the concatenation command string. If
the length is longer than the actual command, trailing
nulls or blanks will be ignored. If the length is less
than the actual command string, the concatenation
command string will be truncated and possibly cause
execution errors. The maximum string length is
32768 bytes.

2 CHAR* PIC
X(nnnnn)

CHAR
(nnnnn)

Input The concatenation command string. See Supported
Concatenation keywords below.

3 SWSASB* Usage
pointer

PTR Output The Shadow Web Server Allocation Status Block.
This is an optional argument that provides
information concerning the status of the
concatenation request. If you do not specify this
argument, you will not have access to the reason code
nor the DAIR code.
December 1999 Shadow Programming Guide 7-229

Host Application API Function Calls
Return Values

SDBCONCT/SWSCONCT always sets a signed numeric return code value. Pos-
sible values are:

Supported Concatenation Keywords

The SDBCONCT/SWSCONCT (SDBPCC/SWCPCC) interface supports the fol-
lowing dataset concatenation request parameters:

PL/I Example
%INCLUDE SPCPHD
 .
 .
DCL COMMAND CHAR(80) /* CONCATENATE CMD */
 INIT(’DDN(INFILE1 INFILE2)’);
DCL CMDLEN FIXED BIN(31); /* COMMAND LENGTH */
DCL RC FIXED BIN(31); /* RETURN CODE */
CMDLEN = LENGTH(COMMAND); /* SET COMMAND LEN */
/* CONCATENATE THE INPUT FILES */
CALL SWSCONCT(CMDLEN, /* COMMAND LENGTH */
COMMAND, /* COMMAND */
SWSASB); /* ALLOCATION STATUS BLOCK*/
RC = PLIRETV(); /* GET RETURN CODE */
IF RC ^= SWS_SUCCESS THEN /* EXIT PROGRAM IF BAD RC */
 EXIT;

Return Value Description

SWS_SUCCESS The operation succeeded. The specified operation was performed.

SWS_ERROR A parameter validation or run-time error was encountered. Error
information is available using the SWSERROR function.

Any other value The operation failed. Generally this indicates that the file was not
concatenated. There will be an error message in the Allocation
Status Block describing the error.

Concatenation Keyword Description

DDN(DD1 DD2 DD3 ...) Specifies a list of previously allocated ddnames to be concatenated together.

Note: Separate parameters by spaces. Do not use commas. The datasets will be
concatenated as a single DDName using the first DDName in the list.

PERM(VALUE) Specifies whether or not to permanently concatenate these DDNames. Files
that are permanently concatenated can not be "de-concatenated". Legitimate
values are:

• YES = Permanently concatenate these files.
• NO = Do not permanently concatenate these files.

Note: The default is NO.
7-230 Shadow Programming Guide December 1999

General APIs
C Example
SWS_ALLOCATION_STATUS_BLOCK swsASB; /* response area */
 .
 .
 .
 .
long RC; /* return code */
char szCommand[] = "DDN(INFILE1 INFILE2)";

/* Concatenate the input files */

rc = SWSCONCT(strlen(szCommand), /* Command Length */
 szCommand, /* Command */
 swsASB); /* Response area */

if (rc ^= SWS_SUCCESS)
 do
 printf(swsASB.Error_Message);
 return rc;
 end

COBOL Example
* NEON API COPY BOOK
 COPY SBCPHD.
 .
 .
 .
 .
 77 COMMAND-LENGTH PIC S9(5) COMP.
 77 COMMAND PIC X(80)
 VALUE ’DDN(INFILE1 INFILE2)’.

 * CONCATENATE THE INPUT FILES

 MOVE 80 TO COMMAND-LENGTH.
 CALL SWSCONCT
 USING COMMAND-LENGTH,
 COMMAND,
 SWS-ALLOCATION-STATUS-BLOCK.

 MOVE RETURN-CODE TO WS-SWSAPI-RETURN-CODE.
 IF NOT SWS-SUCCESS
 DISPLAY ’FILE CONCATENATION FAILED.’ UPON CONSOLE
 DISPLAY SWSASB-ERROR-MESSAGE
December 1999 Shadow Programming Guide 7-231

Host Application API Function Calls
SDBCONCT/SWSCONCT Function

The REXX-language SDBCONCT/SWSCONCT built-in function can be used to
concatenate multiple ddnames of previously allocated datasets. Datasets concate-
nated using the SWSCONCT built-in function can use the SDBDECON/SWSDE-
CON built-in function to de-concatenate the DDName.

Syntax

The format of this command is similar in features and functions to the TSO/E
CONCAT command. If an error occurs, the REXX variable, ALLOC.MES-
SAGE, will be populated with a descriptive message. The DAIR return code can
be obtained from ALLOC.INFOCODE and the reason code can be obtained
from the ALLOC.REASON.

The general form for a REXX-language invocation of SDBCONCT/SWSCONCT
is:

rc = SWSCONCT("STRING")

Supported Concatenation Keywords

The SDBCONCT/SWSCONCT (SDBPCC/SWCPCC) interface supports the fol-
lowing dataset concatenation request parameters:

Can be used in Shadow/REXX.

Can be used from other REXX interpreters.

High-level language interface available.

Note:
Because of comparable functionality of SDBCONCT/SWSCONCT
to IBM’s CONCAT function, this documentation is similar to IBM’s
TSO/E online help.

Concatenation Keyword Description

DDN(DD1 DD2 DD3 ...) Specifies a list of previously allocated ddnames to be concatenated together.

Note: Separate parameters by spaces. Do not use commas. The datasets will be
concatenated as a single DDName using the first DDName in the list.
7-232 Shadow Programming Guide December 1999

General APIs
SDBCONCT/SWSCONCT Examples
To concatenate multiple ddnames

rc = SWSCONCT(DDN(INFILE1 INFILE2))

PERM(VALUE) Specifies whether or not to permanently concatenate these DDNames. Files
that are permanently concatenated can not be "de-concatenated". Legitimate
values are:

• YES = Permanently concatenate these files.
• NO = Do not permanently concatenate these files.

Note: The default is NO

Concatenation Keyword Description
December 1999 Shadow Programming Guide 7-233

Host Application API Function Calls
High-Level Language Interface
SDBDECON (SDCPDC)
SWSDECON (SWCPDC) Function

SDSBDECON/SWSDECON is used to "de-concatenate" a DDName that was
previously concatenated using the SDBCONCT/SWSCONCT command.

The format of this command is similar in features and functions to the TSO/E
DECONCAT command. A text string is used as input in order to provide the
parameters necessary to define the file to be concatenated. Files can be concate-
nated using the SDBCONCT/SWSCONCT command.

CALL Arguments

The SDBCONCT/SWSCONCT (SDBPCC/SWCPCC) function arguments are
described in the table which follows. Only two of the three arguments are
required.

Can be used in Shadow/REXX.

Can be used from other REXX interpreters.

HLL entry point name is SDCPDC/SWCPDC.

Arg
HLL Argument Type

I/O Description of Argument
C COBOL PL/I

1 LONG PIC S9(5)
COMP

FIXED
BIN(31)

Input The length of the de-concatenation command string.
If the length is longer than the actual command,
trailing nulls or blanks will be ignored. If the length
is less than the actual command string, the de-
concatenation command string will be truncated and
possibly cause execution errors. The maximum string
length is 32768 bytes.

2 CHAR* PIC
X(nnnnn)

CHAR
(nnnnn)

Input The de-concatenation command string. See
supported de-concatenation keywords.

3 SWSASB* Usage
pointer

PTR Output The Shadow Web Server Allocation Status Block.
This is an optional argument that provides
information concerning the status of the de-
concatenation request. If you do not specify this
argument, you will not have access to the reason code
nor the DAIR code.
7-234 Shadow Programming Guide December 1999

General APIs
Return Values

SDBDECON/SWSDECON always sets a signed numeric return code value. Pos-
sible values are:

SWS_SUCCESS

The operation succeeded. The specified operation was performed.

SWS_ERROR

A parameter validation or run-time error was encountered. Error information is
available using the SWSERROR function.

Any other value

The operation failed. Generally this indicates that the file was not de-concate-
nated. There will be an error message in the Allocation Status Block describing
the error.

Supported De-concatenation Keywords

The SDBDECON/SWSDECON (SDBPDC/SWCPDC) interface supports the fol-
lowing dataset concatenation request parameters:

PL/I Example
%INCLUDE SPCPHD
 .
 .
 .
 .
DCL COMMAND CHAR(80) /* DE-CONCAT COMMAND */
 INIT(’DDN(INFILE)’);
DCL CMDLEN FIXED BIN(31); /* COMMAND LENGTH */
DCL RC FIXED BIN(31); /* RETURN CODE */

CMDLEN = LENGTH(COMMAND); /* SET COMMAND LEN */

/* DE-CONCATENATE THE INPUT FILE */

CALL SWSDECON(CMDLEN, /* COMMAND LENGTH */

COMMAND, /* COMMAND */
SWSASB); /* ALLOCATION STATUS BLOCK*/

 RC = PLIRETV(); /* GET RETURN CODE */
 IF RC ^= SWS_SUCCESS THEN /* EXIT PROGRAM IF BAD RC */
 EXIT;

De-concatenation Keyword Description

DDN(DDNAME) Specifies the ddname of the concatenated file.
December 1999 Shadow Programming Guide 7-235

Host Application API Function Calls
C Example
 SWS_ALLOCATION_STATUS_BLOCK swsASB; /* response area */
 .
 .
 .
 .
 long RC; /* return code */
 char szCommand[] = "DDN(INFILE)";

 /* De-concatenate the input file */

 rc = SWSDECON(strlen(szCommand), /* Command Length */
 szCommand, /* Command */
 swsASB); /* Response area */

 if (rc ^= SWS_SUCCESS)
 do
 printf(swsASB.Error_Message);
 return rc;
 end

COBOL Example
 * NEON API COPY BOOK
 COPY SBCPHD.
 .
 .
 .
 .
 77 COMMAND-LENGTH PIC S9(5) COMP.
 77 COMMAND PIC X(80)
 VALUE ’DDN(INFILE)’.

 * DE-CONCATENATE THE INPUT FILE.

 MOVE 80 TO COMMAND-LENGTH.
 CALL SWSDECON
 USING COMMAND-LENGTH,
 COMMAND,
 SWS-ALLOCATION-STATUS-BLOCK.

 MOVE RETURN-CODE TO WS-SWSAPI-RETURN-CODE.
 IF NOT SWS-SUCCESS
 DISPLAY ’INFILE DE-CONCATENATION FAILED.’ UPON CONSOLE
 DISPLAY SWSASB-ERROR-MESSAGE UPON CONSOLE
 GOBACK.
7-236 Shadow Programming Guide December 1999

General APIs
SDBDECON/SWSDECON Function

The REXX-language SDBDECON/SWSDECON built-in function can be used to
de-concatenate a single ddname that was previous concatenated using the SDB-
CONCT/SWSCONCT built-in function to concatenate the DDNames.

Syntax

The format of this command is similar in features and functions to the TSO/E
DECONCAT command. If an error occurs, the REXX variable ALLOC.MES-
SAGE will be populated with a descriptive message. The DAIR return code can
be obtained from ALLOC.INFOCODE and the reason code can be obtained
from the ALLOC.REASON.

The general form for a REXX-language invocation of SDBDECON/SWSDECON
is:

rc = SWSDECON(DDN(INFILE1))

Can be used in Shadow/REXX.

Can be used from other REXX interpreters.

High-level language interface available.

Note:
Because of comparable functionality of SDBDECON/SWSDECON
to IBM’s DECONCAT function, this documentation is similar to
IBM’s TSO/E online help.
December 1999 Shadow Programming Guide 7-237

Host Application API Function Calls
Web Server REXX and SEF APIs
This section covers the following Web Server REXX and SEF APIs:

API Description DIRECT WEB SEF WEB/RX

Web Server REXX and SEF only APIs

To clear REXX external data queue: SWSClearQueue
or SWCPQL

SWSCLEDQ

To perform security authorization
processing:

SDBECURE SWSECURE

To serialize usage of resources: SWSENQ

“PARSE PULL” operation in Shadow/
REXX:

SWSGetQueue
or SWCPQG

To set or display SWS product
parameter values:

SDBPARM SWSPARM

Equivalent to Shadow/REXX “Queue”
(not “QUEUED()”):

SWSPutQueue
or SWCPQP

Partly equivalent to Shadow/REXX
built-in function “QUEUED()”:

SWSQueryQueue
or SWCPQQ

To create and write customized SMF
records:

SDBSMF SWSSMF

To transmit out-bound data to web
server clients:

SWSXMIT
7-238 Shadow Programming Guide December 1999

Web Server REXX and SEF APIs
 High Level Language SWSClearQueue
(SWCPQL) Function

 SWSClearQueue is the Web Server API function used to clear the external data
queue associated with the current web transaction thread. Clearing the queue
marks it as empty.

Normally, an external data queue is allocated and used only when executing
Shadow/REXX procedures. However, a queue may now also be used from HLL
programs. For HLL program executions, an external data queue can be pre-allo-
cated by coding the QUEUESIZE() keyword. If one of the SWSxxxxxQueue
HLL functions is invoked, an external data queue is created dynamically, using
the default size, if one does not already exist.

CALL Arguments

The SWSClearQueue function takes one to three arguments; only the first is
required.

Can be used in Shadow/REXX.

Not available from Other REXX interpreters.

HLL entry point name is SWCPQL.

Arg
HLL Argument Type

I/O Description of Argument
C COBOL PL/I

1 HDBC Usage
Pointer

PTR Input The Web Server connection handle. The connection
handle is an opaque, four-byte address pointer. The
connection handle is currently not used, and must be
set to zero (NULL).

2 SDWORD PIC S9(5)
COMP

FIXED
BIN(31)

Input This argument is unused in the current release and
must be set to zero.

3 SDWORD PIC S9(5)
COMP

FIXED
BIN(31)

Input This argument is unused-used in the current release
and must be set to zero.
December 1999 Shadow Programming Guide 7-239

Host Application API Function Calls
Return Values

SWSClearQueue always sets a signed numeric return code value. Possible values
are:

PL/I Example
DCL TCONN PTR; /* Connection Handle */
DCL RC FIXED BIN(31); /* return code */
DCL DMHX FIXED BIN(31) BASED; /* Dummy Handle field */
DCL FB00 FIXED BIN(31) INIT(0);/* Dummy argument */

ADDR(TCONN)->DMHX = 0; /* Clear Connection Handle */

CALL SWSClearQueue(TCONN /* clear the queue */
 FB00,
 FB00);
 RC = PLIRETV(); /* get return code */
IF RC ^= SWS_SUCCESS THEN /* exit program if bad RC */
 EXIT;

C Example
HDBC tConn = NULL; /* Connection Handle */
SDWORD tDummy = 0; /* dummy argument */
long RC; /* return code */

rc = SWSClearQueue(&tConn, /* clear the queue */
 tDummy,
 tDummy);
if (rc ^= SWS_SUCCESS) return; /* exit program if bad RC */

Return Value Description

SWS_SUCCESS A parameter validation or runtime error was encountered. Error
information is available using the SWSERROR function.

SWS_ERROR A parameter validation or runtime error was encountered. Error
information is available using the SWSERROR function.

SWS_INVALID_HANDLE The connection handle is invalid. No error information is available.

SWS_ENVIRONMENT_ERROR The request could not be processed because of a runtime
environmental error, for example, you invoked the API service
outside of a web transaction procedure, or from outside the Server’s
address space. The Server may provide diagnostic information in the
wrap-around trace.

Any other value The operation failed.
7-240 Shadow Programming Guide December 1999

Web Server REXX and SEF APIs
COBOL Example
 77 TCONN USAGE IS POINTER.
 77 FB00 PIC S9(5) COMP VALUE 0.

 CALL ’SWCPQL’ USING TCONN,
 FB00,
 FB00.
 MOVE RETURN-CODE TO WS-SWSAPI-RETURN-CODE.
 IF NOT SWS-SUCCESS GOBACK.

December 1999 Shadow Programming Guide 7-241

Host Application API Function Calls
SWSCLEDQ Function

The SWSCLEDQ built-in function provides a quick means of clearing the REXX
external data queue. The function is used as a short cut in place of the following
REXX coding:

DO WHILE QUEUED() > 0
 PARSE PULL X
END

Coding SWSCLEDQ

To code the SWSCLEDQ function, use the following format:

var = SWSCLEDQ()

Return Values

The function always returns 0 (zero) to the caller.

Can be used in Shadow/REXX.

Can not be used from other REXX interpreters.

No high-level language interface.
7-242 Shadow Programming Guide December 1999

Web Server REXX and SEF APIs

ation
.

High-Level Language Interface
SDBECURE (SDCPSC)
SWSECURE (SWCPSC) Function

SDBECURE/SWSECURE is a built-in function used to do security authorization
processing. The function is divided into six different subfunctions each of which
provide a different type of security authorization processing.

Call Arguments

The SDBECURE/SWSECURE function takes a varying number of arguments
depending on the subfunction requested. The subfunction request itself is desig-
nated via the second entry in the parameter list passed to the SDBECURE/SWSE-
CURE function.

Return Values

SDBECURE/SWSECURE returns both a numeric code and a character response
if the subfunction call was a success. If the subfunction call failed, only a numeric
code is returned. The actual text results are returned to the “output buffer” loc
specified on each call which is designated by the third entry in the parameter

Can be used in Shadow/REXX.

Can be used from other REXX interpreters.

HLL entry point name is SDCPSC/SWCPSC.

Return Value Description

SWS_SUCCESS The requested operation succeeded. The return value has been
determined and placed into the buffer area. The actual size of the
data is set into the fourth argument.

SWS_SUCCESS_WITH_INFO The return buffer was not large enough to store the return value. The
return value was truncated. The size of the return value, before
truncation, is set in the fourth argument. For character data, a null
termination byte is always placed into the last position of the output
buffer area.

SWS_ERROR A parameter validation or runtime error was encountered. Error
information is available using the SWSERROR function.

SWS_ENVIRONMENT_ERROR The request could not be processed because of a runtime
environmental error, for example, you invoked the API service
outside of a web transaction procedure, or from outside the Server’s
address space. The Server may provide diagnostic information in the
wrap-around trace.
December 1999 Shadow Programming Guide 7-243

Host Application API Function Calls
SDBECURE/SWSECURE Dataset Access Parameter
List

Return Values

The function returns the string ALLOW if the specified type of access to the data set
is allowed. Otherwise, an error message is returned. The returned value for CA-
ACF2 is a CA-ACF2 message; for RACF, the returned value is one of these mes-
sages:

 RESOURCE NOT PROTECTED BY RACF

 RESOURCE ACCESS DENIED BY RACF

SWS_INVALID_HANDLE The connection handle argument is invalid.

Arg
HLL Argument Type

I/O Description of Argument
C COBOL PL/I

1 HDBC Usage
Pointer

PTR Input Connection handle.

2 UDWORD PIC S9(5)
COMP

FIXED
BIN(31)

Input A four byte binary integer indicating function to be
performed. Must be the following:

SWS_SECURE_VFYDSN.

3 UCHAR * PIC X(nnn) CHAR(nnn) Input/
Output

The data buffer to receive the information.

4 SDWORD PIC S9(5)
COMP

FIXED
BIN(31)

Input The size of the output data buffer.

5 UCHAR * PIC X(nnn) CHAR(nnn) Input The dataset name.

6 SDWORD PIC S9(5)
COMP

FIXED
BIN(31)

Input The length of the dataset name.

7 UCHAR PIC X(1) CHAR(1) Input The access type:

• A to verify Alter Access.
• C to verify Control Access.
• R to verify Read Access.
• U to verify Update access.

8 SDWORD PIC S9(5)
COMP

FIXED
BIN(31)

Input The length of the access type (must be one).

9 UCHAR * PIC X(nnn) CHAR(nnn) Input The volser (Optional).

10 SDWORD PIC S9(5)
COMP

FIXED
BIN(31)

Input The length of the volser (Optional).

Return Value Description
7-244 Shadow Programming Guide December 1999

Web Server REXX and SEF APIs
SDBECURE/SWSECURE Fetching Logon ID Field Data
Parameter List

Return Values

Shadow/REXX does the following conversions depending on field format:

n Binary fields are converted to signed decimal values without leading zeros or
blanks. The number zero is returned as 0.

n Character fields are returned as is, possibly truncated to the Shadow/REXX
defined maximum valid string length.

n Date fields are converted to the form yyyy/mm/dd with leading zeros kept
(so that the result is always exactly ten non-blank characters). A zero date
field is returned as the string ****/**/**.

n Bit fields are converted to a 0 (FALSE or off) or a 1 (TRUE or on).

n The group list field inquiry is handled separately. The function returns a
integer count of the number of group entries found in the list. Each individual
group name is returned as a separate entry in the external data queue.

Arg
HLL Argument Type

I/O Description of Argument
C COBOL PL/I

1 HDBC Usage
Pointer

PTR Input Connection handle.

2 UDWORD PIC S9(5)
COMP

FIXED
BIN(31)

Input A four byte binary integer indicating function to be
performed. Must be the following:

SWS_SECURE_USERINFO.

3 UCHAR * PIC X(nnn) CHAR(nnn) Output The data buffer to receive the information.

4 SDWORD PIC S9(5)
COMP

FIXED
BIN(31)

Input The size of the output data buffer.

5 UCHAR * PIC X(nnn) CHAR(nnn) Input The fieldname.

6 SDWORD PIC S9(5)
COMP

FIXED
BIN(31)

Input The length of the fieldname.
December 1999 Shadow Programming Guide 7-245

Host Application API Function Calls
SDBECURE/SWSECURE Requesting Security Product
Information Parameter List

Return Values

The function returns a string with the requested information. If the information
cannot be obtained, a NULL string is returned.

Arg
HLL Argument Type

I/O Description of Argument
C COBOL PL/I

1 HDBC Usage
Pointer

PTR Input Connection handle.

2 UDWORD PIC S9(5)
COMP

FIXED
BIN(31)

Input A four byte binary integer indicating function to be
performed. Must be the following:

SWS_SECURE_PRODINFO.

3 UCHAR * PIC X(nnn) CHAR
(nnn)

Output The data buffer to receive the information.

4 SDWORD PIC S9(5)
COMP

FIXED
BIN(31)

Input The size of the output data buffer.

5 UCHAR * PIC X(nnn) CHAR
(nnn)

Input The name constant.

6 SDWORD PIC S9(5)
COMP

FIXED
BIN(31)

Input The length of the name constant.
7-246 Shadow Programming Guide December 1999

Web Server REXX and SEF APIs
SDBECURE/SWSECURE Generalized Resource Rule
Checks Parameter List

Return Values

For any of the three security products, if the specified access to the resource is
allowed, Shadow/REXX returns the string ALLOW. Otherwise, Shadow/REXX
returns an error message:

RESOURCE NOT PROTECTED BY RACF
RESOURCE ACCESS DENIED BY RACF

Arg
HLL Argument Type

I/O Description of Argument
C COBOL PL/I

1 HDBC Usage
Pointer

PTR Input Connection handle.

2 UDWORD PIC S9(5)
COMP

FIXED
BIN(31)

Input A four byte binary integer indicating function to be
performed. Must be the following:

SWS_SECURE_GENRES.

3 UCHAR * PIC X(nnn) CHAR(nnn) Output The data buffer to receive the information.

4 SDWORD PIC S9(5)
COMP

FIXED
BIN(31)

Input The size of the output data buffer.

5 UCHAR * PIC X(nnn) CHAR(nnn) Input The resource class name.

6 SDWORD PIC S9(5)
COMP

FIXED
BIN(31)

Input The size of the resource class name.

7 UCHAR * PIC X(nnn) CHAR(nnn) Input The resource entity name.

8 SDWORD PIC S9(5)
COMP

FIXED
BIN(31)

Input The size of the resource entity name.

9 UCHAR PIC X(1) CHAR(1) Input The access type:

• A to verify Alter Access
• C to verify Control Access
• R to verify Read Access
• U to verify Update access

10 SDWORD PIC S9(5)
COMP

FIXED
BIN(31)

Input The length of the access type
(must be one).
December 1999 Shadow Programming Guide 7-247

Host Application API Function Calls
SDBECURE/SWSECURE Password Validation
Parameter List

Return Values

For all three security products, if the password was correct (and a new password
was assigned if specified), the returned value is the string ALLOW. Otherwise,
Shadow/REXX returns a message:

INVALID SECURITY ENVIRONMENT
 USER PROFILE NOT DEFINED TO RACF
 PASSWORD IS NOT AUTHORIZED
 PASSWORD HAS EXPIRED
 USER NOT DEFINED TO THE GROUP
 REJECTED BY INSTALLATION EXIT
 ACCESS HAS BEEN REVOKED
 RACF IS NOT ACTIVE
 GROUP ACCESS HAS BEEN REVOKED
 NOT AUTHORIZED TO USE THIS TERMINAL
 INVALID DAY OR TIME OF DAY
 TERMINAL CANNOT BE USED
 NOT AUTHORIZED TO USE APPLICATION

Arg
HLL Argument Type

I/O Description of Argument
C COBOL PL/I

1 HDBC Usage
Pointer

PTR Input Connection handle.

2 UDWORD PIC S9(5)
COMP

FIXED
BIN(31)

Input A four byte binary integer indicating function to be
performed

SWS_SECURE_VALPSWD.

3 UCHAR * PIC X(nnn) CHAR(nnn) Output The data buffer to receive the information.

4 SDWORD PIC S9(5)
COMP

FIXED
BIN(31)

Input The size of the output data buffer.

5 UCHAR * PIC X(nnn) CHAR(nnn) Input The userid.

6 SDWORD PIC S9(5)
COMP

FIXED
BIN(31)

Input The size of the userid.

7 UCHAR * PIC X(nnn) CHAR(nnn) Input The password.

8 SDWORD PIC S9(5)
COMP

FIXED
BIN(31)

Input The size of the password.

9 UCHAR * PIC X(nnn) CHAR(nnn) Input The new password.

10 SDWORD PIC S9(5)
COMP

FIXED
BIN(31)

Input The size of the new password.
7-248 Shadow Programming Guide December 1999

Web Server REXX and SEF APIs
PL/I Example
DCL SCONN PTR /* Connection Handle */
DCL SBUFF CHAR(256) /* Output Buffer */
DCL SBFSZ FIXED BIN(31) /* Output Buffer length */
DCL SUID CHAR(8) /* Userid */
DCL SUIDSZ FIXED BIN(31) /* Userid Length */
DCL PSWD CHAR(8) /* Password */
DCL PSWDSZ FIXED BIN(31) /* Password Length */
ADDR(SCONN)->DMHX=0; /* Zero connection handle*/
 SUID=”USERID”; /* Set Userid */
 SUIDSZ=6; /* Set Userid length */
 PSWD=”PASSWORD”; /* Set Password */
 PSWDSZ=8; /* Set Password length */
CALL SWSECURE(SCONN /* Call the function */

SWS_SECURE_VALPSWD,
SBUFF,
SFFSZ,
SUID,
SUIDSZ,
SPSWD,
SPWDSZ);

RC=PLIRETV(); /* Get return code */
IF RC ̂ =SWS_SUCCESS THEN /* exit if bad RC */
 EXIT;

Note:
For CA-ACF2, invalid password attempt calls increase the invalid
password violation counter for the specified user ID.
December 1999 Shadow Programming Guide 7-249

Host Application API Function Calls
C Example
HDBC sConn = NULL; /* Connection Handle */
char hBuff[80] /* Output Buffer */
SDWORD hBfsz /* size of output buffer */
char hUid[] = ’USERID’ /* Userid */
SDWORD hUidsz /* size of userid */
char hPwd[] = ‘PASSWORD /* password */
SDWORD hPwdsz /* size of password */
long RC /* return code */
rc = SWSecure(&sConn, /* send the response */

SWS_SECURE_VALPSWD,
hBuff,
hBfsz,
hUid,
hUidsz,
hPswd,
hPswdsz);

If(rc ̂ =SWS_SUCCESS) return; /* exit if bad rc */

COBOL Example
77 SCONN USAGE IS POINTER.
77 HBUFF PIC X(80).
77 HBUFFSZ PIC S9(5) COMP.
77 HUID PIC X(8)
77 HUIDSZ PIC S9(5) COMP.
77 HPSWD PIC X(8).
77 HPSWDSZ PIC S9(5) COMP.
MOVE 80TO HBUFFSZ
MOVE ‘USERID’TO HUID.
MOVE 6TO HUIDSZ.
MOVE ‘PASSWORD’TO HPSWD.
MOVE 8TO HPSWDSZ.
CALL ‘SWCPSC’ USING SCONN,

SWS-SECURE-VFYDSN,
HBUFF,
HBUFFSZ,
BDATA,
BSIZE.

MOVE RETURN CODE TO WS-SWSAPI-RETURN-CODE.
IF NOT SWS-SUCCESS GOBACK/
7-250 Shadow Programming Guide December 1999

Web Server REXX and SEF APIs
The SDBECURE/SWSECURE Function

This function provides a set of subfunctions which perform six types of security
authorization processing.

The SDBECURE/SWSECURE function has one required parameter, which must
be followed with various other parameter arguments, depending on the requested
function.

The Operation Argument

The first argument of the SDBECURE/SWSECURE function specifies the opera-
tion which is to be performed. The first argument can be one of the following val-
ues:

Verifying Data Set Access

You can verify that the current user has authorization to access a data set. The cur-
rent user, for Web transactions is the Effective Userid.

Coding Data Set Access Requests

Issue the version of SDBECURE/SWSECURE shown below to verify data set
access privileges:

var = SDBECURE/SWSECURE (’D’,’dsname’,’accesstype’,’volser’)

The arguments shown above, are coded as follows:

Can be used in Shadow/REXX.

Can be used from other REXX interpreter.

High-level language entry point is SDBCPSC/SWSCPSC.

D Used to verify data set access privileges.

F Used to fetch information about a logged-on user.

I Used to return information about the security product installed on your MVS
system.

R Used to request generalized resource rule validation.

P Enables you to validate a Userid and password and/or set a new Userid.

dsname This argument specifies the dataset to be checked. The argument must be
present or the function request is rejected.
December 1999 Shadow Programming Guide 7-251

Host Application API Function Calls
Return Values

The function returns the string ALLOW if the specified type of access to the data set
is allowed. Otherwise, an error message is returned. The returned value for

CA-ACF2 is a CA-ACF2 message; for RACF, the returned value is one of these
messages:

RESOURCE NOT PROTECTED BY RACF
RESOURCE ACCESS DENIED BY RACF

Fetching Logon ID Field Data

You can retrieve security subsystem information about the current user. The cur-
rent user for Web transactions is the Effective Userid.

Coding Fetch Data Requests

Issue the version of SDBECURE/SWSECURE shown below to fetch field data
from the current user’s ACEE:

var = SDBECURE/SWSECURE(’F’,’fieldname’)

Accesstype Use the accesstype argument to specify the typ e of data set access you wish to
check. If you omit the accesstype argument, Shadow/REXX uses a default of
R (Read access).

The access type argument can be specified as one of:

• A to verify Alter access to a data set.
• C to verify Control access to a data set.
• R to verify Read access to a data set.
• U to verify Update access to a data set.

Volser The volser argument supplies the volser number to be validated. If you do not
specify a volser, the argument is blank by default.

Note:
The Shadow Web Server uses the MVS SAF router interface for
processing all security verification requests. This function will only
operate correctly for field values which are available on the ACEE
control block. Because many security products build only a skeletal
ACEE block, some or all of the values may be unavailable if the
underlying security subsystem product is other than RACF.
7-252 Shadow Programming Guide December 1999

Web Server REXX and SEF APIs
The fieldname argument is required. One of the following character constants can
be coded:

 Fieldname Constant
Format of Returned
Data

 Description

VERSION Binary ACEE Version code.

INSTALLATIONDATA Character Contents of the Installation Data field.

USERDATA Character Contents of the user data field.

USERID Character Contents of the ACEE Userid field .

GROUP Character Contents of the ACEE Group Field.

SPECIAL Bit Special Attribute.

AUTOMATIC Bit Automatic Attribute.

OPERATIONS Bit Operations Attribute.

AUDITOR Bit Auditor Attribute.

LOG Bit Logging on for most operations.

PRIVILEGED Bit Started task with privileged flag.

RACF Bit RACF defined user flag.

ALTER Bit Alter authority flag.

CONTROL Bit Control authority flag.

UPDATE Bit Update authority flag.

READ Bit Read authority flag.

NONE Bit None authority flag.

GROUPLISTCONTAINS Bit Group list contents flag.

DATE Date RACINIT Date.

STCNAME Character Started task name.

TERMINAL Character Terminal ID.

DEFINEUSERS Bit Authorized to define users.

PROTECTDASD Bit Authorized to protect DASD.

PROTECTTAPE Bit Authorized to protect tape.

PROTECTTERMINALS Bit Authorized to protect Terminals.

APPLICATIONLEVEL Binary Application Level.

PORTOFENTRYLEVEL Binary Port of entry level.

PORTOFENTRYDATA Character Port of entry data.

CLASSAUTHORIZATIONS Binary Class authorizations.

APPLICATION Character Application name.
December 1999 Shadow Programming Guide 7-253

Host Application API Function Calls
Return Values

Shadow/REXX does the following conversions depending on field format:

n Binary fields are converted to signed decimal values without leading zeros or
blanks. The number zero is returned as 0.

n Character fields are returned as is, possibly truncated to the Shadow/REXX
defined maximum valid string length.

n Date fields are converted to the form yyyy/mm/dd with leading zeros kept (so
that the result is always exactly ten non-blank characters). A zero date field is
returned as the string ****/**/**.

n Bit fields are converted to a 0 (FALSE or off) or a 1 (TRUE or on).

n The group list field inquiry is handled separately. The function returns a
integer count of the number of group entries found in the list. Each individual
group name is returned as a separate entry in the external data queue.

Requesting Security Product Information

To retrieve information about the security product itself (if any) on your system
using this form of the SDBECURE/SWSECURE function:

Coding Information Requests

Issue the version of SDBECURE/SWSECURE shown below to retrieve informa-
tion about the security subsystem in use:

var = SDBECURE/SWSECURE (’I’, ’name’)

The name argument is required. Code one of the constant values shown below:

APPLICATIONDATA Character Application data.

USERNAME Character User name field.

SURROGATEUSERID Character Surrogate userid.

GROUPLIST Group List A list of groups.

Name Constant Returned Value

PRODUCT Return the name of the security product. (e.g. RACF, ACF2, or "UNKNOWN
SECURITY PRODUCT").

 Fieldname Constant
Format of Returned
Data

 Description
7-254 Shadow Programming Guide December 1999

Web Server REXX and SEF APIs
Return Values

The function returns a string with the requested information. If the information
cannot be obtained, a NULL string is returned.

Generalized Resource Rule Checks

You can request that the Effective Userid for a Web transaction be validated
against a security subsystem generalized resource rule.

Coding Generalized Resource Rule Checks

To request generalized resource rule validation, use this form of SDBECURE/
SWSECURE

var = SDBECURE/SWSECURE (’R’,class,resource,requestcode)

This function call verifies that the current user has access to a generalized
resource. Code each argument as follows:

Returned Values

For any of the three security products, if the specified access to the resource is
allowed, Shadow/REXX returns the string ALLOW. Otherwise,

MODE Returns the CA-ACF2 operating mode:

• QUIET
• LOG
• WARN
• ABORT
• OFF

This value is only valid for systems running CA-ACF2.

RELEASE Causes Shadow/REXX to return the release and version number of CA-ACF2,
CA-TOP SECRET, or RACF. For RACF and CA-TOP SECRET systems, this
is a three-character string of the form v.r where v is the version number and r is
the release number.

class The generalized resource class name (type name for ACF2). Note that SAF
processing is used for all resource rule checks. If your security subsystem is
ACF2, you must define the ACF2 resource type as a SAF class name.

resource The 1-to-39 byte resource entity name.

requestcode The requestcode argument specifies the type of access to be verified. If you
omit this argument, Shadow/REXX uses the default value R (Read access).
Systems. The request code can be specified as one of the following:

• A to verify Alter access to a resource.
• C to verify Control access to a resource.
• R to verify Read access to a resource.
• U to verify Update access to a resource.

Name Constant Returned Value
December 1999 Shadow Programming Guide 7-255

Host Application API Function Calls
Shadow/REXX returns an error message:

RESOURCE NOT PROTECTED BY RACF
RESOURCE ACCESS DENIED BY RACF

Validating a Userid and Password

This form of request causes the indicated Userid and password to be verified and
logged onto the system. If the userid and password are valid an ACEE is created
and made active for the current subtask. It remains active until explicitly reset, as
described in the warning box, below.

You can perform a SWSECURE logon operation without supplying a password on
the request if all the following conditions are met:

n The SWSECURE request is being made either by an /*ATH rule, or by a /
*WWW rule which is defined in the Master WWW Ruleset.

n The WWWRUNAUTHFORMATS start-up parameter is set to "ALL".

n The WWWRUNAUTHLOCATION start-up parameter is set to
"ANYWHERE" or "MASTERONLY".

n You are not requesting that the password be changed (no new password is
specified for the SWSECURE request).

Note:
If the SWSECURE Password Validation request fails for any reason
(i.e. Userid unknown, password invalid, new password invalid, etc.)
the server’s Web Transaction Default Userid is always made
active for the current task. This applies even if some other
userid was active before the failing password validation request.

When you successfully perform a logon operation from within a
web transaction task, the newly logged on Userid is handled as
though any other client logon, with the following exception: the
newly logged-on userid remains permanently in effect for the Web
transaction (even across all URL RESCAN operations) until
explicitly reset. The userid is only deactivated when:

Note, however, that logged-on userid will remain permanently in
effect for the web transaction (even across all URL RESCAN
operations) until explicitly reset. The userid is only deactivated
when:

• Another SWSECURE Password Validation request is performed.
• A /*WWW rule is matched which has RUNAUTH(proxy-id).
• RUNAUTH(NONE) coded on the rule header.
• The web transaction ends.
7-256 Shadow Programming Guide December 1999

Web Server REXX and SEF APIs
Coding Password Validation Requests

To validate a userid and password, use this form of the SDBECURE/SWSECURE
function:

var = SDBECURE/SWSECURE (’P’,’userid’,’password’,’newpassword’)

The arguments shown above, are coded as follows:

If you omit the newpassword argument, SDBECURE/SWSECURE validates the
Userid and password. If you specify newpassword, SDBECURE/SWSECURE
changes the password.

Return Values

For all three security products, if the password was correct (and a new password
was assigned if specified), the returned value is the string ALLOW. Otherwise,
Shadow/REXX returns a message:

INVALID SECURITY ENVIRONMENT
USER PROFILE NOT DEFINED TO RACF
PASSWORD IS NOT AUTHORIZED
PASSWORD HAS EXPIRED
USER NOT DEFINED TO THE GROUP
REJECTED BY INSTALLATION EXIT
ACCESS HAS BEEN REVOKED
RACF IS NOT ACTIVE
GROUP ACCESS HAS BEEN REVOKED
NOT AUTHORIZED TO USE THIS TERMINAL
INVALID DAY OR TIME OF DAY
TERMINAL CANNOT BE USED
NOT AUTHORIZED TO USE APPLICATION

userid The Userid to be validated .

password The password associated with the Userid.

newpassword The new password value to be associated with the Userid.

Note:
For CA-ACF2, invalid password attempt calls increase the invalid
password violation counter for the specified user ID.
December 1999 Shadow Programming Guide 7-257

Host Application API Function Calls
SWSENQ Function

This function interacts with MVS’s ENQ/DEQ services to serialize usage of
resources. Any REXX procedure using the SWSENQ function should use a SIG-
NAL ON SYNTAX statement to dequeue resources if the program fails to run
properly. (Leaving the resources queued can leave your system inoperable.)

Syntax

The general form for invocation of SWSENQ is:

var = SWSENQ(func, major, minor, type, scope, ret)

Valid Arguments

SWSENQ uses the following arguments:

Can be used in Shadow/REXX.

Can not be used from other REXX interpreters.

No high-level language interface.

func This operand is required. Specify either

• E to enqueue on a resource.
• D to dequeue from a resource.

major The major name of the resource, up to eight characters in length. The function
converts this value to upper case. The operand can be omitted, in which case
the value SWS2 is used.

minor The minor name of the resource, containing up to 255 characters. The function
does not perform upper case conversion on this parameter value. If the
operand is omitted, the function supplied a value based upon the name of the
event procedure from which the request was issued.

type This operand is optional for enqueue requests. If omitted, the enqueue service
request enclusive access to the resource. Valid values for this argument are:

• E for exclusive encase
• S for shared enqueues.

The operand should be omitted for dequeue requests. If other operands follow,
code a comma to indicate its omission.

scope This argument is optional. If omitted, the value SYSTEM is used by default. It
specifies the scope of the request, which can be:

• STEP for a jobstep-wide enqueue request

• SYSTEM for a system-wide enqueue request

• SYSTEMS for a systems-wide enqueue request
7-258 Shadow Programming Guide December 1999

Web Server REXX and SEF APIs
Return Values

The function returns a numeric value equivalent to the return code issued by the
underlying MVS service.

ret The type of return value for the enqueue or dequeue request. This value is one
of the following:

• Specify HAVE to return control when the enqueue has been obtained.
• Specify NONE to return control when the enqueue has been obtained.
• Specify TEST’to test whether the desired enqueue is available immedi-

ately but does not enqueue on the resource.
• Specify USE to enqueue the desired resource only if it is available imme-

diately.
December 1999 Shadow Programming Guide 7-259

Host Application API Function Calls
High-Level Language SWSGetQueue (SWCPQG)
Function

 SWSGetQueue is the Web Server API function used to read lines from the exter-
nal data queue associated with the current web transaction thread. The function
returns the next (FIFO order) queued data line, if any, to a buffer in the applica-
tion.

Normally, an external data queue is allocated and used only when executing
Shadow/REXX procedures. However, a queue can now also be used from HLL
programs. For HLL program executions, an external data queue can be pre-allo-
cated by coding the QUEUESIZE() keyword. If one of the SWSxxxxxQueue
HLL functions is invoked, an external data queue is created dynamically, using
the default size, if one does not already exist.

CALL Arguments

The SWSGetQueue function takes four arguments, all of which are required.

Can not be used from other REXX interpreters.

No high-level language interface.

Can be used in Shadow/REXX.

Arg
HLL Argument Type

I/O Description of Argument
C COBOL PL/I

1 HDBC Usage
Pointer

PTR Input The Web Server connection handle. The connection
handle is an opaque, four-byte address pointer. The
connection handle is currently not used, and must be
set to zero (NULL).

2 PTR PIC X(nnn) CHAR(nnn) Output This argument points to the data buffer which will be
filled with the next queued line, if any. The queued
line is truncated if longer than the size of this area.
The area is binary-zero-padded on the right.

3 SDWORD PIC S9(5)
COMP

FIXED
BIN(31)

Input This argument gives the size of the data buffer
pointed to by the 2nd argument.

4 SDWORD
FAR*

PIC S9(5)
COMP

FIXED
BIN(31)

Input This argument receives the actual queued data line
size, regardless whether it was truncated during
retrieval.
7-260 Shadow Programming Guide December 1999

Web Server REXX and SEF APIs
Return Values

SWSGetQueue always sets a signed numeric return code value. Possible values
are:

PL/I Example
DCL TCONN PTR; /* Connection Handle */
DCL RC FIXED BIN(31); /* return code */
DCL DMHX FIXED BIN(31) BASED; /* Dummy Handle field */
DCL BUFFER CHAR(752); /* Buffer area */
DCL BUFFLEN FIXED BIN(31) INIT(752); /* Size of buffer */
DCL LINELEN FIXED BIN(31) INIT(0); /* Actual line size */

ADDR(TCONN)->DMHX = 0; /* Clear Connection Handle*/

CALL SWSGetQueue(TCONN /* read the queue */
 BUFFER,
 BUFFLEN,
 LINELEN);

 RC = PLIRETV(); /* get return code */
IF RC = SWS_NO_DATA_FOUND THEN /* queue is empty */
do something else
IF RC ^= SWS_SUCCESS THEN /* exit program if bad RC*/
 EXIT;

Return Value Description

SWS_SUCCESS The operation succeeded.

SWS_ERROR A parameter validation or runtime error was encountered. Error
information is available using the SWSERROR function.

SWS_ENVIRONMENT_ERROR The request could not be processed because of a runtime
environmental error. For instance, you invoked the API service
outside of a web transaction procedure, or from outside the Server’s
address space. The Server may provide diagnostic information in the
wrap-around trace.

SWS_SUCCESS_WITH_INFO The queued line was longer than the data buffer provided and was
truncated.

SWS_NO_DATA_FOUND No more lines are queued (queue is empty).

SWS_INVALID_HANDLE The connection handle is invalid. No error information is available.

Any Other Value The operation failed.
December 1999 Shadow Programming Guide 7-261

Host Application API Function Calls
C Example
HDBC tConn = NULL; /* Connection Handle */
char tbuffer[752]; /* buffer area */
SDWORD tbufflen = 752; /* buffer length */
SDWORD tLineLen = 0; /* actual line length */
long RC; /* return code */

rc = SWSGetQueue(&tConn, /* query the queue */
 &tbuffer,
 tbufflen,
 &tLineLen);

if (rc ^= SWS_SUCCESS) return; /* exit program if bad RC */

COBOL Example
77 TCONN USAGE IS POINTER.
77 TBUFFER PIC X(752).
77 TBUFFLEN PIC S9(5) COMP VALUE 752.
77 TLINESIZE PIC S9(5) COMP VALUE 0.

CALL ’SWCPQG’ USING TCONN,
 TBUFFER,
 TBUFFLEN,
 TLINESIZE.

MOVE RETURN-CODE TO WS-SWSAPI-RETURN-CODE.
IF SWS-NO-DATA-FOUND THEN
 do something else
END-IF.
IF NOT SWS-SUCCESS GOBACK.
7-262 Shadow Programming Guide December 1999

Web Server REXX and SEF APIs
SDBPARM/SWSPARM Function

You use the SDBPARM/SWSPARM function of Shadow/REXX to set or display
the values of Shadow Web Server product parameters.

Syntax

The general form for invocation of SWSPARM is:

n To display parameters, use this format:

var = SWSPARM("SHOW", parmname, "INFO", "NAMES")

n To set parameters, use this format:

var = SWSPARM("SET", parmname, newvalue)

Valid Arguments

The first two arguments are required parameters. Other arguments are optional.

Can be used in Shadow/REXX.

Can not be used from other REXX interpreters.

No high-level language interface.

parmname Specifies the name of the product parameter (for example, "TRACEHTML")
to be displayed or set. This name can contain no more than 50 characters.

For the Show function, this argument can be coded as ’GROUPS’ to have a list
of product parameters returned to the external data queue. You can also code a
product parameter group name (such as ’PRODWWW’) to display a list of the
individual parameters defined within the group.

newvalue Specifies the new value you are assigning to a parameter when you use the Set
function. This argument is required for Set requests.

INFO Use the INFO argument with the Show function to display the possible values
the parameter can have.

NAMES Use the NAMES argument with the Show function to display the names and
modifiability of individual parameters.

Note:
The ’INFO’ and ’NAMES’ parameters must be coded on the
function call as parameters 3 and 4, respectively. Use commas to
indicate any omitted arguments which precede these two values.
December 1999 Shadow Programming Guide 7-263

Host Application API Function Calls
Return Values

For all Show functions, SDBPARM/SWSPARM returns the results on the REXX
external data queue. The external data queue is not used for Set function requests.

You can retrieve the result lines from the external data queue using code such as:

DO WHILE QUEUED() > 0
PARSE PULL QLINE
....perform some process against each line
END

In addition, the SDBPARM/SWSPARM function always returns one of these
codes:

Examples

You can see this function code in action by referring to the supplied sample
PARMS Web Transaction.

Example 1

To display the address of a module, invoke the SWSPARM function as follows:

RetCode = SWSPARM("SHOW","OPWWWWPR")
Say "SWSPARM() return code is:" RetCode
Do While Queued() <> 0
Pull Data
Say Data
End

In response, the following information is displayed:

SWSPARM() return code is: 0
ADDRESS OF MODULE OPWWWWPR X’06E1B000’

Return Value Description

0 The SDBPARM/SWSPARM function completed successfully.

4 Authorization check failed.

16 The Web Server Subsystem is not active.

20 The parameter new value is not valid.

48 The parameter name specified is not valid.

52 Some type of abend occurred while processing your request.
7-264 Shadow Programming Guide December 1999

Web Server REXX and SEF APIs
Example 2

To display the current value of an individual parameter:

RetCode = SWSPARM("SHOW","TRACEHTML")
Say "SWSPARM() return code is:" RetCode
Do While Queued() <> 0
Pull Data
Say Data
End

In response, the following information is displayed:

SWSPARM() return code is: 0
WEB TRANSACTION OUTPUT TRACE DEFAULT NO

Example 3

To display the current value of an individual parameter, along with additional
information:

RetCode = SWSPARM("SHOW","TRACEHTML","INFO,"NAMES")
Say "SWSPARM() return code is:" RetCode
Do While Queued() <> 0
Pull Data
Say Data
End

In response, the following information is displayed:

SWSPARM() return code is: 0
WEB TRANSACTION OUTPUT TRACE DEFAULT NO
TRACEHTML Y PRODWWW
FIELD FORMAT BD
FIELD LENGTH 013
FIELD GROUP 016
FIELD SUFFIX *
WEB TRANSACTION OUTPUT TRACE DEFAULT FLAG OFF NO
WEB TRANSACTION OUTPUT TRACE DEFAULT FLAG ON YES

Example 4

To display the address of a module with information and name, invoke SWS-
PARM as follows:

RetCode = SWSPARM("SHOW","OPWWWWPR","INFO","NAMES")
do while QUEUED() > 0
pull data
say data
end
December 1999 Shadow Programming Guide 7-265

Host Application API Function Calls
In response, the following information is displayed:

ADDRESS OF MODULE OPWWWWPR X’06E1B000’
OPITQWFU N PRODMODULES
FIELD FORMAT ND
FIELD LENGTH 004
FIELD GROUP 015
FIELD SUFFIX *
MODULE ORIGINAL ADDRESS X’06E1B000’
MODULE FINAL ADDRESS X’06E1B000’
MODULE VECTOR TABLE ENTRY ADDRESS X’06F20390’
MODULE SIZE 14160 BYTES
MODULE PROTECT KEY CODE (2)
MODULE VERSION 02.01.00
MODULE PROGRAMMER NAME AI38LRM
MODULE ASSEMBLY DATE 04/08/96
MODULE ASSEMBLY TIME 10.04
MODULE IS ELIGIBLE FOR RELOAD YES
7-266 Shadow Programming Guide December 1999

Web Server REXX and SEF APIs
High-Level Language SWSPutQueue (SWCPQP)
Function

 SWSPutQueue is the Web Server API function used to write lines to the external
data queue associated with the current web transaction thread. The function writes
the next (FIFO order) queued data line from a buffer in the application.

Normally, an external data queue is allocated and used only when executing
Shadow/REXX procedures. However, a queue can now also be used from HLL
programs. For HLL program executions, an external data queue can be pre-allo-
cated by coding the QUEUESIZE() keyword. If one of the SWSxxxxxQueue
HLL functions is invoked, an external data queue is created dynamically, using
the default size, if one does not already exist.

CALL Arguments

The SWSPutQueue function takes three arguments, all of which are required.

See QUEUE operation.

Not available from other REXX interpreters.

HLL entry point name is SWCPQP.

Arg
HLL Argument Type

I/O Description of Argument
C COBOL PL/I

1 HDBC Usage
Pointer

PTR Input The Web Server connection handle. The connection
handle is an opaque, four-byte address pointer. The
connection handle is currently not used, and must be
set to zero (NULL).

2 PTR PIC X (nnn) CHAR(nnn) Output This argument points to the data buffer from which
the queue line will be written. The data buffer length
can not exceed the maximum line size for queue
entries (752 bytes in this release). The buffer data can
be a NULL terminated string.

3 SDWORD PIC S9(5)
COMP

FIXED
BIN(31)

Input This argument gives the size of the data to be written
to the queue. Specify SWS_NTS if the buffer
contains a NULL terminated string.
December 1999 Shadow Programming Guide 7-267

Host Application API Function Calls
Return Values

SWSPutQueue always sets a signed numeric return code value. Possible values
are:

PL/I Example
 DCL TCONN PTR; /* Connection Handle */
 DCL RC FIXED BIN(31); /* return code */
 DCL DMHX FIXED BIN(31) BASED; /* Dummy Handle field */
 DCL BUFFER CHAR(752); /* Buffer area */
 DCL BUFFLEN FIXED BIN(31); /* Data length */

 ADDR(TCONN)->DMHX = 0; /* Clear Connection Handle*/

 MOVE ’DATA TO WRITE’ to BUFFER; /* put some data there */
 MOVE 13 to BUFFLEN. /* set length of data */
 CALL SWSPutQueue(TCONN /* write the data */
 BUFFER,
 BUFFLEN);

 RC = PLIRETV(); /* get return code */
 IF RC ^= SWS_SUCCESS THEN /* exit program if bad RC */
 EXIT;

Return Value Description

SWS_SUCCESS The operation succeeded.

SWS_ERROR A parameter validation or runtime error was encountered. Error
information is available using the SWSERROR function.

SWS_ENVIRONMENT_ERROR The request could not be processed because of a runtime
environmental error. For instance, you invoked the API service
outside of a web transaction procedure, or from outside the Server’s
address space. The Server may provide diagnostic information in the
wrap-around trace.

SWS_INVALID_HANDLE The connection handle is invalid. No error information is available.

Any Other Value The operation failed.
7-268 Shadow Programming Guide December 1999

Web Server REXX and SEF APIs
C Example
 HDBC tConn = NULL; /* Connection Handle */
 long RC; /* return code */

rc = SWSPutQueue(&tConn, /* query the queue */
 "Hello World.",
 SWS_NTS);

if (rc ^= SWS_SUCCESS) return; /* exit program if bad RC */

COBOL Example
77 TCONN USAGE IS POINTER.
77 TBUFFER PIC X(752).
77 TBUFFLEN PIC S9(5) COMP.

MOVE ’DATA TO WRITE’ TO TBUFFER.
MOVE 13 to TBUFFLEN.
CALL ’SWCPQP’ USING TCONN,
 TBUFFER,
 TBUFFLEN.

MOVE RETURN-CODE TO WS-SWSAPI-RETURN-CODE.
 IF NOT SWS-SUCCESS GOBACK.
December 1999 Shadow Programming Guide 7-269

Host Application API Function Calls
High-Level Language SWSQueryQueue
(SWCPQQ) Function

 SWSQueryQueue is the Web Server API function used to query the external data
queue associated with the current web transaction thread. The function returns
information about the overall queue size, maximum size of each line, and number
of queued lines.

Normally, an external data queue is allocated and used only when executing
Shadow/REXX procedures. However, a queue can now also be used from HLL
programs. For HLL program executions, an external data queue can be pre-allo-
cated by coding the QUEUESIZE() keyword. If one of the SWSxxxxxQueue
HLL functions is invoked, an external data queue is created dynamically, using
the default size, if one does not already exist.

CALL Arguments

The SWSQueryQueue function takes four arguments, all of which are required.

See QUEUED() built-in function.

Not available from other REXX interpreters.

HLL entry point name is SWCPQQ.

Arg
HLL Argument Type

I/O Description of Argument
C COBOL PL/I

1 HDBC Usage
Pointer

PTR Input The Web Server connection handle. The connection
handle is an opaque, four-byte address pointer. The
connection handle is currently not used, and must be
set to zero (NULL).

2 SDWORD
FAR*

PIC S9(5)
COMP

FIXED
BIN(31)

Input This argument receives the maximum size of each
queued line. The value returned is 752 in the current
release of the product.

3 SDWORD
FAR*

PIC S9(5)
COMP

FIXED
BIN(31)

Input This argument receives a count of the maximum
possible lines allocated to the queue; both in-use and
free lines are included in the total.

4 SDWORD
FAR*

PIC S9(5)
COMP

FIXED
BIN(31)

Input This argument receives a count of the currently
queued lines.
7-270 Shadow Programming Guide December 1999

Web Server REXX and SEF APIs
Return Values

SWSQueryQueue always sets a signed numeric return code value. Possible values
are:

PL/I Example
DCL TCONN PTR; /* Connection Handle */
DCL RC FIXED BIN(31); /* return code */
DCL DMHX FIXED BIN(31) BASED; /* Dummy Handle field */
DCL LINESIZE FIXED BIN(31) INIT(0); /* Maximum Line Size */
DCL MAXLINES FIXED BIN(31) INIT(0); /* Total Lines */
DCL QUEUED FIXED BIN(31) INIT(0); /* Queued Lines */

ADDR(TCONN)->DMHX = 0; /* Clear Connection Handle*/

CALL SWSQueryQueue(TCONN /* query the queue */
 LINESIZE,
 MAXLINES,
 QUEUED);

RC = PLIRETV(); /* get return code */
IF RC ^= SWS_SUCCESS THEN /* exit program if bad RC */
 EXIT;

Return Value Description

SWS_SUCCESS The operation succeeded.

SWS_ERROR A parameter validation or runtime error was encountered. Error
information is available using the SWSERROR function.

SWS_ENVIRONMENT_ERROR The request could not be processed because of a runtime
environmental error. For instance, you invoked the API service
outside of a web transaction procedure, or from outside the Server’s
address space. The Server may provide diagnostic information in the
wrap-around trace.

SWS_INVALID_HANDLE The connection handle is invalid. No error information is available.

Any Other Value The operation failed.
December 1999 Shadow Programming Guide 7-271

Host Application API Function Calls
C Example
HDBC tConn = NULL; /* Connection Handle */
SDWORD tLineSize = 0; /* Lines Size */
SDWORD tMaxLines = 0; /* Total lines */
SDWORD tQueued = 0; /* Queued Lines */
long RC; /* return code */

rc = SWSQueryQueue(&tConn, /* query the queue */
 &tLineSize,
 &tMaxLines,
 &tQueued);

if (rc ^= SWS_SUCCESS) return; /* exit program if bad RC */

COBOL Example
77 TCONN USAGE IS POINTER.
77 TLINESSIZE PIC S9(5) COMP VALUE 0.
77 TMAXLINES PIC S9(5) COMP VALUE 0.
77 TQUEUED PIC S9(5) COMP VALUE 0.

CALL ’SWCPQQ’ USING TCONN,
 TLINESIZE,
 TMAXLINES,
 TQUEUED.

MOVE RETURN-CODE TO WS-SWSAPI-RETURN-CODE.
IF NOT SWS-SUCCESS GOBACK.
7-272 Shadow Programming Guide December 1999

Web Server REXX and SEF APIs
SDBSMF/SWSSMF Function

This function enables SEF event procedures to create and write customized SMF
records.

Syntax

The general form for invocation of SDBSMF/SWSSMF is:

var = SWSSMF(subtype, data)

Valid Arguments

Both arguments to the SWSSMF function are required. The arguments are:

Return Values

The SDBSMF/SWSSMF function returns these values:

Can be used in Shadow/REXX.

Can not be used from other REXX interpreters.

No high-level language interface.

subtype A numeric value between 1000 and 32767. This value becomes the SMF
record subtype code.

data The data argument is the part of the SMF record following the standard
Shadow Web Server 40-byte header section. This data can contain at most 344
bytes. If records exceed this limit, Shadow/REXX truncates them and issues
a warning message.

Return Value Description

0 The SMF record was successfully written.

4 Shadow/REXX received a non-zero return code from the SMFWTM
macro while trying to write the SMF record. This error can result
when all SMF data sets are full.

8 The product’s SMFNUMBER parameter is set to zero, preventing
the product from creating SMF records.
December 1999 Shadow Programming Guide 7-273

Host Application API Function Calls
SWSXMIT Function

SWSXMIT is a built-in function used to transmit out-bound data to web server
clients from REXX-Language event procedures. SWSXMIT can only be used
from within WWW event procedures and will return an error if invoked from
other event procedure types.

This function is obsolete, although it will continue to be supported for the foresee-
able future. NEON Systems recommends you use the SWSSEND built-in func-
tion.

Syntax

The general form for invocation of SWSXMIT is:

z = SWSXMIT(arg1 {, arg2 {, arg3 {, arg4 }}})

Valid Arguments

The SWSXMIT function takes from one to four arguments. The first argument is
always required. All other arguments are optional.

The first argument always specifies the data to be transmitted to the web server
client. A NULL string can be passed as the first argument, or the argument can be
omitted entirely by coding a single comma in its place.

The second through fourth arguments are selected from the following string con-
stants:

Can be used in Shadow/REXX.

Can not be used from other REXX interpreters.

No high-level language interface.

See also SWSSEND Host Command Environment.

LF Indicates that a Linefeed character should be appended to the data. This
operand can also be coded as the constant CRLF.

ASCII Indicates that the data should be translated from EBCDIC to ASCII before
transmission.

FLUSH Indicates that this data (and any data already in the out-bound buffers) should
be written to the client immediately.

PURGE Indicates that all data currently un-transmitted within buffers should be
discarded.
7-274 Shadow Programming Guide December 1999

Web Server REXX and SEF APIs
The PURGE operand must not be coded in conjunction with any other arguments.

Return Values

The function returns a zero to the calling program if the function completed suc-
cessfully. A non-zero value indicates that the out-bound communications session
has failed.

Examples

The following call will buffer the HTML data for out-bound transmission. A Line-
Feed character will be added following the data and the data will be translated to
ASCII before transmission:

htmldata = "<h1>This is a Header</h1>"
z=SWSXMIT(htmldata, ’LF’, ’ASCII’)

The following call will place the data into the out-bound buffer with no additional
processing:

z=SWSXMIT(gifdata)

The following call will buffer the HTML data for out-bound transmission. It will
then cause all buffered data to be sent to the client immediately.

htmldata = "<h1>This is a Header</h1>"
z=SWSXMIT(htmldata, ’ASCII’, ’LF’, ’FLUSH’)

The following call will purge all previously buffered data. Data which was flushed
prior to this call, will have already been sent to the web client.

z=SWSXMIT(, ’PURGE’)
December 1999 Shadow Programming Guide 7-275

Host Application API Function Calls
7-276 Shadow Programming Guide December 1999

CHAPTER 8:
Shadow Enterprise Direct API Function

Calls

This chapter describes all Shadow Enterprise Direct Host Application Program Interface (API) func-
tions and applies specifically to Shadow Enterprise Direct.

Direct API API Description

NEONBindCol To bind columns for result set.

NEONDescribeParam To describe passed parameter.

NEONError To get error information.

NEONGetInfo To return information to ODBC CALL RPC.

NEONNumParams To access number of parameters.

NEONResetParam To reset parameters.

NEONReturnStatus To return status to client.

NEONThrow To return row to result set.

NEONTraceMsg To write message to trace browser.
December 1999 Shadow Programming Guide 8-1

Shadow Enterprise Direct API Function Calls
NEONBindCol
 performs a bind column on behalf of an ODBC CALL RPC. This call is used to
bind a column to return sets back to the client. The caller must provide informa-
tion, which is used to build a description of the result-set column.

Syntax

The general form for invocation of NEONBindCol is:

rc=NEONBindCol (NULL,
 2,
 SQL_C_DEFAULT,
 SQL_INTEGER,
 sizeof(int),
 0,
 SQL_NULLABLE,
 vlsr,
 &alen,
 "Value",
 SQL_NTS);

Arguments

The NEONBindCol function can be called by any ODBC CALL RPC and accepts
the following arguments:

Arg. No. Arg. Type Arg. Name
Input/
Output

Arg. Description

1 LONG hstmt INPUT Statement handle. Since only one host RPC can execute at
a time for each host session, this value is ignored and must
be zero.

2 LONG icol INPUT Column number of the result data. Columns are numbered
from the left, starting with 1.

3 LONG fCType INPUT C data type of column data. Value must be
SQL_C_DEFAULT at this time. This means that C type
must match SQL type.

4 LONG fSqlType INPUT SQL data type of column data.

5 LONG cbColDef INPUT Precision of column. This value is primarily used for
decimal and character string data.

6 LONG ibScale INPUT Scale of column. This value is primarily used for decimal
data.

7 LONG fnullable INPUT Indicates if column can have null values. Possible values
are SQL_NO_NULLS and SQL_NULLABLE.

8 LONG rgbvalue INPUT Pointer to storage for data. Actual data must be at this
location when NEONThrow function is called to send a
row.
8-2 Shadow Programming Guide December 1999

Return Values

NEONBindCol always sets a signed numeric return code value. Possible values
are:

Diagnostics

When NEONBindCol returns SQL_ERROR or SQL_SUCCESS_WITH_INFO,
an associated SQLSTATE value may be obtained by calling NEONError. The fol-
lowing table lists the SQLSTATE values commonly returned by NEONBindCol
and explains each one in the context of this function. The return code associated
with each SQLSTATE value is SQL_ERROR, unless noted otherwise.

9 LONG pcbvalue INPUT Pointer to storage for length of column data. Length is
used when NEONThrow function is called to send a row.

10 CHAR* szcolname INPUT Pointer to storage containing column name. Column name
must be a valid DB2 column name.

11 LONG cbcolname INPUT Length of column name string. This must be a valid DB2
column name length.

Return Value Description

SQL_SUCCESS The operation succeeded. The specified operation was performed.

SQL_SUCCESS_WITH_INFO The operation partially succeeded. This return code value is set
when the returned error message text has been truncated.

SQL_ERROR A parameter validation error was found.

SQL_INVALID_HANDLE The connection handle argument is invalid. No error information can
be returned using NEONError.

SQL State Error Description

SS1000 General error Invalid parameter list detected.

S1002 Invalid column number Column number is zero.

S1002 Invalid column number Column number exceeds maximum value.

S1010 Function sequence error Result set has already been started.

Arg. No. Arg. Type Arg. Name
Input/
Output

Arg. Description
December 1999 Shadow Programming Guide 8-3

Shadow Enterprise Direct API Function Calls
Example
rc = NEONBindCol (NULL, /* null statement handle */

2, /* column number */
SQL_C_DEFAULT, /* default C type */
SQL_CHAR, /* character SQL type */
sizeof(vlsr)-1, /* precision of column */
0, /* zero scale */
SQL_NULLABLE, /* column is nullable */
vlsr, /* pointer to column value */
&alen, /* pointer to column length */
"Value", /* column name */
SQL_NTS); /* length indicates null-

 terminated */
8-4 Shadow Programming Guide December 1999

NEONDescribeParam
NEONDescribeParam is used to obtain information about a parameter passed
from the client to the host.

Syntax

The general form for invocation of NEONDescribeParam:

rc=NEONDescribeParam (NULL,
 i,
 &sqty,
 &prec,
 &scal,
 NULL,
 &paty,
 &daad,
 &daln);

CALL Arguments

The NEONDescribeParam function can be called by any ODBC CALL RPC and
accepts the following arguments:

Note:
The client can pass parameters to the host using both parameter
markers (?) and parameter literals. Both types of client parameters
are treated the same way on the host.

Arg. No. Arg. Type Arg. Name
Input/
Output

Arg. Description

1 LONG hstmt Input Statement handle. Since only one host RPC can execute at
a time for each host session, this value is ignored and must
be zero.

2 LONG ipar Input Parameter number. All parameters including literals are
numbered from the left starting at 1.00

3 LONG fSqlType Output SQL data type of parameter data.

4 LONG pcbColDef Output Precision of parameter. This value is primarily used for
decimal and character string data.

5 LONG pibScale Output Scale of parameter. This value is primarily used for
decimal data.

6 LONG pfNullable Output Indicates whether or not parameter allows null values.

7 LONG pfparamtype Output Indicates input/output type of parameter. Parameters can
be used to send data to host (input), receive data from host
(output), or both (input/output).

8 LONG prgbValue Output Pointer to storage for parameter. Parameter can be
accessed and updated at this storage location.
December 1999 Shadow Programming Guide 8-5

Shadow Enterprise Direct API Function Calls
Return Values

NEONDescribeParam always sets a signed numeric return code value. Possible
values are:

Diagnostics

When NEONDescribeParam returns SQL_ERROR or
SQL_SUCCESS_WITH_INFO, an associated SQLSTATE value may be obtained
by calling NEONError. The following table lists the SQLSTATE values com-
monly returned by NEONDescribeParam and explains each one in the context of
this function. The return code associated with each SQLSTATE value is
SQL_ERROR, unless noted otherwise.

9 LONG PcbValue Output Actual length of column. Length will be same as precision
except for variable length fields (character and binary).
For variable length fields, length will be current length.
For all types, this field may contain SQL_NULL_DATA.

Return Value Description

SQL_SUCCESS The operation succeeded. The specified operation was performed.

SQL_SUCCESS_WITH_INFO The operation partially succeeded. This return code value is set
when the returned error message text has been truncated.

SQL_ERROR A parameter validation error was found.

SQL_INVALID_HANDLE The connection handle argument is invalid. No error information can
be returned using NEONError.

SQL State Error Description

SS1000 General error Invalid parameter list detected.

S1000 General error No room in buffer for column description.

S1004S1002 SQL data type out of range SQL data type is invalid.

S1009 Invalid argument value Column name address not set.

S1009 Invalid argument value Column data length address not set.

S1009 Invalid argument value Column data address is not set.

S1090 Invalid string or buffer length Column name length is invalid.

S1090 Invalid string or buffer length Column name length is not valid.

S1094 Invalid scale value Decimal scale value is invalid.

S1099 Nullable type out of range Nullable status value is invalid.

Arg. No. Arg. Type Arg. Name
Input/
Output

Arg. Description
8-6 Shadow Programming Guide December 1999

Example
rc = NEONDescribeParam(NULL, /* null statement handle */
 i, /* column number */
 &sqty, /* pointer to SQL type */
 &prec, /* pointer to parameter’s prec */
 &scal, /* pointer to parameter’s scale */
 NULL, /* nullable status not requested*/
 &paty, /* pointer to parameter’s type */
 &daad, /* data address (not used) */
 &daln); /* data len address (not used) */

S1104S1002 Invalid precision value Decimal precision value is invalid.

S1104S1002 Invalid precision value String or binary precision value is invalid.

S1C00S Driver not capable Data type is not SQL_C_DEFAULT.

SQL State Error Description
December 1999 Shadow Programming Guide 8-7

Shadow Enterprise Direct API Function Calls
NEONError
 NEONError is the API function used to fetch information pertaining to the last
Application Program Interface error detected for this transaction.

Syntax

The general form for invocation of NEONError is:

rc = NEONError (NULL,NULL, NULL,
 NULL,
 &ercd,
 (UCHAR FAR *),
 sizeof (ermg),
 NULL)

CALL Arguments

The NEONError function call requires eight arguments. None may be omitted
from the function call.

Arg. No. Arg. Type Arg. Name
Input/
Output

Arg. Description

1 HENV henv INPUT The Web Server environment handle. The environment
handle is an opaque, four-byte address pointer. The
environment handle is currently not used, and must be set
to zero (NULL).

2 HDBC hdbc INPUT The connection handle. The connection handle is an
opaque, four-byte address pointer. The connection handle
is currently not used, and must be set to zero (NULL).

3 HSTMT hstmt INPUT The Web Server statement handle. The statement handle is
an opaque, four-byte address pointer. The statement
handle is currently not used, and must be set to zero
(NULL).

4 UCHAR* szSqlState OUTPUT This argument should specify a character string buffer of
at least 6 bytes in length. A state value, compatible in
format with the ODBC specification is returned in this
area, as a null terminated string.

5 SDWORD* pfNativeError OUTPUT The ’native’ error code is returned within this area. This is
some value that describes the error condition.

6 UCHAR* szErrorMsg OUTPUT The buffer area which receives the error message text.
Note that the error message text will always be null-
terminated. Room for the trailing null must be provided.

7 SDWORD cbErrorMsgMax INPUT The total size of the error message buffer area supplied by
the sixth argument. The error message will be truncated if
it does not fit into this buffer, including room for the
trailing null terminator.
8-8 Shadow Programming Guide December 1999

Return Values

NEONError always sets a signed numeric return code value. Possible values are:

Example
rc = NEONError (NULL,NULL,NULL,/* null env, conn, stmt handles */

NULL, /* not interested in SQL state */
&ercd, /* native error code */
(UCHAR FAR *), /* error message buffer */
sizeof (ermg), /* size of error message buffer */
NULL) /* not interested in real msg len*/

8 SDWORD* pcbErrorMsg OUTPUT The API returns the total size of the error message
(excluding the null terminator). The returned size value
will be larger than the buffer size if the error message has
been truncated.

Return Value Description

SQL_SUCCESS The operation succeeded. The return values have been set.

SQL_SUCCESS_WITH_INFO The operation partially succeeded. This return code value is set
when the returned error message text has been truncated.

SQL_ERROR A parameter validation error was found.

SQL_INVALID_HANDLE One of the handle arguments is invalid.

Arg. No. Arg. Type Arg. Name
Input/
Output

Arg. Description
December 1999 Shadow Programming Guide 8-9

Shadow Enterprise Direct API Function Calls
NEONGetInfo
NEONGetInfo is the API function used to fetch information about the current
transaction execution environment and return it to the caller.

Syntax

The general form for invocation of NEONGetInfo is:

rc = NEONGetInfo(&sConn,
 SWS_GET_IPADDRESS,
 &sBuff[0],
 sizeof(sBuff),
 &sRTSZ);

CALL Arguments

The NEONGetInfo function takes five arguments. All five arguments must be
specified on the call.

Arg. No. Arg. Type Arg. Name
Input/
Output

Arg. Description

1 HDBC hdbc Input The connection handle. The connection handle is an
opaque, four-byte address pointer. The connection handle
is currently not used, and must be set to zero (NULL).

2 UDWORD fInfoType Input A four-byte binary integer indicating the information item
to be returned by the function. Specify any one of the
manifest constants, shown in the table below, to indicate
the data item to be fetched.

3 UCHAR * rgbInfoValue Output The data buffer to receive the fetched information.
Depending on the value of the second argument, the
returned data may be a null-terminated string; a 16-bit
integer value, a 32-bit flag-word value, or a 32-bit signed
or unsigned integer.

4 SDWORD cbInfoValueMax Input The size of the data buffer area given by the third
argument.

5 SDWORD * pcbInfoValue Output Return area receiving the total size, in bytes, of the
requested information value, regardless of whether the
fetched value could be completely stored within the buffer
area. For character format data items, which are null
terminated, this value does not include the null
termination byte.

For requests which return character data: If the total size
of the requested information is greater than or equal to the
size of the data buffer the returned character string is
truncated, and a null terminationbyte is placed into the last
available of the buffer area.

For requests which return any other data type: The value
given by the forth argument is ignored. The size of the
return buffer area is assumed to be at least four bytes.
8-10 Shadow Programming Guide December 1999

Return Values

NEONGetInfo always sets a signed numeric return code value. Possible values
are:

Example
HDBC sConn = NULL; /* Connection Handle */
char sBuff[256]; /* Return Buffer Area */
SDWORD sRTSZ; /* Return item size */
long RC; /* return code */

 rc = NEONGetInfo(&sConn,
 SWS_GET_IPADDRESS,
 &sBuff[0],
 sizeof(sBuff),
 &sRTSZ);

Return Value Description

SQL_SUCCESS The operation succeeded. The requested data has been fetched and
placed into the buffer area. The actual size of the data is set into the
sixth argument.

SQL_SUCCESS_WITH_INFO The return buffer area was not large enough to store the fetched
item. The fetched item was truncated. The size of the fetched item,
before truncation, is returned to the sixth argument. For character
data, a null termination byte is always placed into the last buffer
position.

SQL_ERROR A parameter validation error was found.

SQL_INVALID_HANDLE The connection handle argument is invalid. No error
information can be returned using NEONGetInfo.
December 1999 Shadow Programming Guide 8-11

Shadow Enterprise Direct API Function Calls
NEONNumParams
NEONNumParams is used to obtain the number of parameters passed from the
client to the host. This value will be zero or greater.

Syntax

The general form for invocation of NEONNumParams is:

rc=NEONNumParams (&st,
 &pacn)

CALL Arguments

The NEONNumParams function can be called by any ODBC CALL RPC and
accepts the following arguments:

Return Values

NEONNumParams always sets a signed numeric return code value. Possible val-
ues are: The connection handle argument is invalid. No error information can be
returned using NEONGetInfo.

Note:
The client can pass parameters to the host using both parameter
markers (?) and parameter literals. Both types of client parameters
are treated the same way on the host.

Arg. No. Arg. Type Arg. Name
Input/
Output

Arg. Description

1 LONG hstmt Input Statement handle. Since only one host RPC can execute at
a time, for each host session, this value is ignored and
must be zero.

2 LONG pcpar output Number of RPC parameters passed to host from client.
This argument is a pointer to a signed four-byte integer.

Return Value Description

SQL_SUCCESS The operation succeeded. The specified operation was performed.

SQL_SUCCESS_WITH_INFO The operation partially succeeded. This return code value is set
when the returned error message text has been truncated.

SQL_ERROR A parameter validation error was found.

SQL_INVALID_HANDLE The connection handle argument is invalid. No error information can
be returned using NEONError.
8-12 Shadow Programming Guide December 1999

Diagnostics

When NEONNumParams returns SQL_ERROR or
SQL_SUCCESS_WITH_INFO, an associated SQLSTATE value may be obtained
by calling NEONError. The following table lists the SQLSTATE values com-
monly returned by NEONNumParams and explains each one in the context of this
function. The return code associated with each SQLSTATE value is
SQL_ERROR, unless noted otherwise.

Example
rc=NEONNumParams (&st,
 &pacn)

SQL State Error Description

SS1000 General error Invalid parameter list detected.

S1009S Invalid argument value Parameter count address not set.
December 1999 Shadow Programming Guide 8-13

Shadow Enterprise Direct API Function Calls
NEONResetParam
NEONResetParam is used to reset the length of a parameter passed from the client
to the host.

In practice, this routine is really only used to change null parameters to non-null
parameters and vice versa.

Syntax

The general form for invocation of NEONResetParam is:

rc=NEONResetParam (hstmt,
 rgbMsgText,
 cbMsgText,
 fOption)

CALL Arguments

The NEONResetParam function can be called by any ODBC CALL RPC and
accepts the following arguments:

Return Values

NEONResetParam always sets a signed numeric return code value. Possible val-
ues are:

Note:
The client can pass parameters to the host using both parameter
markers (?) and parameter literals. This routine can only be used
with parameter markers.

Arg. No. Arg. Type Arg. Name
Input/
Output

Arg. Description

1 LONG hstmt Input Statement handle. Since only one host RPC can execute at
a time for each host session, this value is ignored and must
be zero.

2 LONG ipar Input Parameter number. All parameters including literals are
numbered from the left starting at 1.

3 LONG cbValue INput New parameter length value. Parameter becomes null if
new value is SQL_NULL_DATA. Parameter becomes
NON_NULL if new value is not SQL_NULL_DATA.

Return Value Description

SQL_SUCCESS The operation succeeded. The specified operation was performed.

SQL_SUCCESS_WITH_INFO The operation partially succeeded. This return code value is set
when the returned error message text has been truncated.
8-14 Shadow Programming Guide December 1999

Diagnostics

When NEONResetParam returns SQL_ERROR or
SQL_SUCCESS_WITH_INFO, an associated SQLSTATE value may be obtained
by calling NEONError. The following table lists the SQLSTATE values com-
monly returned by NEONResetParam and explains each one in the context of this
function. The return code associated with each SQLSTATE value is
SQL_ERROR, unless noted otherwise.

Example
rc=NEONResetParam (hstmt,
 rgbMsgText,
 cbMsgText,
 fOption)

SQL_ERROR A parameter validation error was found.

SQL_INVALID_HANDLE The connection handle argument is invalid. No error information can
be returned using NEONError.

SQL State Error Description

SS1000 General error Invalid parameter list detected.

S1000 General error Trace message construction failed.

S1000 General error Invalid option value detected.

S1009S Invalid argument value Message area address not set.

S1009 Invalid argument value Trace message insertion failed.

S1090S1002 Invalid string or buffer length Message area length is invalid.

S1090 Invalid string or buffer length Message text length is not valid.

Return Value Description
December 1999 Shadow Programming Guide 8-15

Shadow Enterprise Direct API Function Calls

ce

d
NEONReturnStatus
NEONReturnStatus is used to return status information to the client from an
ODBC CALL RPC. The status data determines the return code from the SQLEX-
ECDIRECT, SQLPREPARE, or SQLEXECUTE function that started the RPC.
The client application can retrieve the status data (message and native code) by
calling NEONError.

The actual return code returned to the ODBC application will be
SQL_SUCCESS_WITH_INFO if this routine provides a positive return code and
SQL_ERROR if this routine provides a negative return code. The return code pro-
vided by this routine is returned to the client application as the native error code
(see the NEONError function description in the ODBC programmer’s referen
manual, not the NEONError function description here).

Syntax

The general form for invocation of NEONReturnStatus is:

rc=NEONReturnStatus (NULL,
 ermg,
 sizeof(ermg),
 ercd);

CALL Arguments

The NEONReturnStatus function can be called by any ODBC CALL RPC an
accepts the following arguments:

Arg. No. Arg. Type Arg. Name
Input/
Output

Arg. Description

1 LONG hdbc Input Connection handle. Since only one host RPC can execute
at a time for each host session, this value is ignored and
must be zero.

2 CHAR* rgbMsgText Input Address of message text to be returned. Text must be set
before function is called.

3 LONG cbMsgText Input Length of message text to be returned. Value can be an
actual length or can be specified as SQL_NTS if the
message text is NULL_TERMINATED.

4 LONG fNativeError Input Native error code. If value is negative, client return code
will be SQL_ERROR. If value is positive, client return
code will be SQL_SUCCESS_WITH_INFO. This field
must not be zero.
8-16 Shadow Programming Guide December 1999

Return Values

NEONReturnStatus always sets a signed numeric return code value. Possible val-
ues are:

Diagnostics

When NEONReturnStatus returns SQL_ERROR or
SQL_SUCCESS_WITH_INFO, an associated SQLSTATE value may be obtained
by calling NEONError. The following table lists the SQLSTATE values com-
monly returned by SQLReturnStatus and explains each one in the context of this
function. The return code associated with each SQLSTATE value is
SQL_ERROR, unless noted otherwise.

Example
 NEONReturnStatus(NULL, /* null statement handle */
 ermg, /*error message buffer */
 sizeof(ermg), /*size of error message buffer */
 ercd); /* error message */

Return Value Description

SQL_SUCCESS The operation succeeded. The specified operation was performed.

SQL_SUCCESS_WITH_INFO The operation partially succeeded. This return code value is set
when the returned error message text has been truncated.

SQL_ERROR A parameter validation error was found.

SQL_INVALID_HANDLE The connection handle argument is invalid. No error information can
be returned using NEONError.

SQL State Error Description

SS1000 General error Invalid parameter list detected.

S1000 General error Invalid native error code detected.

S1009S Invalid argument value Message area address not set.

S1090S1002 Invalid string or buffer length Message area length is invalid.

S1090 Invalid argument value Message text length is not valid.
December 1999 Shadow Programming Guide 8-17

Shadow Enterprise Direct API Function Calls
NEONThrow
 NEONThrow is used to send a row from the host ODBC call RPC back to the cli-
ent.

NEONThrow is called for each row in the result set. When populating the result
set, NEONThrow is called with a parameter of SQL_THROW_ROW. Once the
result set is populated and you wish to send the result to the client, NEONThrow
is called once again with a parameter of SQL_THROW_DONE.

Syntax

The general form for invocation of NEONThrow is:

rc= NEONThrow(NULL,
 SQL_THROW_DONE);

CALL Arguments

The NEONThrow function can be called by any ODBC CALL RPC and accepts
the following arguments:

Return Values

NEONThrow always sets a signed numeric return code value. Possible values are:

Note:
One or more columns must be bound before this routine is called.

Arg. No. Arg. Type Arg. Name
Input/
Output

Arg. Description

1 LONG hstmt INPUT Statement handle. Since only one host RPC can execute at
a time for each host session, this value is ignored and must
be zero.

2 LONG fOption INPUT Top of operation needed. This value is used to indicate
that row is being provided or that result set is complete.

Return Value Description

SQL_SUCCESS The operation succeeded. The specified operation was performed.

SQL_SUCCESS_WITH_INFO The operation partially succeeded. This return code value is set
when the returned error message text has been truncated.

SQL_ERROR A parameter validation error was found.

SQL_INVALID_HANDLE The connection handle argument is invalid. No error information can
be returned using NEONError.
8-18 Shadow Programming Guide December 1999

Diagnostics

When NEONThrow returns SQL_ERROR or SQL_SUCCESS_WITH_INFO, an
associated SQLSTATE value may be obtained by calling NEONError. The fol-
lowing table lists the SQLSTATE values commonly returned by NEONThrow and
explains each one in the context of this function. The return code associated with
each SQLSTATE value is SQL_ERROR, unless noted otherwise.

Example
rc = NEONThrow(NULL, /* null statement handle */
 SQL_THROW_ROW); /* throw the row to client */

SQL State Error Description

SS1000 General error Invalid parameter list detected.

S1000S General error Invalid option value detected.

S1000 General error Null data specified for a non-null column.

S1000 General error Maximum row count limit has been reached.

S1001 Memory allocation failure Buffer space allocation failed.

S1010S1002 Function sequence error Result set has already been completed.

24000 Invalid cursor state No columns have been bound so far.
December 1999 Shadow Programming Guide 8-19

Shadow Enterprise Direct API Function Calls
NEONTraceMsg
NEONTraceMsg is used to write a message into the wrap-around trace browse
dataset. The message can contain any text desired. If the message is too long to fit
within a trace browse record, it is truncated. Truncation is not considered an error.

Syntax

The general form for invocation of NEONTraceMsg is:

rc = NEONTraceMsg(&tConn,
 tData,
 SWS_NTS,
 0);

CALL Arguments

The NEONTraceMsg function takes four arguments. All four arguments must be
specified on the call.

Return Values

NEONTraceMsg always sets a signed numeric return code value. Possible values
are:

Arg. No. Arg. Type Arg. Name
Input/
Output

Arg. Description

1 HDBC henv Input The connection handle. The connection handle is an
opaque, four-byte address pointer. The connection handle
is currently not used, and must be set to zero (NULL).

2 PTR rgbMsgText Input The data value which is to be written to the trace browse
wrap-around dataset. You may specify a null terminated
string, or explicitly provide the value length via the third
argument.

The maximum useable length for a trace browse record is
approximately 730 bytes.

3 SDWORD cbMsgText Input The size of the data value given by the second argument
which is to be written to the trace record.

4 UDWORD fOption Input This argument is currently not used, but may be in future
releases. You must specify a zero value.

Return Value Description

SQL_SUCCESS The operation succeeded. The specified data was written to the
product’s wrap-around trace.

SQL_INVALID_HANDLE The connection handle is invalid. No error information is available.

SQL_ERROR A parameter validation or write error was encountered.

Any Other Value The operation failed.
8-20 Shadow Programming Guide December 1999

Example
HDBC tConn = NULL; /* Connection Handle */
char tData[] = "Null-terminated!"; /* Text string definition*/
long RC; /* return code */

rc = NEONTraceMsg(&tConn, /* output trace message */
tData,
SWS_NTS,
0);
December 1999 Shadow Programming Guide 8-21

Shadow Enterprise Direct API Function Calls
8-22 Shadow Programming Guide December 1999

CHAPTER 9:
Transaction Level Security (TLS)

This chapter covers Transaction Level Support (TLS). TLS was created to support the new and unique
security requirements of Internet applications, while operating in the traditional enterprise computing
environment. With TLS, web applications that access OS/390 data and transactions can be used by
people who do not have mainframe userids. TLS can also be used with non-Internet applications. This
chapter will provide a brief overview of TLS, as well as its implementation.
This chapter applies to Shadow Direct only.

What is TLS?
TLS is a mechanism that provides protection for business transactions on the
Internet by allowing two entities to conduct a transaction with privacy and authen-
tication.To accomplish this, TLS creates a separate, temporary security environ-
ment for each transaction that is sent over a connection from a middle-tier Web
server or Application server to Shadow Direct on the host. The transaction is typi-
cally an RPC/stored procedure and the connection is a network session.

The Transaction Level Security environment can also be used to control access to
the RPC, as well as perform such tasks as logging, tracing, auditing, etc.

Why use TLS?
The development of TLS grew from the need to replace traditional OS/390,
UNIX, and NT security architecture, since it could not adequately handle the
larger volumes of data associated with Internet applications and used by mil-
lions of people. In addition, traditional userids have become too costly to
create and administer, and use too many machine resources required for
logging onto the Internet.

TLS is based on the following assumptions:

n Connections. TLS assumes that each middle-tier Application Server (AS) or
Web Server will initialize a small number of permanent connections to the
host server.

n Connection/Session/Thread Reuse. TLS assumes that each of the relatively
small number of connections will be shared across all of the Internet
connections. Each connection can be serially reused an arbitrary number of
times by a different Internet user each time.

n Control Userids. Given the lack of any relationship between the identity of
an Internet user and host userid, and the continuous reuse of each of the
pooled host connections, TLS assumes that all of the connections will be
December 1999 Shadow Programming Guide 9-1

Transaction Level Security (TLS)
established with a control userid that has sufficient resource access for all of
the applications running on the AS/Web Server.

n Transaction Security. Because each connection is serially reused, each
transaction for a given connection can be executed for a different Internet
user. This means that each transaction must have a separate security
environment associated with it, and must be appropriate for Internet
application.

n Performance. It must be possible to establish and access a transaction
security environment with essentially no or negligible overhead.

n Resource Access. The transaction security data must be available on the host
side to control resource access on an application specific, selective basis. The
transaction security data must also be available for auditing, logging, tracing,
tracking, etc.

Implementing TLS
Shadow Direct implements TLS with a host of related new facilities. Together
each of these facilities is an answer to the above assumptions.

All of the facilities are based on two new IDs:

n Generic ID
n Extended ID

These two IDs are provided in addition to the traditional userids supported by
Shadow Direct. They are optional and can be used either together or separately.

In addition, the Generic and Extended ID values can be used for application
debugging, logging, tracing, and auditing purposes. In many respects, they are
similar to the User Parameter that can be set as part of the ODBC connection ini-
tialization, however, they have the advantage that they can be set and/or reset as
many times as needed for each connection.

Generic ID

The Generic ID is an 8-byte string, which is automatically converted to uppercase
and padded with blanks on the right. The Generic ID is made available to host
applications, and is used for auditing, logging, tracing, tracking, etc. It is specified
as an ASCII string on the client and is automatically converted to EBCDIC for
host processing.

Extended ID

The Extended ID is a variable length 128 byte string. This string is passed from
the client (ODBC) environment to the host. On the host side this ID is made avail-
able to host applications and is used for auditing, logging, tracing, tracking, etc.
The Extended ID is assumed to contain some type of application specific user
identifier such as an email address, Social Security Number, Login Name, Access
ID, etc. Like the Generic ID, the Extended ID is specified as an ASCII string on
9-2 Shadow Programming Guide December 1999

Implementing TLS
the client and is automatically converted to EBCDIC for host processing. This
means that the Extended ID can not contain binary data such as a digital certifi-
cate.

Client Side Support
The Generic ID and the Extended ID are supported on the client side using the
ODBC SQLSetConnectOption function. This function can be called at any time to
set either value.

The option value for setting these IDs is as follows:

n Generic ID: SQL_NEON_GENERIC_USERID.
n Extended ID: SQL_NEON_EXTENDED_USERID.

Examples

Generic ID

The following C example shows how the Generic ID values are set.

rc = SQLSetConnectOption(hdbc, SQL_NEON_GENERIC_USERID,
(UDWORD) “AI38KPO”);
if (rc != SQL_SUCCESS &&
 rc != SQL_SUCCESS_WITH_INFO)
 goto exlb;

Extended ID

The following C example shows how the Extended ID values are set.

rc = SQLSetConnectOption(hdbc, SQL_NEON_EXTENDED_USERID,
(UDWORD) “I am not a digital certificate”);
if (rc != SQL_SUCCESS &&
 rc != SQL_SUCCESS_WITH_INFO)
 goto exlb;

Both the Generic ID and Extended ID values are only transmitted over the net-
work when they are set for the first time or when they are changed.

The Generic ID and/or Extended ID can only be used with a recent (as of 1999/06/
02) build of the ODBC driver.

Note:
Separate calls are required to set each value.

Note:
No new ODBC driver configuration is needed to use these new IDs.
December 1999 Shadow Programming Guide 9-3

Transaction Level Security (TLS)
Host Side Support
The Generic ID and the Extended ID are supported on the host side using several
different mechanisms. Each of these mechanisms is optional and any can be used
together. Several of these mechanisms are intended for application security, audit-
ing, logging, tracing, tracking, etc. The choice of which host side mechanisms are
used will be installation and application specific.

The host mechanisms are:

n APIs
n SMF Per-Transaction Recording
n Logging
n Trace Browse
n Remote Users

APIs.

The SQLGetInfo function can be used in host RPCs to access (but not update) the
Generic ID and the Extended ID. The type values for the information are as fol-
low:

n C: SQL_GET_GENERICID and SQL_GET_EXTENDEDID

n Cobol: SQL-GET-GENERICID and SQL-GET-EXTENDEDID

n ASM: ODSQGIGN/ODSQGIEX

Both are returned as null-terminated string values.

SMF Per-Transaction Recording

Shadow Direct supports SMF recording on a per-transaction basis using SMO6
records. These records contain information about the current Generic and
Extended IDs. The SMF Per-Transaction Recording is activated by setting the
SMFTRANSACT parameter to YES.

Note:
The output area for the Generic ID should be large enough for the 8-
byte string and the one-byte null terminator. The output area for the
Extended ID should be large enough for the 128-byte string and the
one-byte null terminator.

Note:
The Extended ID area in the SMO6 record has room for only the
first fifty bytes of the Extended ID. A new record format will be
provided if the entire Extended ID is needed in the future.
9-4 Shadow Programming Guide December 1999

Passing Generic ID to SAF
Logging

Shadow Direct supports logging of SQL/transactions on a per-SQL basis using a
DB2 table. The default table name for per-SQL logging is SHADOW.SQL-
SOURCE, however this default can be changed using the LOGSOURCETABLE
product parameter. Per-SQL logging is activated by setting the LOGSQL-
SOURCE product parameter to YES. The Generic ID is stored in the
GENERIC_USERID column and the Extended ID is stored in the
EXTENDED_USERID column.

Trace Browse

If a Generic ID exists, it will be contained in the USERID column of Trace
Browse for SQL/RPC operations. The Generic ID replaces the standard userid in
Trace Browse if the Generic ID has been set to a non-blank, non-zero value. This
information is only provided for debugging, tracking, tracing, auditing, etc.

Remote Users

The Remote Users display includes two new columns for the Generic ID and the
Extended ID. These columns will contain their respective values if they have been
set.

Passing Generic ID to SAF
Generic IDs can be passed to SAF to create an MVS security environment for run-
ning an RPC. To do this, the following requirements must be applied:

n The Generic IDs must be valid host userids.
n The IMPLEMENTTLS product parameter must be set to YES.

Note:
The EXTENDED_USERID column only has room for the first 254
bytes of the of Extended ID

Note:
The standard userid will be stored in Trace Browse for non-SQL/
RPC operations (such as network I/O) even if the Generic ID is set.
This means that both the Generic ID and the standard userid will
normally appear in Trace Browse for one session.

Note:
Setting IMPLEMENTTLS to YES will only affect the SAF
processing of Generic IDs. All of the other features and facilities
can be used even if the IMPLEMENTTLS is set to NO.
December 1999 Shadow Programming Guide 9-5

Transaction Level Security (TLS)
The MVS security environment created by passing the Generic ID to SAF is
maintained for the duration of RPC execution and will influence what resources
the RPC can access.

The Generic ID security environment will be used to determine the following:

n If the client is allowed to execute an RPC.

n If RPC authority checking has been activated by setting the
CHECKRPCAUTHORITY product parameter to YES. RPC authority
checking uses RACF Class/Entity Rules or ACF2 Generalized Resource
Rules to determine if a client is authorized to execute an RPC.

For performance reasons, the MVS security environments created by passing
Generic IDs to SAF are cached. In other words, each Generic ID is passed to SAF
only once and the MVS security environment is cached at the address space level.
This approach allows use/reuse of Generic ID security environment with negligi-
ble overhead. Security environment caching is implemented by forcing the
SHARERUNAUTHACEES product parameter to YES. As a consequence, this
product parameter does not have to be set.

There is a possible security exposure associated with using Generic IDs with the
IMPLEMENTTLS parameter set to YES. In this case, an MVS security environ-
ment will be created without a password. In addition, client applications will be
able to use the Generic ID MVS security environment without providing a pass-
word. This means that only carefully controlled applications (running inside an
Application Server/Web sever) should be allowed to connect to a copy of Shadow
Direct that has IMPLEMENTTLS set to YES. This restriction can be enforced
several ways including LOGON ATH Rules.

Note:
The Generic ID MVS security environment will have no impact
on SQL execution authority. The DB2 security environment is
initialized when the DB2 thread is created and is not
subsequently modified.

Note:
RPC authority checking can be used with or without Generic ID
SAF processing and vice versa.

Note:
There is no SEF processing of LOGONs for Generic IDs even if
ATH Rules for LOGON have been enabled. The Generic ID
MVS security environments are maintained in the cache until
the main product address space terminates.
9-6 Shadow Programming Guide December 1999

Passing Generic ID to SAF
Note:
IMPLEMENTTLS defaults to NO and can only be set to YES
using the Shadow Direct initialization script. IMPLEMENTTLS
can not be set to YES after the main product address space
initialization has been completed.
December 1999 Shadow Programming Guide 9-7

Transaction Level Security (TLS)
9-8 Shadow Programming Guide December 1999

CHAPTER 10:
SQLProcedure and SQLProcedure

Columns

This chapter discusses how to create a pseudo DB2 stored procedure that contains necessary Meta data
for input and output fields, as well as other required parameters for accessing CICS and IMS
transactions.
This chapter applies to Shadow Direct only.

Introduction
Third party software that uses SQLProcedure and SQLProcedureColumns to
invoke remote Stored Procedures can access IMS and CICS transactions. With
Shadow, a user can define the necessary input and output for a CICS or IMS trans-
action and any necessary parameters that are required to execute the transaction
and store this information in the DB2 catalog. This takes the form of a DB2 stored
procedure definition. This pseudo-DB2 stored procedure enables a simpler and
more flexible call for clients like Crystal Reports and Powerbuilder.

Syntax
The syntax for invoking this pseudo-procedure is as follows:

Call CICS.procedure-name(parm1,parm2,…) or

Call IMS.procedure-name(parm1,parm2,…)

Where

CICS or IMS
refers to the type of system on which the transaction will be executed.
This constant is stored as the PROC_OWNER for the procedure.

Procedure-name
is the previously defined pseudo-procedure name that will invoke the
transaction. This procedure is defined using the Shadow TSO ISPF
interface.

Parm1,Parm2
are the parameters that are to be passed to the CICS or IMS
transaction. These parms are defined using the map extraction
procedure in the Shadow TSO ISPF interface. These parm
descriptions are passed to the client program via the
SQLProcedureColumns function call.
December 1999 Shadow Programming Guide 10-1

SQLProcedure and SQLProcedure Columns

-

 that

l
u
 in

he

 a
are
,
sers

edure
of
This syntax matches the IBM SQL stored procedure naming convention.

Stored Procedures
Although you can access CICS and IMS transactions with the Shadow_CICS and
Shadow_IMS calls, these methods require the ability to supply parameters related
to connecting to the desired CICS or IMS address space. This is no problem when
using Visual Basic or C++ to code the call. However, this pseudo-stored proce-
dure method becomes useful when these extra parameters cannot be supplied to a
third party package that would otherwise be a useful client.

Also, if the user needs to supply complex input data types, this method allows the
input to be mapped to pre-extracted definitions. Thus, the full range of data types
supported by mainframe high level languages can be supported such as small inte-
ger, large integer, packed decimal and floating point.

In addition to this chapter, please see Chapter 3, “Running DB2 Stored Proce
dures” in this Guide for related information on stored procedures.

Preparing a Stored Procedure to Execute a CICS or
IMS Transaction

The following steps must be completed to create a pseudo-stored procedure
can be used to execute a CICS or IMS transaction.

1. Define the DB2 table SHADOW.PROCEDURES, as instructed in optiona
Step 12 in Chapter 1 of the Shadow Installation Guide. Make sure that yo
specify a catalog prefix of SHADOW on your ODBC data source definition
order to access this table.

2. Create the input and output maps, using option 10.1, Map Extract, from t
Shadow Primary Options Menu. For CICS programs, select Map
ExtraCOBOL or PL/I. For IMS, select MFS. CICS maps are created from
compile listing from the CICS program that is to be executed. IMS maps
created directly from MFS source. For more information about this option
see Chapter 9, “Shadow Data Mapping Facility,” in the Shadow Server U
Guide.

3. Create the pseudo-stored procedure. This is done using the Stored Proc
option, option 10.8 from the Shadow Primary options menu. An example
this panel is shown in the following figure:
10-2 Shadow Programming Guide December 1999

Preparing a Stored Procedure to Execute a CICS or IMS Transaction

ust

n or

n the

tion
Data it
n be

 All

Figure 10–1.

a. Specify a procedure name. This will be written to the DB2 table –
SHADOW.PROCEDURES.

b. Use transaction EXCI for CICS. This is used to communicate with the
CICS address space.

c. Specify the name of the CICS program to be invoked. This program m
have a valid PPT entry defined to CICS. For IMS, no transaction or
program name is used. The MFS map must specify the IMS transactio
it must be entered in the 1st field of the map.

d. Specify the input and the output maps that were created in step 1.

The connection name and the target CICS or IMS address space are the
default Shadow startup parameters. Related parms are:

For CICS: EXCICONNECTIONAME

For IMS: IMSPARTNERLU, IMSLOCALLU, IMSMODENAME, and
IMSSECURITYTYPE

For more information, please see the Shadow Started Task Parameters i
Shadow Server and Shadow OS/390 Web Server Users’ Guides.

4. To make the procedure active use the Refresh option, option 10.5 on the
Shadow Mapping Facility options menu.

This pseudo-stored procedure name will now be returned by the ODBC func
call SQLProcedures when directed at the Shadow address space. The Meta
contains will be returned by SQLProcedureColumns so that a SQLExecute ca
used to invoke the procedure. Shadow will map all application parameters as
mapped by the previous extract and pass them to the IMS or CICS program.
output will be passed back according to the previously mapped output map.
December 1999 Shadow Programming Guide 10-3

SQLProcedure and SQLProcedure Columns
10-4 Shadow Programming Guide December 1999

APPENDIX A:
Shadow REXX

This appendix provides information about Shadow REXX, including its comparison to Standard
REXX, its execution limits, elements, considerations, instructions, interfaces, and compiler error
messages.

What Is Shadow/REXX?
Shadow/REXX is a proprietary implementation of standard REXX, an SAA-
compliant programming language. A REXX-based approach was used in
developing the original prototype of the Shadow OS/390 Web Server because of
the many advantages the REXX language has over compiled and 4GL interpretive
languages.

Shadow/REXX provides a simple but capable high-level language in which to
write Web Server Transactions. Users who are completely unfamiliar with
programming on a Mainframe platform can quickly learn to program in Shadow/
REXX.

Shadow/REXX differs only slightly from standard REXX. Only those differences
are explained here.

For more detailed information about standard REXX, refer to:

n Modern Programming Using Rexx by Robert P. O’Hara and David Roos
Gomberg (Prentice Hall). This book includes many practical examples of
REXX programming.

n IBM Hursley REXX Page (http://rexx.hursley.ibm.com/rexx/rexx.htm)
n REXX Language Associate Home Page (http://www.pvv.ntnu.no/RexxLA/)

Why Shadow/REXX?
TSO/E REXX was not used for the implementation, because:

n Shadow/REXX is specially enabled for processing within an OLTP
environment. The Shadow/REXX interpreter contains facilities for limiting
the overall resource utilization of any one procedure. This is important
because the Shadow OS/390 Web Server may be executing hundreds of
transactions simultaneously.

n Shadow/REXX is enabled for use in cross-memory environments. As the
functionality of the Shadow OS/390 Web Server is extended into other areas,
we can rely on it’s ability to handle more complex operational environments.
December 1999 Shadow Programming Guide A-1

Shadow REXX

ient

n The Shadow/REXX interpreter runs faster than the TSO EXEC command for
similar programs. When you use Shadow/REXX in the Web Server
environment, all the code is pre-interpreted to speed processing.

Similarities Between Shadow/REXX and Standard
REXX

Both Shadow/REXX and the standard REXX language:

n Enable you to issue commands to various host environments.
n Offer symbolic substitution that is simpler than that for other high-level

languages.

The current version of Shadow/REXX supports these standard REXX features:

n All REXX programming structures.

n All standard SAA REXX functions with the exception of the I/O functions
(CHARIN, CHAROUT, CHARS, LINEIN, LINEOUT, and LINES).

n Numbers with decimal points and exponents, as well as numeric digits with a
precision up to 20 (default 9).

n Strings containing as many as 32,000 characters, including strings.

Differences Between Shadow/REXX and Standard
REXX

There are several important differences between Shadow/REXX and standard
REXX. These include:

PULL

n REXX. When a PULL instruction is executed and the external data queue is
empty, a read is done from the “default character input stream.”

n Shadow/REXX. In Shadow Rexx, this is not practical. Within an event
procedure, the only possible default character input stream is the Web Cl
program. It is not possible to prompt the browser program for input. This
means a PULL on an empty external data queue results in a NULL (zero
length) line being returned.

PUSH

n Shadow REXX. The PUSH instruction is not implemented in Shadow/
REXX, but rather, returns the REXX error result number 64, the
unimplemented feature error. However, the QUEUE instruction is
implemented and can generally be used to accomplish the same results.
A-2 Shadow Programming Guide December 1999

Shadow/REXX Execution Limits
Shadow/REXX Execution Limits

Resource Use Monitoring
When Shadow/REXX executes a REXX program, it checks to see that a program
does not consume an excessive amount of resources. This check is especially
important for executing Web Transactions, since runaway procedures can degrade
system performance significantly, causing poor response time and other problems.

Specifically, Shadow/REXX monitors:

n Program execution time.
n How many REXX clauses executed.
n How many REXX SAY instructions executed.
n How many host commands were issued.
n How many output lines the external data queue contains.

Parameters that Set Limits
Shadow OS/390 Web Server product parameters set limits for the execution
values listed above. For any SEF Event Procedure:

Overriding Execution Limits
Shadow/REXX event procedures can override most of the execution limits
by issuing the REXX OPTIONS instruction. However, once the the execution
of a REXX program has begun, the maximum size of the external data
queue and the amount of working storage space cannot be overridden. See
WORKSIZE for a description of overrides allowed for WWW procedures.

This Parameter Sets This Limit......

SEFMAXSECONDS Specifies the maximum time in seconds that an event procedure can execute for a given
event.

SEFMAXCLAUSES Specifies the maximum number of REXX clauses that a procedure can execute for a
given event.

SEFMAXSAYS Specifies the maximum number of SAY instructions that an event procedure can execute
for a given event.

SEFMAXCOMMANDS Specifies the maximum number of host commands that an event procedure can execute
for a given event.

SEFMAXQUEUE Specifies the maximum number of lines that a procedure can have in the external data
queue for a given event. This limit can be overridden within an individual WWW
transaction procedure using the QUEUESIZE() parameter.

SEFSIZE Specifies the amount of storage an individual procedure can use for storage of REXX
variable names and values, and evaluation and other work areas. This limit can be
overridden within an individual WWW transaction procedure using the WORKSIZE()
parameter.
December 1999 Shadow Programming Guide A-3

Shadow REXX
Elements of Shadow/REXX

REXX Elements that Shadow/REXX Supports
Shadow/REXX implements all of the elements of the SAA standard REXX
language except for the following:

n OPTIONS ETMODE
n PUSH
n The input/output functions CHARIN, CHAROUT, CHARS, LINEIN,

LINEOUT, and LINES
n SCAN portion of TRACE.

Implementation Limits
The table below describes the minimum limits that SAA imposes and the
maximum limits that Shadow/REXX imposes on REXX elements:

Item SAA Shadow/REXX

Literal Strings 100 Bytes 32000 Bytes

Symbol (variable name) length 250 Bytes 250 characters for local symbols; 50 characters
for global symbols; 32 characters for function
and routine name labels

Nesting control structures 100 Limited only by available stack space

Call Arguments 20 10

MIN and MAX function
arguments

20 20

Queue entries 100 Controlled by product parameter; defaults to
3000

NUMERIC DIGITS value 1000 No maximum limit

Notational exponent value 999 999 999 999 999 999

Hexadecimal strings 250 bytes 32000 bytes

C2D input string Limit is either 250 or the NUMERIC
DIGITS value, divided by 2,
whichever is smaller

4 (must be a positive number)

D2C output string Limit is either 250 or the NUMERIC
DIGITS value, divided by 2,
whichever is smaller

256

X2D output string Limit is either 500 or the NUMERIC
DIGITS value minus 1

32000
A-4 Shadow Programming Guide December 1999

Shadow/REXX Considerations
Constants in Shadow/REXX
Shadow/REXX supports character strings up to 32,000 characters long. Numeric
values can include decimal points and exponential notation.

Symbols in Shadow/REXX
Local symbols can contain up to 250 characters; global symbols, up to 50
characters, and labels used in function or subroutine calls, up to 32 characters.

Variable Values
Variables containing character strings can contain no more than 32000 bytes (or a
lower value set by the REXXMAXSTRINGLENGTH parameter). This limitation
also applies to intermediate results.

Compound Symbols
The limits on the symbol name (pre-substitution) and the derived name (post-
substitution) of a compound symbol and on the value that a compound symbol
takes are the same as the limits for the name and value of a regular variable.

You must treat the Web server product’s environmental variables as
compound symbols. For example, if you have defined the variable USER in
a procedure and you refer to WWW.USER elsewhere, the USER part of
WWW.USER is interpreted as the content of the previously defined
variable of the same name.

Arithmetic Values and Operators
Shadow/REXX supports floating point arithmetic. Although you can set
NUMERIC DIGITS higher than 9, higher values can impair performance.

Shadow/REXX Considerations
Before using Shadow/REXX, consider the following points.

n Shadow/REXX uses the following search order to locate external functions as
it compiles a program:

a. Built-in functions.

b. Contents of the Event Procedure library in which the calling procedure
resides.

c. The SYSEXEC library concatenation.

d. A LOAD issued for a module with the name of the external reference
(that is, the standard MVS load module search mechanism is used).
December 1999 Shadow Programming Guide A-5

Shadow REXX

s

ly
lied

x =

m.

n Avoid using “SWS” as the first characters of the names of REXX function
that you create.

Shadow/REXX Instructions
The following briefly explains the differences between Shadow/REXX
instructions and those of standard REXX.

INTERPRET Instruction
Shadow/REXX supports INTERPRET instructions under these conditions:

n An INTERPRET instruction finds an external function or a load module on
if another instruction refers to that function or module. Most product supp
built-in functions are dynamically located.

n When an INTERPRET instruction refers to global variables (for example,
GLOBAL.A), the global variable stem must be used directly in another
instruction (not another INTERPRET instruction) elsewhere in the progra
You can use global variables accessed via the SWSVALUE function in an
interpreted instruction.

n The total length of an interpreted string is limited by number of separate
clauses to be executed and the amount of stack space available. In general,
you should not attempt to execute an INTERPRET statement which must
interpret more than a few clauses.

OPTIONS Instruction
The OPTIONS instruction under Shadow/REXX accepts the keywords shown
below:

 OPTIONS MAXTIME=seconds | NOMAXTIME
 MAXSECONDS=seconds | NOMAXSECONDS
 MAXCLAUSES=clauses | NOMAXCLAUSES
 MAXSAYS=count | NOMAXSAYS
 MAXCMDS=count | NOMAXCMDS
 MAXCOMMANDS=count | NOMAXCOMMANDS
 MAXSTRING=bytes | NOMAXSTRING

Use..... To.....

MAXTIME=seconds or
MAXSECONDS=seconds

To change the limit on execution time.

NOMAXTIME or
NOMAXSECONDS

To skip monitoring of execution time.

MAXCLAUSES=clauses To change the limit on clauses executed.

NOMAXCLAUSES To skip monitoring of clause execution.
A-6 Shadow Programming Guide December 1999

Shadow/REXX Instructions
Format for OPTIONS Statements

Enclose all arguments except for variable names in single or double quotation
marks. This prevents Shadow/REXX from parsing subclauses (such as
MAXSAYS=5) before passing them to the OPTIONS statement processor.

Duration of OPTIONS Settings

Subroutines called by a REXX program inherit the OPTIONS settings, but the
settings do not apply to any calling programs. If a subroutine changes a limit or
skips monitoring, the previous limit is reinstated when the subroutine returns to its
caller.

If you use multiple keywords referencing the same OPTIONS setting within the
same REXX statement, Shadow/REXX uses the last keyword. For example,
Shadow/REXX does not limit the number of host commands if you code this
instruction:

OPTIONS “MAXCOMMANDS=100 NOMAXCMDS”

Sample Uses of OPTIONS

Example 1:

The following demonstrates using the OPTIONS instruction to override default
execution limits for REXX programs:

CLAUSES = 30000
OPTIONS “MAXCLAUSES=”CLAUSES

Example 2:

When inserted at the beginning of a REXX program, the following enables you to
skip monitoring all execution limits in the program:

OPTIONS “NOMAXCLAUSES NOMAXTIME NOMAXSAYS NOMAXCMDS”

MAXSAYS=count To change the limit on how many SAY instructions executed.

NOMAXSAYS To skip limit checking for SAY instructions.

MAXCMDS=count or
MAXCOMMANDS=count

To change the limit on host commands executed.

NOMAXCMDS or
NOMAXCOMMANDS

To skip monitoring of host command execution.

MAXSTRING=bytes To set maximum string length for all strings. (8)

NOMAXSTRING To use the default maximum string length of 32000.

Use..... To.....
December 1999 Shadow Programming Guide A-7

Shadow REXX
Shadow/REXX Built-in Functions
Shadow/REXX offers both standard REXX functions and a set of built-in
functions designed for the Web Server environment. Refer to the Web Server API
Function Index (either online or in the NEON Programming Guide) for more
information.

Shadow Event Facility (SEF) Global Variables
Global variables are variables that can be shared by multiple SEF rules, Shadow/
REXX programs, or both running in different address spaces.

Global variables are also compound symbols with any of the following stems:

GLOBAL.
GLOBALn. (The n is a single digit or letter.)

Use global variables as you would any other Shadow/REXX variable.

Shadow/REXX Interfaces

Shadow/REXX Interface with TSO - ADDRESS
TSO

Shadow/REXX can be executed as a stand-alone command processor outside the
Web Server main address space. It is used in this way to implement portions of the
ISPF control interface. When used as a stand-alone command processor in a TSO/
E address space, Shadow/REXX passes ADDRESS TSO commands to the local
Terminal Monitor Program (TMP) for execution.

However, when executing Shadow Event Facility (SEF) procedures, each event is
processed within the Shadow OS/390 Web Server address space. The Shadow OS/
390 Web Server does not initialize itself as a TMP (Terminal Monitor Program).
Therefore, TSO/E is not available within the Shadow OS/390 Web Server’s
address space.

Shadow/REXX implements an intercept which gains control when any command
is issued to the ADDRESS TSO host command environment. This means all
commands issued via the ADDRESS TSO environment are invalid, except the
EXECIO host command. Shadow OS/390 Web Server implements its own version
of EXECIO as an ADDRESS TSO host command. Therefore, you can use
EXECIO, as documented for TSO/E REXX, in a Shadow/REXX program.
Shadow/REXX’s version of EXECIO:

n Does not support the LIFO option.
n Checks the syntax of the stem name.
n Prohibits use of global variable stems with the STEM option.
n Supports DISKRU only for true sequential data sets. You cannot use DISKRU

against a partitioned data set member.
A-8 Shadow Programming Guide December 1999

Shadow/REXX Interfaces
To compensate for this lack of TMP-based functionality within the ADDRESS TSO
environment, Shadow REXXTOOLS is distributed as a separately licensed
feature of the Shadow OS/390 Web Server. Shadow REXXTOOLS contains
support for many functions which are not directly available from the ADDRESS
TSO environment such as Dynamic Allocation requests.

A new feature of the Shadow OS/390 Web Server allows you to schedule TSO
command procedures into an out-board TSO server address space using the
ADDRESS TSOSRV host command environment.

Shadow/REXX Interface To Out-board TSO
Servers - ADDRESS TSOSRV

TSO/E services are required when cusdtomers want to export their application as
Web transactions. For this reason, the ADDRESS TSOSRV command environment
was built. It passes TSO/E commands to a set of TSO server address spaces
started and monitored by the main Web Server product.

WWW transaction procedures may execute TSO/E commands, within an out-
board TSO/E address space by directing them to the ADDRESS TSOSRV command
environment. The output of the TSO/E command is routed by the Web Server to
the external data queue specified by the original WWW REXX procedure.

Example
 /*WWW /LISTA
 /*REXX

 ADDRESS TSOSRV
 “LISTA” /* This command routed to out-board Server*/

 IF RC <> 0 THEN DO /* Time out or other scheduling error?*/
 ... take some recovery action
 END

 ADDRESS SWSSEND /* Build HTTP Response */
 “HTTP/1.0 200 OK”
 “Content-type: text/plain”
 “”
 DO WHILE QUEUED() > 0 /* While more result lines */
 PARSE PULL LINE /* Get result data line */
 ADDRESS SWSSEND
 LINE /* Send result line as text */
 END

Refer to Using TSO/E for Web Transaction Processing for information on the out-
board TSO server facility.
December 1999 Shadow Programming Guide A-9

Shadow REXX

Shadow/REXX Interface with SEF - ADDRESS
SEF

You can use the ADDRESS SEF statement to pass host commands to the Shadow
Event Facility (SEF). For example, the following statement tells SEF to enable the
rule named WEBQUEST from a ruleset named WWW.

ADDRESS SEF
“ENABLE WWW.WEBQUEST”

Shadow/REXX Interface For Web Data Output -
ADDRESS SWSSEND

You can use the ADDRESS SWSSEND environment to pass host data directly into
an output buffer for transmission to a Web client’s browser program. Host
“commands” presented to the ADDRESS SWSSEND environment become part of
the data stream transmitted to Web Clients when the Web transaction ends.

This facility is available only within a Shadow/REXX language /*WWW
transaction definition:

/*WWW /SAMPLEDATA
/*REXX
ADDRESS SWSSEND
“HTTP/1.0 200 OK”
“Content-type: text/html”
“”
“<HTML><BODY>"
"<P>This is the response to a web transaction request."
"</body></html>"

Refer to the SWSSEND Host Command Environment for more information.

Compiler Error Messages
When the Shadow/REXX compiler finds syntax errors in an Shadow/REXX
program or an SEF rule, the compiler generates a numbered error message.
Because Shadow/REXX is an implementation of standard REXX, Shadow/REXX
generates standard REXX error codes.

Non-Standard REXX Error Numbers used by
Shadow/REXX

Code Message Results

64 UNIMPLEMENTED FEATURE.
A-10 Shadow Programming Guide December 1999

Compiler Error Messages
More Errors Detected: Because Shadow/REXX is a semi-compiler rather
than a pure interpreter, its compile phase detects errors which other
versions of REXX do not catch at execution time. This is especially true
when converting programs to Shadow/REXX; you may encounter errors at
compile time in supposedly error-free code. This can happen because many
REXX interpreters do not detect errors in statements that do not execute.

69 FUNCTION HAS TOO FEW ARGS.

70 FUNCTION HAS TOO MANY ARGS.

71 INCOMPATIBLE SHADOW/REXX CTL BLOCKS.

78 USER FUNCTION FAILED (CODE IN RC)

80 PULL FOUND EMPTY QUEUE.

86 INVALID SYMBOL.

91 INVALID OR MISPLACED OPTIONS STATEMENT
The keyword(s) specified in the OPTIONS statement
contain an error.

93 GLOBAL VARIABLE WORKSPACE OVERFLOW
(size)
The maximum amount of storage reserved for global
variables (the value set by the GLOBALMAX parameter)
was exceeded.

94 OVER seconds SECONDS USED FOR EXECUTION
The program exceeded the maximum execution time for
SEF rules (set via the SEFMAXTIME parameter) or
REXX programs (set via the REXXMAXTIME
parameter).

95 OVER count HOST COMMANDS ISSUED
The program issued the maximum number of host
commands for SEF rules or REXX programs.

96 OVER count "SAY" CLAUSES EXECUTED
The program executed the maximum allowed SAY
instructions for SEF rules or REXX programs.

97 OVER count CLAUSES EXECUTED
The program executed the maximum allowed number of
clauses for SEF rules or REXX programs.

Note:
The OPTIONS statement for an Shadow/REXX program can also
generate error codes 94 through 97.

Code Message Results
December 1999 Shadow Programming Guide A-11

Shadow REXX
Standard REXX Error Numbers Used by
Shadow/REXX

Code Message Results

4 PROGRAM INTERRUPTED

5 MACHINE RESOURCES EXHAUSTED

6 UNMATCHED “/*” OR QUOTE

7 WHEN OR OTHERWISE EXPECTED

8 UNEXPECTED THEN OR ELSE

9 UNEXPECTED WHEN OR OTHERWISE

10 UNEXPECTED OR UNMATCHED END

11 CONTROL STACK FULL

12 CLAUSE TOO LONG

13 INVALID CHARACTER IN PROGRAM

14 INCOMPLETE DO/SELECT/IF

15 INVALID HEXADECIMAL CONSTANT

16 LABEL NOT FOUND

17 UNEXPECTED PROCEDURE

18 THEN EXPECTED

19 STRING OR SYMBOL EXPECTED

20 SYMBOL EXPECTED

21 INVALID DATA ON END OF CLAUSE

22 INVALID CHARACTER STRING

24 INVALID TRACE REQUEST

25 INVALID SUB-KEYWORD FOUND

26 INVALID WHOLE NUMBER

27 INVALID DO SYNTAX

28 INVALID LEAVE OR REITERATE

29 ENVIRONMENT NAME IS TOO LONG

30 NAME OR STRING TOO LONG

31 NAME STARTS WITH NUMBER OR “.”

33 INVALID EXPRESSION RESULT

34 LOGICAL VALUE NOT 0 OR 1
A-12 Shadow Programming Guide December 1999

Compiler Error Messages
35 INVALID EXPRESSION

36 UNMATCHED “(” IN EXPRESSION

37 UNEXPECTED “,” OR “)”

38 INVALID TEMPLATAE OR PATTERN

39 EVALUATION STACK OVERFLOW

40 INCORRECT CALL TO ROUTINE

41 BAD ARITHMETIC CONVERSION

42 ARITHMETIC OVERFLOW/UNDERFLOW

43 ROUTINE NOT FOUND

44 FUNCTION DID NOT RETURN DATA

45 NO DATA SPECIFIED IN FUNCTION RETURN

48 FAILURE IN SYSTEM SERVICE

49 INTERPRETATION ERROR

Code Message Results
December 1999 Shadow Programming Guide A-13

Shadow REXX
A-14 Shadow Programming Guide December 1999

APPENDIX B:
MVS Client Support

This appendix covers the ODBC interface in a COBOL client program.

Using the ODBC Interface In a COBOL Client
Program

The ODBC interface provided by NEON is written in the C language and executes
using the MVS C /LE runtime environment. The MVS LE runtime environment
must be available on the host machine where the COBOL application is
executing.

For this reason, in order to use the ODBC client interface from a MVS host
COBOL application program, the execution environment of the COBOL program
must first be determined.

If the COBOL program is compiled using COBOL MVS and uses the LE
environment, then the client COBOL program must be statically linked with the
SDBODBC module. If the execution environment is not LE, then the client
COBOL program must be statically linked with SDBSQLI. SDBSQLI provides
the entry points required by the COBOL program and in addition calls CEEPIPI
(an IBM supplied module) to establish the LE environment for the SDBODBC
module. Please note that SDBSQLI is not reentrant at this time and precautions
must be taken accordingly.

The following table describes the available ODBC function calls and the entry
point name that must be used to perform the function from a high level language.

ODBC Function Entry Point Description

SQLAllocEnv SDODAE Allocates memory for the environment handle and
initializes the ODBC call level interface for use by the
application.

SQLAllocConnect SDODAC Allocates memory for a connection handle with the
environment identified by the environment handle passed.

SQLAllocStmt SDODAS Allocates memory for a statement handle and associates
the statement handle with the connection specified by the
connection handle passed.

SQLDriverConnect SDODDC Loads a driver and establishes a connection to a data
source.

SQLExecDirect SDODED Executes a preparable statement.

SQLFetch SDODFT Fetches a row of data from the result set.
December 1999 Shadow Programming Guide B-1

MVS Client Support
A detailed description of the ODBC API can be found in the Microsoft ODBC 2.0
Programmer’s Reference and SDK Guide, available from Microsoft Press. The
parameter list provided to the ODBC interface are all pointers by reference to
allow calls to be made from COBOL.

For example, to call the SQLAllocEnv ODBC function, the following would be
coded in the COBOL application:

WORKING STORAGE SECTION.
…
01 WS-HENV PIC S9(08) COMP VALUE +0.
…
PROCEDURE DIVISION.
…
CALL 'SDODAE' USING WS-HENV.
…

A complete COBOL example program may be found in
NEON.SV040100.SAMP, member ODBC#LE. A COBOL copybook, named
SDBODCP, is also found in NEON.SV040100.SAMP. This copybook provides
for constant values associated with the ODBC API.

SQLGetData SDODGD Returns the result data for a single unbound column in the
current row.

SQLDisconnect SDODDI Closes the connection associates with a specific
connection handle.

SQLFreeStmt SDODFS Frees a statement handle and all associated memory.

SQLFreeConnect SDODFC Frees a connection handle and all associated memory.

SQLFreeEnv SDODFE Frees the environment handle and all associated memory.

Data Type Picture Clause

HDBC PIC S9(08) COMP or USAGE IS POINTER

HDBC FAR * PIC S9(08) COMP or USAGE IS POINTER

HENV PIC S9(08) COMP or USAGE IS POINTER

HENV FAR * PIC S9(08) COMP or USAGE IS POINTER

HSTMT PIC S9(08) COMP or USAGE IS POINTER

HSTMT FAR * PIC S9(08) COMP or USAGE IS POINTER

HWND PIC S9(08) COMP

PTR PIC S9(08) COMP or USAGE IS POINTER

SDWORD PIC S9(08) COMP

ODBC Function Entry Point Description
B-2 Shadow Programming Guide December 1999

Using the ODBC Interface In a COBOL Client Program
SDWORD FAR * PIC S9(08) COMP or USAGE IS POINTER

SWORD PIC S9(04) COMP

SWORD FAR * PIC S9(08) COMP or USAGE IS POINTER

UCHAR FAR * PIC S9(08) COMP or USAGE IS POINTER

UWORD PIC S9(04) COMP

UWORD FAR * PIC S9(08) COMP or USAGE IS POINTER

Data Type Picture Clause
December 1999 Shadow Programming Guide B-3

MVS Client Support
B-4 Shadow Programming Guide December 1999

. If

for

M.

,

ture

area

in
1

ake

es
Glossary

The following list is compilation of some of the terms you will find used in NEON’s documentation
you do not find the term you are looking for, the best reference to turn to is the IBM publication:
Dictionary of Computing (SC20-1699). You may also want to check the glossaries of the manuals
listed in “Related Publications.”

ACB Access Control Block. A control block that links an application
program (for example, a CICS system) to an access method (
example, VSAM or VTAM). In communication with DL/I, an
ACB is used only when the underlying access method is VSA

ACEE Access Control Environment Element. (CICS for MVS only.)
In RACF, a control block containing details of the current user
including user ID, current connect group, user attributes, and
group authorities. An ACEE is constructed during user
identification and verification.

ACF Advanced Communication Function. A group of IBM licensed
programs that uses the concepts of Systems Network Architec
(SNA) including distribution of function and resource sharing.

ADABAS Adaptable Database System. A type of database provided by
Software AG.

address space The range of addresses available to a computer program; the
of virtual storage available to a particular job or started task.

AMODE Addressing Mode. An attribute in MVS and MVS/XA program
that refers to the address length that a program is prepared to
handle upon entry. In MVS/370, an addresses can be 24 bits
length. In the MVS/XA program, addresses can be 24 bits or 3
bits in length.

APF Authorized Program Facility. A security feature of the MVS
operating system that restricts the running of programs that m
use of privileged machine instructions.

API Application Program Interface. A set of routines provided in
libraries that extends a language’s functionality

APPC Advanced Program-to-Program Communication. The general
facility characterizing the LU 6.2 architecture and its various
implementations in products.

application group name In IMS/VS, a name that represents a defined group of resourc
(program specification blocks, transaction names, and logical
terminal names).
December 1999 Shadow Programming Guide Glossary-1

Glossary
APPN Advanced Peer-to-Peer Networking. An extension to Systems
Network Architecture (SNA). Extends the LU 6.2 peer orientation
for end-user services to network control and supports multiple LU
types, including LU 2, LU 3, and LU 6.2

ASCH Application Scheduler. MVS application scheduler.

Auto-HTML See Web Enabling.

Block Connection A logical connection in which the connection resources (i.e.,
network session, threads etc.) are held for the lifetime of the
connection and in which SQL operations may be grouped. Multiple
sends may be issued on a physical network session. Each send is
one or more SQL operations (a group). This type of connection is
very efficient in network usage (only one connection made and
network I/Os are reduced), efficient in CPU utilization (no
overhead for multiple connections) but holds mainframe resources
(TCBs, threads and TCP/IP sessions) over relatively long periods
of time. The number of connections is limited by the number
allowed for the scarcest resource.

BMP Batch Message Processing. In IMS/VS, a batch processing
program that has access to online databases and message queues.

BMS Basic Mapping Support. Provides most of the input and output
facilities required by application programs; allows you to separate
the tasks of display design and CICS application programming.
BMS interprets generalized application program output commands,
and generates data streams for specific output devices. (Such data
streams are said to be device dependent.) Conversely, it transforms
incoming data streams to a form acceptable to application
programs. It obtains information about the format of the data
stream for the terminal from the terminal control table terminal
entry (the TCTTE) for the task, not from the application program.
The same BMS input or output commands in an application
program can be used with different kinds of device.

CAF Call Attachment Facility. The component of DB2 used by
application programs in any address space to connect the
application to DB2.

CCTL Coordinator Control Subsystem. (CICS for MVS only.) In IMS/
ESA, the transaction management subsystem that communicates
with the DRA, which in turn communicates with DBCTL. In a
CICS-DBCTL environment, the CCTL is CICS. The term is used
in a number of IMS operator commands that apply to DBCTL, and
in the IMS manuals.

CDRM Cross Domain Resource Manager. The functions of the system
services control point (SSCP) that control initiation and
termination of cross-domain sessions.
Glossary-2 Shadow Programming Guide December 1999

Glossary

B.

nd

d the
CGI Common Gateway Interface. An interface between a client (web
browser) and internet connection server that receives input data
from standard input, parses the data and translates the escaped
characters back into real characters, performs any business process
required, and sends a response to the client.

CICS Customer Information Control System. A transaction processing
extension to the operating system of IBM mainframe computers
that makes it easier to write programs that enter, retrieve, and
update data interactively from remote terminal services.

client/server An application architecture where a remote system (the client)
accesses data on a local system (the server).

CMOS Complementary Metal-Oxide Semiconductor. A technology
that combines the electrical properties of n-type semiconductors
and p-type semiconductors.

COBOL Common Business-Oriented Language. High-level
programming language based on English, and used for business
applications.

COMMAREA Communication Area. A CICS area that is used to pass data
between tasks that communicate with a given terminal. The area
can also be used to pass data between programs within a task.

CORBA Common Object Request Broker Architecture. A standard for
distributed objects being developed by the Object Management
Group. Provides the mechanisms by which objects transparently
make requests and receive responses as defined by OMG’s OR
The CORBA ORB is an application framework that provides
interoperability between objects built in different languages,
running on different machines in heterogeneous distributed
environments.

CP Control Program. A computer program designed to schedule a
supervise the execution of programs of a computer system.

CPI-C Common Programming Interface for Communications. A type
of API interface for LU 6.2.

CPU Central Processing Unit. A processing unit. The part of a
computer that includes the circuits controlling the interpretation
and execution of instructions.

CS Cursor Stability. An option used with block fetch allowing data
changes to take place between the time the data is extracted an
time that it is actually used by the application.

CTDLI A routine provided by IMS that processes DL/I calls from
programs written in the C language.
December 1999 Shadow Programming Guide Glossary-3

Glossary
DASD Direct Access Storage Device. A device in which access time is
effectively independent of the location of the data.

DB Database. A collection of data with a given structure for
accepting, storing, and providing, on demand, data for multiple
users.

DB/DC DATABASE/Data Communication. Type of IMS system that
supports database as well as data communication access.

DB2 DATABASE 2. An IBM relational database management system.
See DBMS.

DBA Database Administrator. The person who maintains the database
management system. Database Administration. The act of
maintaining a database management system.

DBCTL Database Control. (CICS for MVS only.) An interface between
CICS for MVS and IMS/ESA that allows access to IMS DL/I full-
function databases and to data entry databases (DEDBs) from one
or more CICS systems without the need for data sharing. It also
provides release independence, virtual storage constraint relief,
operational flexibility, and failure isolation.

DBMS Database Management System. System software for storing,
accessing and removing information. A relational DBMS, such as
DB2, permits a wide variety of views of the stored information
without customer programming.

DBRM Database Resource Manager (for example, DB2, IMS, Oracle,
etc.)

DDF Distributed Data Facility. The component of DB2 used to access
databases and tables on remote nodes in the network.

ddname Data Definition Name. The name of a data definition statement
that corresponds to a data control block containing the same name.

DES Data Encryption Standard. The National Institute of Standards
and Technology Data Encryption Standard, adopted by the US
Government, allowing only hardware implementations of the data
encryption algorithm.

DFP Data Facility Products. A group of IBM supplied access methods
and utilities.

DL/I Data Language l. In IMS/VS, the data manipulation language that
provides a common high-level interface between a user application
and IMS/VS. In VSE and CICS/VS, a database access language.

DMF Data Mapping Facility. A feature of Shadow Direct that allows
mapping from various sources. Data maps are created via a series
Glossary-4 Shadow Programming Guide December 1999

Glossary

t,

.

o
B2.

QL
ty
nd

n
zer
on

ing

r
of ISPF panels that allow the user to specify a dataset containing a
listing of a program that contains a data definition.

DNS Domain Name Server. In TCP/IP, a server program that supplies
name-to-address translation by mapping domain names to internet
addresses.

DRDS Dynamic Reconfiguration Data Set. In VTAM, a data set used
for storing definition data that can be applied to a generated
communication controller configuration at the operator’s reques
or can be used to accomplish dynamic reconfiguration of NCP,
local SNA, and packet major nodes.

DSNAME Dataset Name. The term or phrase used to identify the data set

DSA Dynamic Storage Area. (CICS/VSE only.) System initialization
parameter that pre-allocates the CICS dynamic storage area at
system initialization.

DSN command Data source (definitions); a DB2-supplied TSO command used t
run DB2-based application programs and issue commands to D

DTS Dynamic To Static Conversion Facility. Also known as the Plan-
Based Static SQL Conversion Facility. DTS converts dynamic S
to plan-based static SQL. DTS fully supports plan-based securi
and is not subject to any restrictions with respect to COMMIT a
ROLLBACK (including holding locks across a COMMIT or
ROLLBACK).

DTSG A utility developed by NEON System’s UK office that provides a
easier to use, graphical front end to the Dynamic to Static Analy
(DSA) program. DTSG was developed using Visual Basic Versi
4.0.

EBCDIC Extended Binary-Coded Decimal Interchange Code. A coded
character set of 256 8-bit characters.

ECF Enterprise Control Facility. A management tool that is installed
with the Enterprise Server and used to define monitoring and
control parameters for the local Enterprise Server or any other
Enterprise Server on the network.

EOV End Of Volume.

ESTAE Extended Specify Task Abnormal Exit. An MVS
macroinstruction that provides recovery capability and gives
control to the user-specified exit routine for processing, diagnos
an abend, or specifying a retry address.

event A site-defined action, such as a SQL statement, or CICS, IMS o
OS/390-MVS application program.
December 1999 Shadow Programming Guide Glossary-5

Glossary
EXCI External CICS Interface. Used by SHADOW_CICS to connect
to the specified CICS region and execute the specified program.

EXEC A TSO command for running REXX programs; a REXX program.

Fast Logon A connection startup process where handshaking is kept to a
minimum to reduce the number of network I/Os (from 2 to 1).
Since assumptions are made about the level of code at each end,
code level dependencies exist. If these assumptions are incorrect,
the connection will fail.

FTP File Transfer Protocol. A protocol used to request and receive
files and file system directory information from another computer.

Group A sequence of SQL operations that is collected and sent together as
one block. A group is terminated by a resultset returning SQL
operation (i.e., SELECT or CALL) or a logical unit of work
termination (i.e., COMMIT - note: a ROLLBACK will cause the
operations to be discarded). Only INSERTs, DELETEs and
UPDATEs may be grouped. The maximum grouping allowed is
determined at initialization time.

GUI Graphical User Interface. A type of computer interface
consisting of a visual metaphor of a real-world scene, often of a
desktop.

HFS Hierarchical File System. A disk-based filing system built on a
hierarchy of special files called directories or folders. Descends
from a main directory, called the root. Each lower level is a
subsidiary.

HTML Hypertext Markup Language. a simple markup language used to
create hypertext documents that are platform independent. HTML
documents are SGML (Standard Generalized Markup Language)
documents with generic semantics that are appropriate for
representing information from a wide range of domains. HTML
markup can represent hypertext news, mail, documentation, and
hypermedia; menus of options; database query results; simple
structured documents with in-lined graphics; and hypertext views
of existing bodies of information.

HTML Extension Facility A run-time tailoring facility supported by Shadow OS/390 Web
Server for text format data files. Provides extremely flexible and
easy-to-use support for the creation of customized HTML forms
and web pages. You make use of the HTML Extension Facility by
including HTML-like statements directly within your source file.
When the source file is to be transmitted out-bound, the Shadow
OS/390 Web Server evaluates the HTML Extension statements and
customizes the information that is actually sent.
Glossary-6 Shadow Programming Guide December 1999

Glossary
HTTP Hypertext Transfer Protocol. Protocol used by the World Wide
Web. It allows the retrieval of virtually any digital file, in a format
suitable for later rendering the file in its original text, audio, or
visual media presentation form.

IDMS Type of database management system supplied by Computer
Associates.

IMS Information Management System. An IBM hierarchical database
management system.

Internet A wide area network connecting many networks to allow the free
flow of information between otherwise unconnected and often very
incompatible computer systems.

Intranet A closed subnetwork, based on Internet technology. It operates the
same way as the global Internet, but usually exists within the
confines of a single organization using private communication
pathways. An intranet is used to disseminate information to
"authorized" users, such as those within the organization, while
preventing some or all access from outside the organization.

IP Internet Protocol. A protocol used to route data from its source to
its destination in an Internet environment.

IP Address Internet Protocol Address. A two part address, used by TCP/IP to
route information packets from one node in the network to another.
Within a TCP/IP network IP addresses must be unique.

I/O Input/Output. Pertaining to input, output, or both; or pertaining to
a device, process, or channel involved in data input, data output, or
both.

IPCS Interactive Problem Control System. A component of VM
(virtual machine) that permits online problem management,
interactive problem diagnosis, online debugging for disk-resident
CP abend dumps, and problem tracking and reporting.

ISPF Interactive System Productivity Facility. An IBM-licensed
program that serves as a full-screen editor and dialogue manager;
used for writing application programs, it provides a means of
generating standard screen panels and interactive dialogues
between the application programmer and terminal user.

ISO International Standards Organization.

IUCV Inter-User Communications Vehicle. An API used by Shadow
Server to communicate with IBM TCP/IP.

JCL Job Control Language. A control language used to identify a job
to an operating system and to describe the job’s requirements.
December 1999 Shadow Programming Guide Glossary-7

Glossary

le

time

 to

d
ith

rs

W
be
OW.

e
)

or
end.

es
on
LAN Local Area Network. A computer network located on a user’s
premises within a limited geographical area.

LPA Link Pack Area. An area of main storage containing re-enterab
routines from system libraries. In OS/VS2, an area of virtual
storage containing re-enterable routines that are loaded at IPL
and can be used concurrently by all tasks in the system.

LRECL Logical Record Length. In CICS/VS, the length of a logical
record, which is a data record sent by one transaction program
another. In VSAM, the length of a unit of information normally
pertaining to a single object.

LU Logical Unit. A type of network accessible unit that enables en
users to gain access to network resources and communicate w
each other.

LU 6.2 Logical Unit 6.2. An SNA defined protocol for communication
between two applications.

LUOW Logical Unit Of Work. In IMS/VS, the processing unit that a
program performs between synchronization points.

LZ Lempel Ziv. A type of compression based on repeated characte
in the data.

Message Connection A logical connection in which the connection resources (i.e.,
network session, threads etc.) are held for the duration of a LUO
in which SQL operations may be grouped. Only one send may
issued on a physical network session. Each send must be a LU
INSERTs, DELETEs and UPDATEs cannot be mixed with
SELECTs or CALLs without intervening COMMITs or
ROLLBACKs.). This type of connection increases network usag
(multiple connections) and CPU utilization (multiple connections
but releases mainframe resources (TCBs, threads and TCP/IP
sessions) after relatively short periods of time. This is the most
efficient mode as far as holding of mainframe resources is
concerned. The network usage is greater than or equal to that f
Transblock mode due to sessions being terminated after each s
The number of connections may exceed the number of actual
resources.

MFS Message Format Services. In IMS/VS, an editing facility that
allows application programs to deal with simple logical messag
instead of device-dependent data, thus simplifying the applicati
development process.

MIB Management Information Block.

MIME Multimedia Internet Mail Extension. A type of Internet file
supported by Shadow OS/390 Web Server.
Glossary-8 Shadow Programming Guide December 1999

Glossary
MQ Series Middleware which focuses on reliable and guaranteed delivery by
continually retrying to send the message even if there has been
gateway failure or a network outage. It even survives a restart of
the queue manager.

MRO Multiregion Operation. Communication between CICS systems
in the same processor without the use of SNA network facilities.

MTS Multithreaded Server. A type of transactional and object broker
server.

MUNIX Combination of UNIX and 0S/390-MVS knowledge.

MVS Multiple Virtual Storage. An operating system for IBM System
370 hardware. Each user of the system is provided a "virtual"
address space equal in size to the addressing limit of the machine.
Also shorthand notation for MVS/XA (MVS/Extended
Architecture) and MVS/ESA (MVS/Enterprise Systems
Architecture).

NDS NEON Data Stream. An ODBC-optimized protocol, implemented
between the driver and the server components. NDS interacts with
the network at the transport layer, thus avoiding the overhead
inherent in higher-level network APIs. It also enhances
performance in a variety of ways, including compressing the data,
minimizing the number of client-to-server round trips, and
increasing the network buffer size.

NLS National Language Support. The modification or conversion of a
US English product to conform to the requirements of another
language or country.

NT Network Terminal.

OC Open Client. Type of API. Not supported by Shadow Direct.

ODBC Open Database Connectivity. An API created by Microsoft that
allows applications to access data in database management systems
(DBMS) using SQL as a standard. This interface was designed to
allow a single application to access many different database
management systems.

OE Open Edition.

OLTP Online-Transaction-Processing.

OS/2 Operating System/2. An IBM supplied operating system for IBM
personal computers; has many features, such as multitasking,
similar to those of mainframe operating systems.

PCB Program Communication Block. An IMS control block that
describes an application program’s interface to and view of an IMS
December 1999 Shadow Programming Guide Glossary-9

Glossary
database or, additionally for message processing and batch
message processing programs, to the source and destinations of
messages. PCBs are defined by the user during PSB generation.

PDS Page Data Set. A method of storing several programs, such as
REXX programs, as members of a single data set. In System/370
virtual storage systems, a data set in external page storage in which
pages are stored.

Permanent Connection A logical connection in which the connection resources (i.e.,
network session, threads etc.) are held for the lifetime of the
connection and each SQL operation is transmitted and executed
separately (i.e., no grouping). Multiple sends may be issued on a
physical network session. Each send is an individual SQL
operation. This type of connection is efficient in network usage
(only one connection made) and CPU utilization (no overhead for
multiple connections) but holds mainframe resources (TCBs,
threads and TCP/IP sessions) over relatively long periods of time.
The number of connections is limited to the number allowed for the
scarcest resource.

PGP Pretty Good Privacy. Allows companies to perform Electronic
Data Interchange (EDI) over the Internet with privacy,
authentication, and convenience; combines the convenience of the
Rivest-Shamir-Adleman (RSA) public key cryptosystem with the
speed of conventional cryptography, message digests for digital
signatures, data compression before encryption, good ergonomic
design, and sophisticated key management.

PL/I Programming Language One. A programming language
designed for numeric scientific computations, business data
processing, systems programming and other applications.

PO Partitioned Organized. Type of dataset organization.

Port A 16-bit number used along with IP address to uniquely identify an
application on a node within a TCP/IP network.

PSB Program Specification Block. The control block that describes
databases and logical message destinations used by an application
program. A PSB consists of one or more PCBs.

PTF Program Temporary Fix. A temporary solution or by-pass of a
problem diagnosed by IBM as resulting from a defect in a current
unaltered release of the program.

PU Physical Unit. The component that manages and monitors the
resources associated with a node, as requested by an SSCP via an
SSCP-PU session. This term applies to type 2.0, type 4 and type 5
nodes only.
Glossary-10 Shadow Programming Guide December 1999

Glossary

d

g

.

 It

s a
QMF Query Management Facility.

RACF Resource Access Control Facility. An IBM-licensed program
that provides for access control by identifying and verifying the
users to the system, authorizing access to protected resources,
logging the detected unauthorized attempts to enter the system, and
logging the detected accesses to protected resources.

RC Return Code. A code used to influence the execution of
succeeding instructions; a value returned to a program to indicate
the results of an operation requested by that program.

RDBMS Relational Database Management Systems. A type of database
management system that stores information in tables – rows an
columns – and conducts searches by using data in specified
columns of one table to find additional data in another table.

RDT Resource Definition Table. In VTAM, a table describing the
characteristics of each node available to VTAM, and associatin
each node with a network address.

REXX Restructured Extended Executor. An interpretive language used
to write command lists.

RFC Request for Comments.

RPC Remote Procedure Calls. Allows a client to execute a program on
a server, with the program being remote to the client.

RR Repeatable Read. An option used with block fetch, allowing many
more pages to be locked for update, especially if the number of
rows normally extracted by the query is small.

RSA Rivest-Shamir-Adleman. A scheme for public key cryptography

RSP Remote Stored Procedures.

SAA Systems Application Architecture. A set of guidelines promoted
by IBM for standardizing the design of large pieces of software.
includes a set of user interface guidelines called Common User
Access (CUA), as well as guidelines for data communications,
programming languages, and procedure libraries.

SAF System Authorization Facility. An MVS facility for routing
authorization requests to RACF or equivalent system security
packages.

SAM Shadow Activity Monitor. Provides a workstation-based tool for
viewing and reporting the Shadow Server logs. SAM functions a
standard Shadow Direct ODBC client.
December 1999 Shadow Programming Guide Glossary-11

Glossary
SDF Shadow Diagnostic Facility. An ISPF-based application, allowing
the administrator to view summary and detail information related
to connectivity and to take actions to correct connectivity
problems. All of the diagnostic, monitoring, and control
information can be accessed and updated through the SDF.

SEF Shadow Event Facility. A comprehensive and flexible mechanism
for controlling the overall Shadow Direct client/server
environment; allows each installation to tailor the execution
characteristics of Shadow Direct to whatever level of detail (per-
user, per-group, by time-of-day, etc.) is required.

SID Site ID.

SMF System Management Facility. An optional control program
feature of OS/VS that provides the means for gathering and
recording information used to evaluate system usage.

SNA Systems Network Architecture. A layered scheme for
communication between devices and applications in a network.
Applies mainly to IBM networks.

SNMP Simple Network Management Protocol.

SPUFI SQL Processor Using File Input. An interactive component of
DB2, used to query and maintain DB2 databases.

SQL Structured Query Language. A non-procedural language for
creating, querying, and maintaining relational databases.

SRB Service Request Block. (CICS for MVS only.) An MVS
dispatchable unit.

SRM System Resources Manager. A group of programs that controls
the use of system resources in order to satisfy the performance
objectives of the installation.

SSL Security Socket Layers. Encryption for the highest client/server
security standard in practical use today.

Table A named DB2 object, consisting of a specific number of columns
and zero or more unordered rows of data.

TCB Task Control Block. In CICS for MVS, an MVS control block. A
TCB is created for each MVS task. Several TCBs are created for
CICS management programs. All CICS application programs and
all non-reentrant CICS code run under a single quasi-reentrant
TCB.

TCP/IP Transmission Control Protocol/Internet Protocol. A protocol
specifically designed to facilitate communications between
heterogeneous networks.
Glossary-12 Shadow Programming Guide December 1999

Glossary
Thread An individual unit of work in OS/390-MVS used for authorization,
data access, transaction access, monitoring and control.

TIB Terminal Information Block.

TMP Terminal Monitor Program. In TSO, a program that accepts and
interprets commands from the terminal and causes the appropriate
command processors to be scheduled and executed.

TNUF Table Name Utilization Facility. A feature of Shadow Direct that
allows on-the-fly modification of table names on a user-by-user
basis.

TP Transaction Program. A program that processes transactions in
an SNA network.

TPL Transport Parameter List. An API used by Shadow Server to
communicate with Interlink TCP/IP.

Transaction Connection A logical connection in which the connection resources (i.e.,
network session, threads, etc.) are held for the duration of each
LUOW and each SQL operation is transmitted and executed
separately (i.e., no grouping). Multiple sends may be issued on a
physical network session. Each send is an individual SQL
operation. The physical network connect is terminated at the end of
a LUOW (i.e., COMMIT or ROLLBACK). This type of
connection increases network usage (multiple connections) and
CPU utilization (multiple connections) but releases mainframe
resources (TCBs, threads and TCP/IP sessions) after relatively
short periods of time. The number of connections may exceed the
number of actual resources.

TransBlock Connection A logical connection in which the connection resources (i.e.,
network session, threads etc.) are held for the duration of each
LUOW and in which SQL operations may be grouped. Multiple
sends may be issued on a physical network session. Each send is
one or more SQL operations (a group). This type of connection
increases network usage (multiple connections) and CPU
utilization (multiple connections) but releases mainframe resources
(TCBs, threads and TCP/IP sessions) after relatively short periods
of time. The network usage is less than or equal to that for
Transaction mode due to grouping of sent data. The number of
connections may exceed the number of actual resources.

TSO Timesharing Option. The interactive timesharing component of
the MVS operating system that supports timesharing terminals.

TSS Time Sharing System. A programming system that provides users
with conversational online access to a computing system with one
or more processing units and simultaneously processes batched
jobs.
December 1999 Shadow Programming Guide Glossary-13

Glossary

 to

ata

be

rted

o
 be

y
UDP User Datagram Protocol. In TCP/IP, a packet-level protocol built
directly on the Internet protocol layer. Used for application-to-
application programs between TCP/IP host systems.

UNIX An operating system developed by Bell Laboratories that features
multiprogramming in a multi-user environment. The UNIX
operating system was originally developed for use on
minicomputers but has been adapted for mainframes and
microcomputers.

URL Uniform Request Locator.

VCF Virtual Connection Facility. Allows sharing of OS/390-MVS
connectivity resources across a larger user population by
transparently switching connections between “real” and “virtual”
as the application shifts from active to idle, and vice versa.

Virtual Storage An operating system technique for providing more addressable
storage to programs than is actually available on the hardware.

VM Virtual Machine. A virtual data processing system that appears
be at the exclusive disposal of a particular user, but whose
functions are accomplished by sharing the resources of a real d
processing system.

VSAM Virtual Storage Access Method. A type of data set maintained by
TSO's Access Method Services program. VSAM datasets may
accessed sequentially and randomly.

VTAM Virtual Telecommunications Access Method. IBM mainframe
software that implements portions of the Systems Network
Architecture (see SNA).

Web Enabling The execution of online IMS transactions and commands conve
by Shadow OS/390 Web Server into HTML format.

WLM Work Load Manager. A component of the OS/390 operating
system, first introduced in MVS/ESA 5.1. It is a policy driven
manager system of resources that is intended to allow a user t
define system performance goals in the same terms that would
used in a service level agreement.

WWW World Wide Web.

Work Station A powerful microcomputer typically used for scientific and
engineering calculations. A workstation typically has more than
four megabytes of RAM, more than 100 megabytes of disk
capacity, and a screen with graphics resolution of at least 800 b
1000. Examples are the Sun Sparcstation and IBM RS/6000.
Glossary-14 Shadow Programming Guide December 1999

Glossary
Wrap-Around Trace Facility A Shadow Server tool, designed to record critical events in the life
of each individual transaction process. In addition, the tool is
designed to record critical internal information which can be used
to debug and correct problems within the Server itself. The wrap-
around trace consists of a large block of virtual storage, which can
optionally be backed by a data-in-virtual linear dataset. This block
of virtual storage is sub-divided into a status area, a configurable
number of event blocks, and a series of vector tables.
December 1999 Shadow Programming Guide Glossary-15

Glossary
Glossary-16 Shadow Programming Guide December 1999

Index

Symbols
/*EXECSQL

using ODBC CALL RPCs 2-17

A
Address 7-6
Application Program Interface (API) functions 7-8, 7-27,

7-61, 7-90, 7-146, 7-156, 7-238

B
BIND 3-2
Buffer Area 7-6

C
CALL RPC 2-2
CEEEUOPT 2-11
CEEWUOPT 2-11
CICS examples

/*EXECSQL 6-5
PowerBuilder 4.0 6-4
Visual Basic 3.0 6-2

CICS Host APIs 7-61
SDBEXCON 7-67
SDBEXDIS 7-88
SDBEXDPL 7-75
SDBEXINI 7-82
SQLEXCICONNECT (SDCPEC) 7-62
SQLEXCIDISCONN (SDCPEL) 7-84
SQLEXCIDPLREQ (SDCPED) 7-69
SQLEXCIINITUSR (SDCPEI) 7-78
SWSEXCICONNECT (SWCPEC) 7-62
SWSEXCIDISCONN (SWCPEL) 7-84
SWSEXCIDPLREQ (SWCPED) 7-69
SWSEXCIINITUSR (SWCPEI) 7-78
SWSEXCON 7-67
SWSEXDIS 7-88
SWSEXDPL 7-75
SWSEXINI 7-82

Client API Function Definitions 1-15
Client Applications 1-2
Client-RPC Interaction 1-4
COBOL

Special Considerations 2-8
COBOL for MVS

special considerations 2-10
coding cursors 3-3
Coding SWSCLEDQ 7-242
COMMIT 3-4
COMMIT_ON_RETURN 3-4
CursorsinReturnSets 3-4

D
Data Transmission 1-8
DB2 1-8
DB2 stored procedures 3-1

SYSPROC 3-1
DD Statements 1-7
DESCSTAT 3-2
DSNTIJUZ 3-2
DSNZPARM 3-2
DUMMYPSB 4-33

E
Enterprise Direct APIs

NEONBindCol 8-2
NEONDescribeParam 8-5, 8-7
NEONError 8-8
NEONGetInfo 8-10
NEONNumParams 8-12
NEONResetParams 8-14
NEONReturnStatus 8-16
NEONThrow 8-18
NEONTraceMsg 8-20

Enterprise Direct MVS Client B-1
ESPIE 1-4
ESTAE 1-4

F
Flag-Word 7-6
Fullword 7-6

G
General Host APIs 7-156

SDBALLOC 7-188, 7-198
SDBALLOC (SDCPAL) 7-173
SDBCONCT 7-232
SDBCONCT (SDCPCC) 7-229
SDBDECON 7-237
SDBDECON (SDCPDC) 7-234
SDBERROR 7-161
SDBFREE 7-204
SDBFREE (SDCPFR) 7-199
SDBINFO 7-167
SDBTOKEN 7-225
SDBTRACE 7-172
SDBVALUE 7-213
SDBVALUE (SDCPVL) 7-207
SQLERROR (SDCPSE) 7-157
SQLGETINFO (SDCPGI) 7-162
SQLTOKEN (SDCPTK) 7-219
SQLTRACEMSG (SDCPTM) 7-169
SWSALLOC 7-188, 7-198
December 1999 Shadow Programming Guide Index-1

Index
SWSALLOC (SWCPAL) 7-173
SWSCONCT 7-232
SWSCONCT (SWCPCC) 7-229
SWSDECON 7-237
SWSDECON (SWCPDC) 7-234
SWSERROR 7-161
SWSERROR (SWCPSE) 7-157
SWSFREE 7-204
SWSFREE (SWCPFR) 7-199
SWSINFO 7-167
SWSINFO (SWCPGI) 7-162
SWSTOKEN 7-225
SWSTOKEN (SWCPTK) 7-219
SWSTRACE 7-172
SWSTRACEMSG (SWCPTM) 7-169
SWSVALUE 7-213
SWSVALUE (SWCPVL) 7-207

H
High-Level Language Interface

SDBALLOC (SDCPAL) 7-173
SDBCONCT (SDCPCC) 7-229
SDBDECON (SDCPDC) 7-234
SDBECURE (SDCPSC) 7-243
SDBFREE (SDCPFR) 7-199
SDBVALUE (SDCPVL) 7-207
SQLAPPCCONNECT (SDCPAC) 7-28
SQLAPPCDISCONNECT (SDCPAD) 7-41
SQLAPPCRECEIVE (SDCPAR) 7-46
SQLAPPCSEND (SDCPAS) 7-54
SQLERROR (SDCPSE) 7-157
SQLEXCICONNECT (SDCPEC) 7-62
SQLEXCIDISCONN (SDCPEL) 7-84
SQLEXCIDPLREQ (SDCPED) 7-69
SQLEXCIINITUSR (SDCPEI) 7-78
SQLGETINFO (SDCPGI) 7-162
SQLTOKEN (SDCPTK) 7-219
SQLTRACEMSG (SDCPTM) 7-169
SWLAPPCDISCONNECT (SDCPAD) 7-41
SWSALLOC (SWCPAL) 7-173
SWSAPDIS 7-45
SWSAPPCCONNECT (SWCPAC) 7-28
SWSAPPCDISCONNECT (SWCPAD) 7-41
SWSAPPCRECEIVE (SWCPAR) 7-46
SWSAPPCSEND (SWCPAS) 7-54
SWSClearQueue (SWCPQL) 7-239
SWSCONCT (SWCPCC) 7-229
SWSDECON (SWCPDC) 7-234
SWSECURE (SWCPSC) 7-243
SWSERROR (SWCPSE) 7-157
SWSEXCICONNECT (SWCPEC) 7-62
SWSEXCIDISCONN (SWCPEL) 7-84
SWSEXCIDPLREQ (SWCPED) 7-69
SWSEXCIINITUSR (SWCPEI) 7-78
SWSFILE (SWCPFI) 7-102
SWSFREE (SWCPFR) 7-199
SWSGetQueue (SWCPQG) 7-260
SWSINFO (SWCPGI) 7-162

SWSPutQueue (SWCPQP) 7-267
SWSQueryQueue (SWCPQQ) 7-270
SWSRESP (SWCPRE) 7-96
SWSSEND (SWCPSN) 7-91
SWSSET (SWCPSO) 7-130
SWSTOKEN (SWCPTK) 7-219
SWSTRACEMSG (SWCPTM) 7-169
SWSVALUE (SWCPVL) 7-207

HLL Interface 7-4
call by reference 7-5
compiling and linking application programs 7-4
layout of HLL references pages 7-4

HLL Interface terminology 7-6
address 7-6
buffer area 7-6
flag word 7-6
fullword 7-6
manifest constant 7-6
null-terminated string 7-6
signed integer 7-7
unsigned integer 7-7

Host API Function Calls
CICS 7-61
General 7-156
IMS/APPC 7-27
ODBC CALL 7-8
RPC Direct 7-146
Web Server 7-90
Web Server REXX and SEF 7-238

Host Applications 1-3
Host RPCs 1-3

I
IMS 1-9
IMS/APPC Host API’s

SWSAPPCCONNECT (SWCPAC) 7-28
IMS/APPC Host APIs 7-27

SDBAPCON 7-37
SDBAPDIS 7-45
SDBAPRCV 7-52
SDBAPSND 7-59
SQLAPPCCONNECT (SDCPAC) 7-28
SQLAPPCDISCONNECT (SDCPAD) 7-41
SQLAPPCRECEIVE (SDCPAR) 7-46
SQLAPPCSEND (SDCPAS) 7-41
SQLAPPCSSEND (SDCPAS) 7-54
SWSAPCON 7-37
SWSAPDIS 7-45
SWSAPPCDISCONNECT (SWCPAD) 7-41
SWSAPPCRECEIVE (SWCPAR) 7-46
SWSAPPCSEND (SWCPAS) 7-54
SWSAPRCV 7-52
SWSAPSND 7-59

installation 3-2

L
LE/370 Language

special considerations 2-10
Index-2 Shadow Programming Guide December 1999

Index
M
Manifest Constant 7-6
monospace fonts xiii

N
NEONBindCol 8-2
NEONDescribeParam 8-5, 8-7
NEONError 8-8
NEONGetInfo 8-10
NEONNumParams 8-12
NEONResetParam 8-14
NEONReturnStatus 8-16
NEONThrow 8-18
NEONTraceMsg 8-20
Null-terminated String 7-6

O
ODBC CALL Host APIs

SQLBINDCOL (SDCPBC) 7-9
SQLDESCRIBEPARAM (SDCPDP) 7-13
SQLNUMPARAMS (SDCPNP) 7-17
SQLRESETPARAM (SDCPRP) 7-19
SQLRETURNSTATUS (SDCPRS) 7-21
SQLTHROW (SDCPTH) 7-24

ODBC CALL RPC samples 2-2
ODBC CALL RPCs

using in /*EXECSQL 2-17
using in Powerbuilder 2-15
using in Visual Basic 2-14

output parameters 3-2

P
PCB type 4-33
PKLIST 3-3
Powerbuilder

using ODBC CALL RPCs 2-15

R
Reader’s Comment form xiii
ResultSets 3-2
retrieving column names 3-2

samples 3-2
RPC access to VSAM 2-2
RPC Direct Host APIs 7-146

sdcpif 7-147
sdcpmg 7-150
sdcprd 7-152
sdcpwr 7-154

S
sample RPC 2-7
SCAsciiToEbcdic 1-16

HDBC 1-16
PTR 1-16
SDWORD 1-16
SQLSTATE

01000 1-16
08003 1-16
S1009 1-16
S1090 1-16

Visual Basic environment 1-17
SCCToDLI 4-10, 4-34

Accessing and updating PCB fields 4-14
DUMMYPSB 4-35
HDBC 4-10
PCB list structure 4-13
PTR 4-10
SDWORD 4-10
Sending DL/I requests to the host 4-15
SQLSTATE

08003 4-11
08S01 4-11
S1000 4-11
S1009 4-11

SCCToDLIPascal 4-17, 4-35
DL/I requests 4-22
HDBC 4-17, 4-24, 4-26
PCB fields 4-21
PCB list structure 4-20
PTR 4-17
SDWORD 4-17
SQLSTATE

01000 4-18, 4-25
08003 4-18, 4-25
08S01 4-18, 4-25
S1000 4-18, 4-25
S1009 4-18, 4-25

SCEbcdicToAscii 1-18
HDBC 1-18
PTR 1-18
SDWORD.0 1-18
SQLSTATE

01000 1-18
08003 1-18
S1009 1-18
S1090 1-18

Visual Basic environment 1-19
SCReadBuffer 1-20

HDBC 1-20
PTR 1-20
SDWORD 1-20
SDWORD FAR* 1-20
SQLSTATE

01000 1-20, 8-3, 8-6, 8-13, 8-15, 8-17, 8-19
08003 1-20, 8-7, 8-13, 8-15, 8-17, 8-19
08S01 1-20, 8-6, 8-15, 8-17, 8-19
22003 1-21, 8-7
S1009 1-21
S1090 1-21

SCWriteBuffer 1-22
HDBC 1-22
PTR 1-22
SDWORD 1-22
SQLSTATE

01000 1-22
December 1999 Shadow Programming Guide Index-3

Index
08003 1-22
08S01 1-23
S1009 1-23
S1090 1-23

SCWriteReadBuffer 1-24
HDBC 1-24
PTR 1-24
SDWORD 1-24
SDWORD FAR* 1-24
SQLSTATE

01000 1-25
08003 1-25
08S01 1-25
22003 1-25
S1009 1-25
S1090 1-25

SDBALLOC (SDCPAL) Function 7-173
SDBALLOC Function 7-188, 7-198
SDBAPCON 7-37
SDBAPDIS 7-45
SDBAPDIS Function 7-45
SDBAPRCV Function 7-52
SDBAPSND Function 7-59
SDBCONCT (SDCPCC) Function 7-229
SDBCONCT Function 7-232
SDBDECON (SDCPDC) Function 7-234
SDBDECON Function 7-237
SDBECURE (SWCPSC) Function 7-243
SDBECURE Function 7-251
SDBERROR Function 7-161
SDBEXCON Function 7-67
SDBEXDIS Function 7-88
SDBEXDPL Function 7-75
SDBEXINI Function 7-82
SDBFREE (SDCPFR) Function 7-199
SDBFREE Function 7-204
SDBINFO Function 7-167
SDBPARM Function 7-263
SDBSMF Function 7-273
SDBTOKEN Function 7-225
SDBTRACE Function 7-172
SDBVALUE (SDCPVL) Function 7-207
SDBVALUE Function 7-213
sdcpif 7-147
sdcpmg 7-150
sdcprd 7-152
sdcpwr 7-154
Shadow 1-3
Shadow IMS Direct 4-1

Client API function definitions
SCCToDLISee SCCToDLI 4-10

Client API Functions
SCCToDLIPascalSee SCCToDLIPascal 4-17

Client applications 4-8
Configuration 4-5
Multithreaded access 4-3, 4-6

IMSCLASS 4-7
IMSDDNAME 4-6
IMSDSNAME 4-7

IMSFPBUFFERS 4-7
IMSFPOVERFLOW 4-7
IMSFUNCLEVEL 4-6
IMSGROUPNAME 4-7
IMSID 4-6
IMSMAXTHREADS 4-6
IMSMINTHREADS 4-6
IMSNBABUFFERS 4-7
IMSSUFFIX 4-6
IMSTIMEOUT 4-7
IMSUSERID 4-6
IMSWAITTIME 4-6

ODBC.LIB 4-9
PCB type 4-33
Product architecture 4-8
product architecture 4-1
Sample BMP code 4-27

DUMMYPSB 4-33
SSA string 4-33

SCCToDLI
Sending DL/I requests to the host 4-15

SCODBC.LIB 4-9
SCODBCTS.DLL 4-9
SCODBCTS.LIB 4-9
scpghd.h 4-9
Setting parameters for single-threaded access

BMPNAME 4-5
IMSBPTIMEOUT 4-5

Single-threaded access 4-1, 4-5
BMPPARM 4-5

Supported languages 4-8
Shadow RPC Direct

Client API functions
SCEbcdicToAscii 1-18
SCReadBuffer 1-20
SCWriteBuffer 1-22
SCWriteReadBuffer 1-24

Client-RPC interaction 1-4
Compression/decompression 1-8
Data transmission between client application and

host RPC 1-8
DBCTL API 1-9
DBCTL IMS interface 1-9
DBCTL interface 1-4
DD statements 1-7
Host APIs 1-4
Host execution environment 1-6
Host RPCs 1-3, 1-4
Overview 1-1
plan name 1-8
Problem and Supervisor state considerations 1-6
Product architecture 1-2

Client applications 1-2
Host applications 1-3

Reentrancy considerations 1-6
RPC libraries 1-7
SCAsciiToEbcdic 1-16
SCODBC.LIB 1-3
SCODBCTS.DLL 1-3
Index-4 Shadow Programming Guide December 1999

Index
SDBRPCLB DD statement 1-7
Static and dynamic SQL 1-5, 1-8
Supported languages 1-1, 1-2
Use of 24 and 31-bit code 1-6
Use of ESTAE and ESPIE 1-4
Use of TCBs 1-6
Using DSNALI 1-9
Using host data 1-8

DB2” 1-8
IMS 1-9
Writing a host RPC using DBCTL API 1-9
Writing a host RPC using VSAM 1-10

Virtual storage 1-6
Shadow_IMS examples

/*EXECSQL 5-7
PowerBuilder 4.0 5-5
Visual Basic 3.0 5-4

SHADOW_IMS RPC 6-1
ShadowIMSDirect

ClientAPIfunctions 4-9
Shared Storage 2-11
shared storage considerations 2-12
Signed Integer 7-7
SQLAPPCCONNECT (SDCPAC) 7-28
SQLAPPCDISCONNECT (SDCPAD) 7-41
SQLAPPCDISCONNECT (SDCPAD) Function 7-41
SQLAPPCRECEIVE (SDCPAR) Function 7-46
SQLAPPCSEND (SDCPAS) 7-54
SQLBINDCOL (SDCPBC) 7-9
SQLDESCRIBEPARAM (SDCPDP) 7-13
SQLDriverConnect 4-34
SQLERROR (SDCPSE) Function 7-157
SQLEXCICONNECT (SDCPEC) Function 7-62
SQLEXCIDISCONN (SDCPEL) Function 7-84
SQLEXCIDPLREQ (SDCPED) Function 7-69
SQLEXCIINITUSR (SDCPEI) Function 7-78
SQLGETINFO (SDCPFI) Function 7-162
SQLNUMPARAMS (SDCPNP) 7-17
SQLRESETPARAM (SDCPRP) 7-19
SQLRETURNSTATUS (SDCPRS) 7-21
SQLTHROW (SDCPTH) 7-24
SQLTOKEN (SDCPTK) Function 7-219
SQLTRACEMSG (SDCPTM) Function 7-169
SSA string 4-33
STATS function 7-117
StoredProcedures

Preparing 3-3
ResultSets 3-2

Subfunctions
SWSFILE (SWCPFI) 7-110

support, technical xv
SWSALLOC (SWCPAL) Function 7-173
SWSALLOC Function 7-188, 7-198
SWSAPCON 7-37
SWSAPDIS 7-45
SWSAPDIS Function 7-45
SWSAPPCCONNECT(SWCPAC) 7-28
SWSAPPCDISCONNECT (SWCPAD) 7-41
SWSAPPCDISCONNECT (SWCPAD) Function 7-41

SWSAPPCRECEIVE (SWCPAR) Function 7-46
SWSAPPCSEND (SWCPAS) 7-54
SWSAPRCV Function 7-52
SWSAPSND Function 7-59
SWSClearQueue (SWCPQL) Function 7-239
SWSCLEDQ Function 7-242
SWSCONCT (SWCPCC) Function 7-229
SWSCONCT Function 7-232
SWSDECON (SWCPDC) Function 7-234
SWSDECON Function 7-237
SWSECURE 7-257
SWSECURE Function 7-251
SWSECURE(SWCPSC) Function 7-243
SWSENQ Function 7-258
SWSERROR (SWCPSE) Function 7-157
SWSERROR Function 7-161
SWSEXCICONNECT (SWCPEC) Function 7-62
SWSEXCIDISCONN (SWCPEL) Function 7-84
SWSEXCIDPLREQ (SWCPED) Function 7-69
SWSEXCIINITUSR (SWCPEI) Function 7-78
SWSEXCON Function 7-67
SWSEXDIS Function 7-88
SWSEXDPL Function 7-75
SWSEXINI Function 7-82
SWSFILE (SCPFI)

subfunction 7-110
SWSFILE (SWCPFI) 7-102
SWSFILE Arguments 7-128
SWSFILE Function 7-113
SWSFILE function with other REXX-language

interpreters 7-124
SWSFREE 7-204
SWSFREE (SWCPFR) Function 7-199
SWSFREE Function 7-204
SWSGetQueue (SWCPQG) Function 7-260
SWSGetQueue (SWCPQP) Function 7-267
SWSINFO (SWCPGI) Function 7-162
SWSINFO Function 7-167
SWSPARM Function 7-263
SWSQueryQueue (SWCPQQ) Function 7-270
SWSRESP (SWCPRE) 7-96
SWSRESP Function 7-100
SWSSEND 7-91
SWSSEND Function 7-94
SWSSET (SWCPSO) Function 7-130
SWSSET Function 7-140
SWSSMF Function 7-273
SWSTOKEN (SWCPTK) Function 7-219
SWSTOKEN Function 7-225
SWSTRACE Function 7-172
SWSTRACEMSG (SWCPTM) Function 7-169
SWSVALUE 7-213
SWSVALUE (SWCPVL) Function 7-207
SWSVALUE Function 7-213
SWSXMIT Function 7-274
Syntax

DB2StoredProcedures 3-1
SYSIBM.SYSPROCEDURES 3-3
December 1999 Shadow Programming Guide Index-5

Index
T
technical support xv
troubleshooting stored procedures 3-4

U
Un-signed Integer 7-7
Using DBCTL API 1-9
Using Host Data 1-8

V
VB4.0 program 3-2
VBDEMO 2-2
Visual Basic

using ODBC CALL RPCs 2-14
VSAM 1-10

W
Web Server REXX and SEF Host APIs

SDBECURE 7-251
SDBECURE (SDCPSC) 7-243
SDBPARM 7-263
SDBSMF 7-273
SWSClearQueue (SWCPQL) 7-239
SWSCLEDQ 7-242
SWSECURE 7-251
SWSECURE(SWCPSC) 7-243
SWSENQ 7-258
SWSGetQueue (SWCPQG) 7-260
SWSPARM 7-263
SWSPutQueue (SWCPQP) 7-267
SWSQueryQueue (SWCPQQ) 7-270
SWSSMF 7-273
SWSSXMIT 7-274

Web Server Specific APIs 7-90
SWSFILE 7-113
SWSFILE (SWCPFI) 7-102
SWSFILE Function with other REXX-language

interpreters 7-124
SWSRESP 7-100
SWSRESP (SWCPRE) 7-96
SWSSEND 7-94
SWSSEND (SWCPSN) 7-91
SWSSET 7-140
SWSSET (SWCPSO) 7-130

WITHHOLD 3-4
WITHRETURN 3-4
Writing a Host RPC 1-9
Writing RPCs that access DB2 2-7
Index-6 Shadow Programming Guide December 1999

Reader’s Comment Form

At NEON Systems, Inc. we are always looking for good ideas. If you have a suggestion or comment
regarding any of our publications, please complete this form, and mail or fax it to us at the following
address. Thank you.

Please mail or fax this page to:

NEON Systems, Inc.
14100 SW Freeway, Suite 500

Sugar Land, Texas 77478, U. S. A.

Fax Number: (281) 242-3880

Please complete the following information, or attach your business card here.

Your Name:

Phone Number:

Your Company:

Address:

Publication Name:

Version and Edition Numbers (see page ii):

Suggestion/Request:
Reader’s Comment Form

	About this Publication
	How this Publication is Organized
	Conventions
	Reader’s Comments
	NEON Systems, Inc. Products
	Year 2000 Compliancy Statement
	Working with Technical Support

	Shadow RPC Direct
	Introduction
	Product Architecture
	Host Execution Environment
	Using Host Data
	RPC Debug Support
	Client API Function Definitions

	ODBC CALL RPCs
	Introduction
	ODBC CALL RPC Examples
	Sample ODBC CALL RPC for VSAM
	Other Sample RPCs

	Running DB2 Stored Procedures
	Introduction
	The Syntax
	DB2 Stored Procedures

	Shadow IMS Direct
	Introduction
	Product Architecture
	Installing Shadow IMS Direct
	Programming IMS Applications
	Sample IMS Batch Message Program Code

	Transaction Server for IMS
	Introduction
	Examples of Using Shadow_IMS

	Transaction Server for CICS
	Introduction
	Examples of Using Shadow for CICS

	Host Application API Function Calls
	The High-Level Language (HLL) Interface
	ODBC CALL Host APIs
	IMS/APPC APIs
	CICS APIs
	Web Server Specific APIs
	RPC Direct Host APIs
	General APIs
	Web Server REXX and SEF APIs

	Shadow Enterprise Direct API Function Calls
	Transaction Level Security (TLS)
	What is TLS?
	Why use TLS?
	Implementing TLS
	Passing Generic ID to SAF

	SQLProcedure and SQLProcedure Columns
	Introduction
	Syntax
	Stored Procedures
	Preparing a Stored Procedure to Execute a CICS or IMS Transaction

	Shadow REXX
	What Is Shadow/REXX?
	Why Shadow/REXX?
	Similarities Between Shadow/REXX and Standard REXX
	Differences Between Shadow/REXX and Standard REXX
	Shadow/REXX Execution Limits
	Elements of Shadow/REXX
	Shadow/REXX Considerations
	Shadow/REXX Instructions
	Shadow/REXX Interfaces
	Compiler Error Messages

	MVS Client Support
	Using the ODBC Interface In a COBOL Client Program

	Glossary
	Index

